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Abstract 

Motivation. The high interest in the prediction of the intestinal absorption for new chemical entities is generated 
by the increasing rate in the synthesis of compounds by combinatorial chemistry and the extensive cost of the 
traditional evaluation methods. 
Method. Novel molecular descriptors have been applied to estimate the intestinal epithelial transport of drug in 
Caco–2 cell culture. Total and local (atom and atom–type) quadratic indices used in this study were calculated 
by TOMOCOMD–CARDD software. Linear Discriminant Analysis (LDA) was used to obtain a quantitative 
model that discriminates the high absorption compounds (P  8×10–6 cm/s) from those with moderate–poor 
absorption (P < 8×10–6 cm/s). A data set of 134 diverse structure drugs and two series of drugs–like compounds 
(12 compounds) were used as training and test set, respectively. In addition, Multiple Linear Regression (MLR) 
has been carried out to derive QSPerR models. All statistical analyses were performed with the STATISTICA 
software package. 
Results. The obtained LDA model classified correctly 81.13% of compounds with moderate–poor absorption 
properties and the 96.30% of compounds with high absorption, showing a global good classification of 90.30% 
in the training set. The model showed a high Matthews’ correlation coefficient (MCC = 0.80). Internal and 
external validation processes to demonstrate the robustness and predictive power of the obtained model were 
carried out. In this sense, the model classified correctly 87.31% (MCC = 0.73) in the leave–one–out cross–
validation procedure. The discriminant model was also assessed by a 10–fold full cross–validation (removing 
approximately 13 compounds in each cycle, 85.82% of good classification), yielding a MCC of 0.70. Also this 
model shown an 87.5, 85.6, 84.7, 85.0, 85.3, 83.5, 84.1, 86.2, 85.9 and 85.9% of global good classification when 
n varied from 2 to 11 in the leave–n–out cross validation procedure. The model was stabilized around 85.9% 
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when n was > 9. In addition, a data set of 7 HIV protease inhibitors (4 linear peptidomimetic and 3 new cyclic 
urea) and 5 new 6–fluoroquinolones derivatives was used as external test set. The LDA–QSPerR model achieved 
a MCC of 0.71 (83.33% correct prediction) in this study. This approach permits us to obtain a good explanation 
of the experiment based on the molecular structural features, evidencing the main role of H–bonding and size 
properties in permeability process. Finally, the model developed was used in the virtual screening of 241 drugs 
with the percentage of human intestinal absorption (Abs %) values reported. A relationship between the 
predicted permeability coefficients in Caco–2 and the Abs % (145 compounds with good data quality) was 
established, with a percentage of good relation greater than 82 %. A comparison with results derived from other 
three theoretical studies shown a quite satisfactory behavior of the present method. 
Conclusions. All these results shown that total and local (atom and atom–type) quadratic indices can 
successfully predict intestinal permeability and suggest that the proposed methodology will be a good tool for 
studying the oral absorption of drug candidates during the drug development process. 
Keywords. Oral drug absorption; Caco–2 cell permeability coefficient; TOMOCOMD–CARDD approach; 
quadratic indices; QSPerR; quantitative structure–permeability relationships; QSAR; quantitative structure–
activity relationships. 

1 INTRODUCTION 

During the last few years, the role of biopharmaceutical properties, in the drug discovery 
research, has been increased [1]. Oral bioavailability is one of these biopharmaceutical components 
that have been widely studied; due to the oral administration is one of the most important routes for 
its convenience, low cost and high patient compliance rates. The estimation of oral absorption for 
new drug candidates is very useful in the early stage of the drug discovery process [2,3]. 

In order to obtain a rapid estimation of human absorption, in high throughput screening (HTS) 
[4], many cell culture models has been investigated as potential in vitro models for drug absorption 
and metabolism studies [5,6]. Among them, Caco–2 monolayer is the most advanced in vitro model 
due to this cell line expresses several of the biological membrane properties [5–7]. The apical to 
basolateral permeability coefficient across Caco–2 cell monolayer [PCaco–2(AP BL)] is 
increasingly used to estimate oral absorption of new chemical entities (NCEs) [7–10]. Nevertheless, 
Caco–2 cell models have several disadvantages [11–13], being the long culture periods (21–24 day 
culture times) the major practical shortcoming of this approximation, with consequently extensive 
cost. Intestinal permeability can be considered as a predictor of the true fraction absorbed. The 
theoretical relationship between the fraction of absorbed drug (Fa) and permeability has been 
described by Amidon et al. [14]: 

Fa = (1–e–Apeff x10–6)100[%] (1)

A good correlation between the extent of oral drug absorption in humans and rates of transport 
across the Caco–2 cell monolayers was obtained by Artursson and Karlsson [8]. However, there are 
several examples of application of Caco–2 cell models for prediction or correlation with human 
intestinal absorption where the obtained results for Caco–2 cell permeability coefficients are 
influenced by the inter–laboratory differences [11,12]. In this sense, in the literature there are 
several reports about use of Caco–2 cell permeability in the prediction of human absorption. 
Yazdanian et al. [7] reported that compounds with PCaco–2 values less than 0.4×10–6 cm/s exhibited 
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very poor oral absorption, whereas compounds with PCaco–2 values greater than 7×10–6 cm/s had 
excellent oral absorption. In others papers, Artursson et al. [8] and Rubas et al. [15] reported that 
compounds with PCaco–2 values over 1×10–6 and 70×10–6 cm/s were completely absorbed in human, 
respectively. In addition, Chong et al. [16] concluded that compounds with PCaco–2 greater than 
1×10–6 cm/s would have acceptable absorption in humans (>20%) and Yee [17] determined that 
only compounds with PCaco–2 greater than 10×10–6 cm/s were well–absorbed in humans (70–100%). 
Based on these criterions Chaturvedi et al. [18] has suggested that compounds with the following 
apparent permeability coefficients: <1×10–6cm/s, 1–10×10–6cm/s, >10×10–6cm/s can be classified as 
poorly (0–20%), moderately (20–70%) and well (70–100%) absorbed drugs. 

1.1 Caco–2 Cells, Physic–Chemical Properties for “in vitro–Oral Absorption” 
and development Quantitative structure Permeability Relationships (QSPerR) 

Studies
Currently, it is known that the oral absorption is influenced by a different kind of interactions. In 

some studies has been demonstrated that permeability coefficients measured for transport through 
Caco–2 monolayer cell cultures are correlated with lipophilicity [7,9,19,20], while in others is 
discussed the role of hydrogen bonding or charge [8,9,11,19]. Waterbeemd et al. have used a 
function, which represent permeability–physicochemical property relationship [19]: 

Permeability = f (lipophilicity, molecular size, H–bonding capacity, charge) (2)

However, charge is included in lipophilicity when the distribution coefficient (log D) instead of 
partition coefficient (log P) is used. Furthermore, molecular size and H–bonding capacity are 
components of lipophilicity. In this sense, for each property there are limited ranges as is 
established in the rule–of–5 [2,21]. 

The tree main reasons for clinical failure of NCEs are lack of efficacy, toxicity and unfavorable 
pharmacokinetic properties [18]. The significant failure rate of drug candidates in late stage 
development is driving the need for predictive tools that can eliminate inappropriate compounds 
before substantial time and money is invested in testing [22,23]. Theoretical approaches appears to 
be a good alternative to in silico prediction of human absorption for new drug candidates obtained 
by combinatorial chemistry methodologies [24–32]. Therefore, is expected an increasing use in the 
estimation of absorption parameters from NCEs potentiality actives using quantitative structure 
property relationship (QSPR) methods during the drug discovered and development process. In the 
drug discovery research, several computationally calculated properties have been used to assess the 
oral absorption potential for drug candidates [32–39]. In this sense, some researchers have explored 
QSPerR studies involving Caco–2 cell permeability. Some types of molecular descriptors have been 
introduced in these studies, where are including size and hydrogen–bonding descriptors [19], polar 
surface area (PSA) [11,40,41], Molsurf–derived descriptors [42], MO–calculation [43], and using 
membrane–interaction analysis [44]. Fujiwara et al. [43] obtained a regression coefficient of 0.790 
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using neural network and correlation coefficients of 0.74 and 0.76, applying linear multiple 
regressions (LMR). Waterbeemd et al. using a representative set of molecular weight and various 
H–bonding descriptors obtained 13 models applying LMR and PLS analysis. Besides, in this paper 
these authors obtained a correlation coefficient of 0.88 (s = 0.52), where two principal components, 
were used as variables in the linear regression models [19]. In other paper, Ren and Lien [20] 
developed a QSAR analysis where an adequate regression coefficient value (0.79), for a data set of 
51 compounds, was obtained. Finally, a recently study about prediction of PCaco–2 was carried out by 
Kulkarni et al. [44] where 6 predictive models were obtained using multidimensional linear 
regression (MLR) and the R values were between 0.86 and 0.92, but in this case only 74% from the 
original data set [7] was selected. Almost all these studies were carried out over a limited 
experimental data. 

In the last few years, graph–theoretical methods have become one of the most important tools for 
quantifying molecular structure. These theoretical strategies have emerged as a promising solution 
to the efficient search for new lead compounds [45] and have been very useful in elucidating 
quantitative structure–property and quantitative structure–activity relationships. These studies have 
become an important area of research in computational chemistry [46,47]. Currently there exist a 
large number of molecular descriptors that can be used in QSPR studies [48–50]. The topological 
indices (TIs) are based on the two–dimensional topological structure of molecules and have 
structural information of the planar molecular, without consideration any physico–chemical 
molecular feature [51]. Recently, several TIs have been defined and tested in QSAR models [52–
63]. In this sense, one of the present authors have developed a novel method called TOpological 
MOlecular COMputer Design (TOMOCOMD) [64–66]. It calculates several families of topologic 
molecular descriptors. One of these families has been defined as quadratic indices in analogy to the 
quadratic mathematical forms. The quadratic indices of the “molecular pseudograph atom adjacent 
matrix” have been used in QSPR studies [64,65]. 

Considering the previously mentioned the aims of the present work were: to obtain a 
classification model, for a large and heterogeneous data set compiled, that permit the identification 
of molecules with poor–moderate and high absorption from their molecular structure, using total 
and local quadratic indices as molecular descriptors. In second place, to interpret, in structural 
terms, the obtained models and to identify the driving force that leading the absorption process 
through biological membranes. Later, to assess the predictive power of the model found using an 
external prediction set of 12 compounds and a leave–one, 10–fold, and (n)–out cross–validation 
procedure. Finally, to simulate a virtual screening experiment with the obtained model, in order to 
find a relationship between the predicted permeability coefficients in Caco–2 cell and the human 
absorption.
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2 COMPUTATIONAL METHODS 

2.1 Molecular Descriptors for QSPerR Analysis 
The general principles of the quadratic indices have been explained in some detail elsewhere [64, 

65]. However, an overview of this approach will be given. For a given molecule composed of n
atoms, the “molecular vector” (X) is constructed and the kth total quadratic indices, qk(x) are 
calculated as quadratic: 

n

j
jiij

k
n

i
k xxaxq

11
)( (3)

where n is the number of atoms of the molecule and x1,…,xn are the coordinates or components of 
the “molecular vector” (X) in a system of canonical basis vectors of n. The components of the 
“molecular” vector are numeric values, which can be considered as weights (atom–labels) for the 
vertices of the pseudograph. Certain atomic properties (electronegativity, density, atomic radii, etc) 
can be used with this propose. 

The coefficients kaij are the elements of the kth power of the symmetric square matrix M(G) of 
the molecular pseudograph (G) and are defined as follows: 

aij = Pij if i j and ek  E (G) 
= Lii if i = j

= 0 otherwise 
(4)

where, E(G) represents the set of edges of G. Pij is the number of edges (bonds) between vertices 
(atoms) vi y vj and Lii is the number of loops in vi.

Eq. (3) for qk(x) can be written as the single matrix equation: 

qk(x) = Xt MkX (5)

where X is a column vector (a nx1 matrix), Xt the transpose of X (a 1xn matrix) and Mk the kth

power of the matrix M of the molecular pseudograph G (mathematical quadratic form matrix). 

In addition to total quadratic indices, computed for the whole–molecule, local–fragment (atom 
and atom–type) formalisms can be developed. These descriptors are termed local quadratic indices, 
qkL(x) [64,65]. The definition of these descriptors is as follows: 

m

j
jiijL

k
m

i
kL xxaxq

11
)( (6)

where m is the number of atoms of the fragment of interest and kaijL is the element of the row “i”

and column “j” of the matrix Mk
L. This matrix is extracted from the Mk matrix and contains the 

information referred to the vertices of the specific molecular fragments and also of the molecular 
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environment. 

The matrix Mk
L = [kaijL] with elements kaijL is defined as follows: 

kaijL = kaij if both vi (xi) and vj (xj) are atoms contained within the molecular fragment 
= 1/2

kaij if vi (xi) or vj (xj) is an atom contained within the molecular fragment but not both 
= 0 otherwise 

(7)

These local analogues can also be expressed in matrix form by the expression: 

qkL(x) = Xt Mk
L X (8)

Note that the above scheme follows the spirit of a Mulliken population analysis. Also note that 
for every partitioning of a molecule into Z molecular fragment there will be Z local molecular 
fragment matrices. In this case, if a molecule is partitioned into Z molecular fragments, the matrix 
Mk can be partitioned into Z local matrices Mk

L, L = 1,... Z, and the kth power of matrix M is 
exactly the sum of the kth power of the local Z matrices: 

Mk= k

L

Z

L
M

1
(9)

and the total quadratic indices is the sum in the quadratic indices of the Z molecular fragments: 

qk(x) = )(
1

xq
Z

L
kL (10)

Atom and atom–type quadratic indices are specific cases of local quadratic indices. In this sense, 

the kth atom–type quadratic indices are calculated by summing the kth atom quadratic indices of all 

atoms of the same atom type in the molecule. 

In the atom–type quadratic indices formalism, each atom in the molecule is classified into an 

atom–type (fragment), such as heteroatoms, H–bonding to heteroatoms (O, N and S), halogens, 

aliphatic carbon chain, aromatic atoms (aromatic rings), an so on. For all data sets, including those 

with a common molecular scaffold as well as those with very diverse structure, the kth atom–type 

quadratic indices provide important information. 

In any case, whether a complete series of indices is considered, a specific characterization of the 

chemical structure is obtained (whole structure or fragment), which is not repeated in any other 

molecule. The generalization of the matrices and descriptors to “superior analogs” is necessary for 

the evaluation of situations where only one descriptor is unable to bring a good structural 

characterization [67]. These local indices can also be used together with total indices as variables of 

QSAR and QSPR models for properties or activities that depend more on a region or a fragment 

than on the whole molecule. 
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2.2 TOMOCOMD–CARDD Software 
TOMOCOMD is an interactive program for molecular design and bioinformatics research [66]. 

The program is composed by four subprograms, each one of them dealing with drawing structures 
(drawing mode) and calculating 2D and 3D molecular descriptors (calculation mode). The modules 
are named CARDD (Computed–Aided ‘Rational’ Drug Design), CAMPS (Computed–Aided 
Modeling in Protein Science), CANAR (Computed–Aided Nucleic Acid Research) and CABPD 
(Computed–Aided Bio–Polymers Docking). In this paper we outline salient features concerned with 
only one of these subprograms: CARDD. This subprogram was developed based on a user–friendly 
philosophy.

The calculation of total and local quadratic indices for any organic molecule (or any drug–like 
compounds) was implemented in the TOMOCOMD–CARDD software [66]. The main steps for the 
application of this method in QSAR/QSPR can be briefly resumed as follows: 

(1) Draw the molecular pseudographs for each molecule of the data set, using the software drawing 
mode. This procedure is carried out by a selection of the active atom symbol belonging to different 
groups of the periodic table, 

(2) Use appropriated atom weights in order to differentiate the molecular atoms. In this work, we 
used as atomic property the Mulliken electronegativity [68] for each kind of atom, 

(3) Compute the total and local quadratic indices of the molecular pseudograph atom adjacency 
matrix. They can be carried out in the software calculation mode, which you can select the atomic 
properties and the family descriptor previously to calculate the molecular indices. This software 
generate a table in which the rows correspond to the compounds and columns correspond to the 
total and local quadratic indices or any others family molecular descriptors implemented in this 
program, 

(4) Find a QSPR/QSAR equation by using statistical techniques, such as multilinear regression 
analysis (MRA), Neural Networks (NN), Linear Discrimination Analysis (LDA), and so on. That is 
to say, we can find a quantitative relation between a property P and the quadratic indices having, for 
instance, the following appearance, 

P = a0q0(x) + a1q1(x) + a2q2(x) +….+ akqk(x) + c (11)

where P is the measurement of the property, qk(x) [or qkL(x)] is the kth total [or local] quadratic 
indices, an the ak’s are the coefficients obtained by the linear regression analysis. 

(5) Test the robustness and predictive power of the QSPR/QSAR equation by using internal and 
external cross–validation techniques, 

(6) Develop a structural interpretation of obtained QSAR/QSPR model using quadratic indices as 
molecular descriptors. 
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Table 1. Caco–2 cell permeability for 134 structurally diverse compounds 
Compounds Ref POBS.

a Compounds Ref POBS.
a Compounds Ref POBS.

a

Acebutolol 69 4.47 Telmisartan 7 15.14 Sulphasalazine 70 0.13
 7 0.51  7 0.47  7 0.3 
Acebutolol ester 69 77.62  76 0.97  7 0.3 
Acetylsalicylic acid 70 2.4 Terbutaline 70 0.38 Taurocholic acid 17 34.67
 17 30.9  75 1.04 Ibuprophen 17 52.5
 7 9.12 Chlorpromacine 7 19.95 Amiloride 72 0.78
Aciclovir 17 2 Clonidine 17 30.2 Alfentanil 72 310 
 7 0.25  7 21.88 Cumarin 9 77.62
Alprenolol 70 40.74 Chlorotiazide 7 0.19 Theophyline 9 44.67
 8 40.74 Corticosterone 70 54.95 Epinephrine 9 0.95
 69 75.86  7 21.38 Guanoxan 9 19.5
 7 25.12  8 54.5 Guanabenz 9 72.44
 71 38.3 Desipramine 17 21.38 Lidocaine 9 61.66
 72 242  7 24.55 Tiacrilast 9 12.59
Alprenolol ester 69 107.15 Dexamethasone 70 12.59 Nitrendipine 9 16.98
Aminopyrine 7 36.31  75 26.92 Fleroxacin 9 15.49
Artemisinin 73 30.4  17 23.44 Diltiazem 9 48.98
Artesunate 73 4  7 12.3 Verapamil 9 26.3
Atenolol 70 0.2 Dexamethasone– –D–glucoside 75 0.44 Mibefradil 9 13.49
 8 0.2 Dexamethasone– –D–glucuronide 75 1.15 Bosentan 9 1.05
 74 0.47 Diazepam 17 70.79 Proscillaridin 9 0.63
 7 0.52  7 33.11 Ceftriaxone 9 0.13
 9 0.23  72 756 Remikiren 9 0.74
 73 0.13  7 33.4 Squinavir 9 0.55
 16 4 Dopamine 7 9.33 Olsalazine 70 0.11
 75 1.16 Doxorubicin 17 0.16 Glycine 17 80 
 76 0.19 Erithromycin 17 3.72 Amoxicillin 75 0.33
 71 0.2 Estradiol 7 19.95 Enaprilate 75 0.62
 72 1 Felodipine 8 22.91 Lisinopril 75 0.05
Azithromycin 17 1.05 Fluconazole 17 29.51 Gabapentin 77 4.33
Penicillin G 17 1.95 Ganciclovir 15 2.69  77 1.5 
Betaxolol 69 95.5  7 0.38 Raffinose 72 0.05
Betaxolol ester 69 95.5  7 0.38 Sildenafil 72 87 
Tenidap 17 51.29 Gliseofulvin 7 36.31 Antipyrine 76 47.23
Bremazocine 7 7.94 H216/44 8 0.91  72 2.15
Caffeine 17 50.5  71 1.14 Ciprofloxacin 72 1.9 
 7 30.9 Hidrochlorothiazid 74 1.51 Imipramine 17 14.13
 75 84  7 0.51 Indomethacin 7 25.12
 16 21.4 Oxazepam 72 246 Lactulose 72 0.27
         
Labetalol 7 7 Nordazepam 72 307 Testosterone 8 51.8
Mannitol 70 0.18 Metolazone 72 6.1  7 24.9
 15 3.24 Oxprenolol 69 66.07  75 44.5
 17 0.65  72 120  9 58.88
 7 0.38 Oxprenolol ester 69 97.72 Timolol 69 44.67
 9 2.63 Phencyclidine 7 24.55  7 12.88
 76 0.12 Phenytoin 7 26.92 Timolol ester 69 79.43
 16 0.5 Pindolol 7 16.6 Trovafloxacin 17 30.2
 75 0.17 Pirenzepine 7 0.44 Uracil 7 4.27
 77 0.83 Piroxicam 7 35.48 Urea 7 4.57
Meloxicam 7 19.95  76 46.25 Valproic acid 17 48 
Methanol 15 131.83 Practolol 70 0.89 Warfarin 70 38.02
Methotrexate 17 1.2  8 0.89  7 20.89
Methylscopolamine 7 0.79  9 1.38  9 53.7
Metoprolol 70 26.92  71 0.92 Ziduvudine 7 6.92
 8 26.92  72 3.5 Ziprasidone 17 12.3
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Table 1. (Continued) 
Compounds Ref POBS.

a Compounds Ref POBS.
a Compounds Ref POBS.

a

 76 18.8 Prazocin 17 43.65 Cephalexin 73 0.18 
 71 26.71 Progesterone 15 78.23 Gly–Pro 76 6.1 
 72 92  7 23.7 D–glucose 76 17.53 
Nadolol 7 3.89 Propranolol 70 41.69 L–Phenylalanine 76 18.37 
 16 4.5  8 41.69 Ketoprofen 76 23.15 
Naloxone 17 28.18  69 83.18 Furosemide 76 0.29 
Naproxen 15 74.13  17 27.54 Sulpiride 72 0.39 
Nevirapine 7 30.2  7 21.88 SB 209670 72 8.8 
Nicotine 7 19.5  73 11.2 SB 217242 72 70 
D–Phe–L–Pro 17 44.3  71 43.03 Cimetidine 74 0.5 
BvaraU 16 4  16 14.8  17 3.09 
Pravastatin 16 2.3 Sumatriptan 17 3.02  7 1.37 
L–Glutamine 75 0.85 Propranolol ester 69 104.71  76 0.35 
SQ–29852 16 0.02 Quinidine 17 20.42 Hydrocortisone 8 21.38 
Foscarnet 72 0.05 Ranitidine 7 0.49 15 35.4 
Sucrose 7 1.7 Salicylic acid 70 12.02 7 15.85 
 75 0.71  7 21.88 77 44.67 
Chloramphenicol 17 20.42 Scopolamine 7 11.75 75 12.9 
a Permeability coefficient: PCaco–2(AP BL)x10–6cm/s, obtained from diverse source 

The following descriptors were calculated: 

(1) qk(x) and qkH(x) are the kth total quadratic indices considering and not considering H–atoms in 
the molecular pseudograph (G), respectively. 

(2) qkL(xE) and qkLH(xE) are the kth local (atom–type = heteroatoms: S, N, O) quadratic indices 
considering and not considering H–atoms in the molecular pseudograph (G), respectively. 

(3) qkLH(xE–H) are the kth local (atom–type = H–atoms bonding to heteroatoms: S, N, O) quadratic 
indices considering H–atoms in the molecular pseudograph (G). 

3 PERMEABILITY DATA 

A data set of 134 structurally diverse compounds (training set) was compiled from several 
sources [7–9,15–17,69–77]. Experimental values of PCaco–2(AP BL) are illustrated in Table 1. The 
data set used for in silico permeability studies included compounds with a diverse molecular weight 
and net charge. Also were included model compounds with to different absorption mechanism. The 
external test set (prediction set) was also selected from literature [78,79]. 

4 DATA ANALYSIS 

A linear discrimination analysis (LDA) that discriminates the high from the moderate–poor 
absorbed compounds was employed to develop a simple linear QSPerR between structure and 
Caco–2 cell permeability coefficients [80,81]. For this purpose, this data set was split into two 
subsets according to a boundary quantitative value of PCaco–2 (8×10–6 cm/s). This value of PCaco–2
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was fixed taking into consideration the experimental results reported in the literature and the wide 
inter–laboratory variability [11,12]. In the developing of the classification function the absorption 
degree was encoded by a dummy variable f(H–M,P). The values of 1 and –1 were assigned to high and 
moderate–poor absorption compounds, respectively. The statistical analyses were carried out with 
the STATISTICA software [80]. The quality of the model was determined examining the statistics 
parameter of multivariable comparison (Wilk’s  statistic, Mahalanobis distance, Fisher ratio F, the 
corresponding p–level as well as the proportion between the cases and variables in the equation) 
and several internal and external validation tests. 

In this sense, the validation of the model was carried out by a leave–one–out cross–validation 
procedure. Also a full (10%) cross–validation test of the model was investigated. From the general 
data set (134 chemicals), 9 groups of 13 observations and 1 group of 17 cases were randomly 
selected tem times. Each group was left out (leave–group–out, LGO) and that group predicted by 
the model developed from the remaining observations. In this way, every observation was left out 
once and its value predicted. Afterward, the classification trees module was used to carry out the 
leave–n–out cross–validation routine. In addition, to assess the predictive power of the model an 
external test set of 12 (7 anti–VIH and 5 6–fluoroquinolones derivatives) drugs–like compounds 
were used [78,79]. Finally, the calculation of percentages of global good classification (accuracy), 
sensibility, specificity, positive and negative predictive values and of Matthews correlation 
coefficient in all validation experiments permit us to carry out the assessment of the model. 

5 DEVELOPING OF THE DISCRIMINATION FUNCTION

In order to develop the LDA, the data was conformed by 81 compounds with high absorption (P
 8×10–6 cm/s) and 53 compounds with moderate–poor absorption (P < 8×10–6 cm/s). The best 

discrimination model found, by a forward–stepwise variable selection procedure, together with the 
statistical parameters, is shown below: 

f(H–M,P) = 4.1493+ 0.07622q0(x)–0.00475q2(x)–0.00462q2
H(x) +2.08 x10–7q10

H(x)
– 0.1099q3L(xE–H) +0.03735q4L(xE–H) –9.6x10–5q8L(xE–H) –0.02427q1L

H(xE)
N = 134  = 0.48    D2 = 4.518    F (8.125) = 16.878 p < 0.0001 

(12)

where N is the number of compounds,  is Wilk coefficient, F is the Fisher ratio, D2 is the squared 
Mahalanobis distance and p–value is the significance level. The Wilks  parameter can takes values 
in the range of 0 (perfect discrimination) to 1 (no discrimination) and the Mahalanobis distance 
indicates the separation between the respective groups. It shows whether the model has an 
appropriate discriminatory power for differentiating between the two respective groups. The 
classification of cases was carried out by means of the posterior classification probabilities. Using 
the Mahalanobis distances to do the classification, we can now derive probabilities. The probability 
that a case belongs to a particular group is basically proportional to the Mahalanobis distance from 
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that group centroid. In summary, the posterior probability is the probability, based on our 
knowledge of the values of others variables, that the respective case belongs to a particular group. 

This model classified correctly 81.13% (negative predictive value) of compounds with 
moderate–poor absorption properties and the 96.30% (positive predictive value) of compounds with 
high absorption. The global good classification for the data set was 90.30% (accuracy). This model 
showed a high Matthews´ correlation coefficient (MCC) of 0.80. MCC quantified the strength of the 
linear relation between the molecular descriptors and the classifications [82]. These result and the 
two most commonly used operating characteristics of “diagnostic” tests (sensitivity and specificity) 
are depicted in Table 2. In Table 3 are shown the results of classification and a posteriori 
probabilities for 134 compounds of the training data set. 

Table 2. Overall measures of accuracy obtained in the training and predictive sets, and in the jackknife (leave–1, 10 
fold, and n–out cross–validation) tests for the obtained model 

 Matthews Corr. 
Coefficient

 Accuracy  
 (%) 

Sensitivity 
 (%) 

Specificity
 (%) 

 Predictive 
 Value (+) (%) 

 Predictive 
 Value (–) (%) 

Series
Training Set 0.80 90.30% 88.64 93.48 96.30 81.13 
Predictive Set 0.71 83.33 85.71 80.00 85.71 80.00 
Jackknife (cross–validation) tests 
Leave–1–out 0.73 87.31 87.21 87.50 92.59 79.25 
Leave–10 fold–out  0.70 85.82 86.9 84.00 90.12 79.25 

To assess the predictability of the classification model, Eq. (12), a leave–one–out cross–
validation was carried out. This methodology systematically removed one data point at a time from 
the data set. A discriminant model was then constructed on the basis of this reduced data set and 
subsequently used to predict the removed data point. This procedure was repeated until a complete 
set of predicted classification was obtained. Using this approach, the model classified correctly 
87.31% (MCC = 0.73) in the leave–one–out cross–validation procedure (see Table 2).

Then, the reliability of the model was tested by a 10–fold full cross–validation test. For each 
group of observations left out (10% of the whole data set, approximately 13 compounds), a model 
was developed from the remaining 90% of the data. This process was carried out ten times on ten 
unique subsets. The statistical results are also depicted in Table 2. 

For a more exhaustive testing of the predictive power of the model found a leave–n–out cross 
validation procedures was carried out using the classification tree module. The selected conditions 
for the validation procedure were the following: discriminant–based linear combination as split 
method, prune on misclassification error as stopping rule and the same prior probabilities than in 
Eq. (12). Once the selected conditions were applied to the module of classification tree, the Eq. (12) 
was obtained and varying the folding parameter of the cross validation, a leave–n–out routine can 
be developed. This model shown an 87.5, 85.6, 84.7, 85.0, 85.3, 83.5, 84.1, 86.2, 85.9 and 85.9% of 
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global good classification when n varied from 2 to 11 in the leave–n–out cross validation 
procedures. The model was stabilized around 85.9% when n was > 9 (see Figure 1). 
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Figure 1. Behavior of the total percentages of good classification in different n–fold cross–validation analysis. 

The most important criterion for the quality of the discriminant model is based on the statistics 
for the prediction set. In this way, the predictive power of the model was also tested through an 
external test set of 12 drugs–like compounds. In this sense, we have selected two series of 
compounds, previously reported as antiviral and antimicrobial agents, which will be evaluated by 
model (12) as high and moderate–poor absorbed compounds. The first set of drugs is composed for 
4 linear peptidomimetic and 3 new cyclic urea HIV protease inhibitors [78]. The second set is 
conformed by 5 new 6–fluoroquinolone derivatives [79]. At the bottom of Table 3 appear the results 
for the external prediction set. As can be seen, in both series, the predictability and robustness of the 
theoretical model were demonstrated. Only 2 compounds were bad classified, one in each test group 
(Amprenavir and CNV 97100 with PCaco–2 of 21.6 and 3.6, respectively). The LDA–QSPerR model 
achieved a MCC of 0.71 (83.33% correct prediction) in this test set. These values, as well as the 
sensitivity, specificity and positive and negative predictive values, remained stable in all (leave–1, 
10 fold, and n–out cross–validation) Jackknife procedures, a fact that indicates an acceptable level 
of predictability. 
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Table 3. Results of the classification of compounds in the data set and the external test set through the discriminant 
function obtained using total and local quadratic indices as molecular descriptors 
Compounds Proba Prob–cvb Compounds Proba Prob–cvb Compounds Proba Prob–cvb

Training set 
High absorption group (H) 

Acebutolol ester 0.54 0.52 Meloxicam 0.66 0.61 Valproic acid 0.88 0.87 
Acetylsalicylic acid 0.89 0.89 Methanol 0.94 0.94 Warfarin 0.98 0.98 
Alprenolol 0.92 0.91 Metoprolol 0.91 0.91 Ziprasidone 0.91 0.90 
Alprenolol ester 0.91 0.91 Naloxone 0.94 0.94 D–glucose 0.18* 0.14* 
Aminopyrine 0.97 0.97 Naproxen 0.98 0.98 L–Phenylalanine 0.82 0.80 
Artemisinin 0.93 0.92 Nevirapine 0.87 0.87 Ketoprofen 0.98 0.98 
Betaxolol 0.84 0.84 Nicotine 0.97 0.97 SB 209670 0.96 0.95 
Betaxolol ester 0.89 0.88 Oxprenolol 0.83 0.83 SB 217242 0.98 0.98 
Bremazocine 0.94 0.94 Oxprenolol ester 0.88 0.88 Sildenafil 0.73 0.70 
Caffeine 0.91 0.90 Phencyclidine 0.98 0.98 Oxazepam 0.97 0.96 
Chloramphenicol  0.51 0.49* Phenytoin 0.68 0.65 Nordazepam 0.96 0.96 
Chlorpromacine 0.99 0.99 Pindolol 0.69 0.66 Antipyrine 0.98 0.98 
Clonidine 0.86 0.86 Piroxicam 0.79 0.76 Alfentanil 0.81 0.78 
Corticosterone 0.71 0.69 Prazocin 0.83 0.82 Cumarin 0.99 0.99 
Desipramine 0.97 0.97 Progesterone 0.97 0.97 Theophyline 0.75 0.72 
Dexamethasone 0.73 0.72 Propranolol 0.96 0.96 Guanoxan 0.70 0.63 
Diazepam 0.99 0.99 Propranolol ester 0.97 0.97 Guanabenz 0.82 0.78 
Dopamine 0.65 0.63 Quinidine 0.96 0.96 Lidocaine 0.89 0.89 
Estradiol 0.93 0.93 Salicylic acid 0.80 0.79 Tiacrilast 0.89 0.88 
Felodipine 0.98 0.98 Scopolamine 0.87 0.87 Nitrendipine 0.95 0.95 
Fluconazole 0.88 0.87 Taurocholic acid 0.00* 0.00* Fleroxacin 0.98 0.98 
Gliseofulvin 0.99 0.99 Telmisartan 1.00 1.00 Diltiazem 0.97 0.97 
Hydrocortisone 0.51 0.49* Tenidap 0.84 0.83 Verapamil 0.99 0.99 
Ibuprophen 0.94 0.94 Testosterone 0.93 0.93 Mibefradil 0.96 0.96 
Imipramine 0.99 0.99 Timolol 0.60 0.57 Squinavir 0.68 0.23* 
Indomethacin 0.98 0.98 Timolol ester 0.59 0.53 Glycine 0.84 0.81 
Labetalol 0.16* 0.11* Trovafloxacin 0.92 0.91 D–Phe–L–Pro 0.59 0.59 

Moderate–poor absorption group (M–P) 
Acebutolol 0.79 0.77 Nadolol 0.37* 0.33* Lactulose 1.00 0.99 
Aciclovir 0.97 0.97 Olsalazine 0.83 0.81 Foscarnet 0.97 0.97 
Artesunate 0.08* 0.05* Pirenzepine 0.27* 0.10* Ciprofloxacin 0.23* 0.21* 
Atenolol 0.58 0.55 Practolol 0.45* 0.43* Amiloride 0.97 0.94 
Azithromycin 0.96 0.94 Ranitidine 0.67 0.62 Epinephrine 0.69 0.66 
Penicilina G  0.67 0.66 Sucrose 1.00 1.00 Bosentan 0.67 0.57 
Chlorotiazide 1.00 1.00 Sulphasalazine 0.97 0.96 Proscillaridin 0.56 0.51 
Cimetidine 0.40* 0.33* Sumatriptan 0.86 0.85 Ceftriaxone 1.00 0.99 
Dexamethasone 
– –D–glucoside 0.93 0.92 Terbutaline 0.60 0.56 Remikiren 0.99 0.99 
Dexamethasone 
– –D–glucuronide 0.96 0.96 Uracil 0.03* 0.02* Gabapentin 0.25* 0.11* 
Doxorubicin 0.71 0.62 Urea 0.47* 0.38* BVaraU 0.94 0.94 
Erithromycin 0.99 0.99 Ziduvudine 0.99 0.99 Pravastatin 0.88 0.87 
Ganciclovir 0.96 0.96 Cephalexin 0.88 0.87 Amoxicillin 0.96 0.96 
H216/44 0.22* 0.16* Gly–Pro 0.63 0.61 Enaprilate 0.51 0.49* 
Hidrochlorothiazide 0.97 0.95 Furosemide 1.00 1.00 Lisinopril 0.97 0.96 
Mannitol 0.95 0.87 Sulpiride 0.99 0.99 SQ–29852 0.91 0.90 
Metthotrexate 1.00 1.00 Raffinose 1.00 1.00 Glutamine 0.82 0.79 
Methylscopolamine 0.85 0.75 Metolazone 0.94 0.94    
External test set 

(Virtual Screening Simulation of anti–VIH compounds) 
Compounds Ref. P Obs.c Classd Proba F (%)e   

DMP450 78 36.8 H 0.56 NA   
DMP850 78 12.4 H 0.54 NA   
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Table 3. (Continued) 
Compounds Ref. P Obs.c Classd Proba F (%)e   

DMP851 78 5.2 M–P 0.68 NA   
Indinavir 78 6.0 M–P 0.76 65    
Ritonavir 78 3.9 M–P 0.99 60–80    
Nelfinavir 78 3.4 M–P 0.80 20–80    
Amprenavir 78 21.6 M–P 0.68* NA   

(Virtual Screening Simulation of 6–fluoroquinolones) 
Compounds Ref. P Obs.c Classd Proba P(BL–AP) 

x10–6cm/s 
Efflux Ratio 

P BL–AP/PAP–BL
CNV 97100 79 3.6 H 0.81* 14.0 3.88 
CNV 97101 79 21.8 H 0.93 25.4 1.17 
CNV 97102 79 16.8 H 0.93 21.1 1.25 
CNV 97103 79 15.2 H 0.92 17.5 1.15 
CNV 97104 79 13.9 H 0.92 17.8 1.28 
a Probability calculated for each subset. b Probability calculated for each subset using leave–one–out cross–validation 
procedure. c Permeability coefficient: Pcaco–2(AP BL)×10–6cm/s, obtained from references [78,79]. d Results of the 
classification of anti–VIH compounds and 6–fluoroquinolones derivatives obtained from Eq. (12); H: High absorption 
group (P  8×10–6 cm/s) and M–P: moderate–poor absorption group (P < 8×10–6 cm/s). e Oral bioavailavility in human 
(%). Incorrect classifications are marked with (*).

In addition, to demonstrate the true merit of this approach, we developed a direct comparison 
with other approaches. In connection, three virtual experiments were carried out: (1) with the data 
set of 17 diverse structural compounds studied by van de Waterbeemd et al. [19], where were used 
the lipophilicity, molecular size (shape), and hydrogen bonding descriptors, (2) with the data set of 
30 structurally diverse drugs studied by Kulkarni et al. [44], where in this case the membrane–solute 
interaction descriptors and intermolecular dissolution and solvation descriptors of the solute, were 
applied and, (3) with the data set of 51 diverse compounds studies by Ren and Lien [20] where 
several physicochemical properties were introduced. The regression results for the different data 
sets, using the total and local quadratic indices, and the comparison with the reported models of 
PCaco–2 are given in Table 4. 

In these equations R is the correlation coefficient, RCV the cross–validated (leave–one–out) 
correlation coefficient, s the standard deviation of the regression, and F a measure for the statistical 
significance of the regression models. The statistical parameters show a high statistical quality of 
the developed models using total and local quadratic indices. In the first virtual experiment, the 
statistical parameters of the Eq. (13) are higher than obtained by van de Waterbeemd et al. [19] 
whose used two principal component as variables for the description of Log PCaco–2. In the second 
comparison, the statistics parameters obtained with our approach [Eq. (15) and Eq. (16)] are lightly 
lower than obtained by Kulkarni et al. [44]. Finally, the obtained models with our approach for the 
same data set of 51 compounds reported by Ren and Lien [20] [Eq. (17) and Eq. (18)] and when 
these compounds were splitted into three subgroups, namely neutral [NC: Eq. (19) and Eq. (20)], 
cationic [CC: Eq. (21) and Eq. (22)] and anionic [AC: Eq. (23)] compounds had better statistical 
parameters than obtained by these authors. 
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Table 4. Regression results for different data sets, using the total and local quadratic indices, and the comparison with 
the reported models of PCaco–2
Eq. or source Models n R RCV s F 

First virtual experiment: 17 structural diverse compounds [19] 
Eq. (13) Log PCaco–2=–4.553–0.00247.Hq5L(x) +0.001618 .q0

H(x)  17 0.920 0.860 0.436 38.692
van de Water– 
beemd et al.[19]

Eq. (4) in Ref. [19] 17 0.884 0.836 0.520 25.2 

Second virtual experiment: 30 structural diverse compounds [44] 
Eq. (15) PCaco–2=31.2842–0.72.Hq0L(x) –5.7841x10–3.Eq5L

H(x) +0.017693.Eq4L(x) 30 0.877 0.841 4.974 28.737
Eq. (16) PCaco–2=31.42089 –1.5847.Hq0L(x)  

–5.438x10–3.Eq5L
H(x) +0.01617.Eq4L(x) +0.12.Hq3L(x) 

30 0.887 0.839 4.874 22.959

Kulkarni et al.[44] Eq. (4) in Ref. [44] 30 0.894 0.860 – – 
Kulkarni et al.[44] Eq. (5) in Ref. [44] 30 0.905 0.866 – – 

Third virtual experiment: Full Data Set (51 structural diverse compounds) [20]
Eq. (17) Log PCaco–2=1.849 –3.326x10–5.q7

H(x) +7.48x10–4.q3L(x)–.031.Eq1L(x)
+1.906x10–3.Eq3L(x)–1.309 x10–4.Hq7L(x) +1.485x10–8.Hq14L(x)

51 0.800 0.761 0.471 13.068

Eq. (18) Log PCaco–2=1.907+–4.12x10–6.q7
H(x) +9.423x10–4.q3L(x)–0.0387.Eq1L(x)

+2.25x10–3.Eq3L(x) –1.12x10–4.Hq7L(x) +1.478x10–8.Hq14L(x)
49 0.849 0.75 0.414 18.107

Ren and Lien [20] Eq. (6) in Ref. [20] 51 0.797 – 0.465 19.98 
Ren and Lien [20] Eq. (8) in Ref. [20] 50 0.749 – 0.506 14.40 

Split Data Set [20] 
Eq. 19 (NC) Log PCaco–2=0.809–0.0224.Hq2L(x) +1.222x10–3.q1

H(x)  17 0.915 0.854 0.324 35.768
Eq. 20 (NC) Log PCaco–2=1.335–0.0718.Hq2L(x) +0.0183.Hq3L(x)+1.1069x10–3.q1

H(x)
–4.202.q2(x)

17 0.967 0.894 0.219 43.830

Ren and Lien [20] Eq. (11) in Ref. [20] 17 0.968 – 0.217 44.54 
Eq. (21) (CC) Log PCaco–2=1.0249–0.137.Eq0L

H(x) +2.875x10–3.q1(x)+0.0997 Eq0L(x) 26 0.833 0.784 0.438 16.618
Eq. (22) (CC) Log PCaco–2=1.463–0.0184.Eq1L(x) +4.315x10–8 q10L(x)+7.416x10–3.q1(x)

–3.367x10–3.q0
H(x)–1.433.q2(x) –7.272x10–3. Hq2L(x)

23 0.936 0.894 0.299 19.053

Ren and Lien [20] Eq. (17) in Ref. [20] 26 0.901 – 0.352 22.60 
Ren and Lien [20] Eq. (16) in Ref. [20] 25 0.915 – 0.325 35.87 
Eq. (23) (AC) Log PCaco–2=1.186–0.115 Hq3L(x) +0.359 Hq2L(x) 8 0.975 0.94 0.172 48.591
Ren and Lien [20] Eq. (20) in Ref. [20] 8 0.931 – 0.284 16.38 

6 DRIVING FORCES FOR PERMEABILITY OF DRUG IN CACO–2 CELL 

As can be observed, in the discriminant model, the included variables are very close to the 
factors that influence on the permeability values [see Eq (2)]. These factors are related with the 
structural features of molecules. For example, in Eq. (12), the variables q3L(xE–H), q4L(xE–H) and
q8L(xE–H) are connected with the hydrogen atoms as donors, while the q1L

H(xE) variable contain 
information about the number of hydrogen acceptors and the charge of molecules. All of them are 
related with the total hydrogen bond capacity. If the total contribution of these descriptors is 
analyzed, the obtained values are negative (not shown data) which are logical results due to when 
the number of heteroatoms and the hydrogen atom bond to heteroatoms in the molecules is 
increased, the permeability across the biological membrane decrease. This effect is very close with 
the molecule lipophilicity decrease and the possibility of molecule ionization. The charge factor is 
related with the negative charge of biological membrane [83]. This observation is supported in a 
study developed by Ren et al. [20]. Firstly, a low regression coefficient (R = 0.749) was evidenced 
when anionic, cationic and neutral compounds (the full set), using the net charge of molecules like a 
descriptor, were studied. Once these compounds where separated into three subgroups (neutral, 
cationic and anionic compounds), much better correlation coefficients (R = 0.968, 0.915 and 0.931, 
respectively) were obtained [20]. Other descriptor with a positive contribution to the permeability 
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coefficient is q0(x). This variable contains information about the molecular weight and consequently 
of the molecule size. For this reason, although, the number of heteroatoms is increased (negative 
contribution to the permeability coefficient) the quadratic influence of molecular size (descriptor) 
should increase the permeability of molecules. Taking into consideration the above mentioned 
approach, should be considered that successful drug candidates will be characterized by an optimal 
range of values for H–bonding, lipophilicity and size [84] and for this reason, compounds with 
extreme positive values of these properties could have a marked negative effect on permeability 
across biological membrane [19]. 

7 VIRTUAL SCREENING 

Several QSAR studies have shown their importance in the prediction of human intestinal 
absorption [32,85–88] and the so–called rule–of–5 has proved very popular as a rapid screen for 
compounds that are likely to be poorly absorbed [2]. In the present study was simulated a virtual 
search to predict the absorption profile of 241 compounds [88], using the discriminant function [Eq. 
(12)] obtained. The aim of this approach is to evaluate the capacity of human absorption prediction 
from the classification model, in high and moderate–poor, for drug absorption in Caco–2 cells [Eq. 
(12)]. In this sense, some compounds included in the model obtaining (training or test set) were also 
used in this screening. As the compounds selected for the virtual screening were obtained from 
different sources, only the first 145 compounds (data of best quality, classified as OK and Good by 
Abraham et al. [88]) should be used to bring a better comparative criterion, nevertheless the rest of 
the compounds can be evaluated but their human absorption values (Abs %) were not comparatively 
reliable [88]. These experimental values and the evaluation results of these compounds are depicted 
in Table 5. In this Table we give the posterior probabilities values calculated from the Mahalanobis 
distance [P(H) and P(M–P)] for each compounds; P% = [P(H) – P(M–P)]×100, where P(H) is the 
probability that the equation classifies a compound with PCaco–2  8×10–6 cm/s. Conversely, P(M–P) 
is the probability that the model classifies a compound with PCaco–2 < 8×10–6 cm/s. This values 
( P%) takes positives values when P(H) > P(M–P) and negative, otherwise. Therefore, when P%
is positive (negative) the compounds were classified with High (Moderate–Poor) absorption profile. 

As can be seen in Table 5, of the 123 compounds with high human absorption [Abs % 70; see 
column eighth with absorption data (or average values) chosen from literature], the Caco–2 cell 
model, Eq. (12), classified 103 in the high absorption group (PCaco–2  8×10–6 cm/s) for a 83.74% of 
correspondence between the in vitro values of permeability (Caco–2) and the reported human 
absorption values. For the 22 compounds with moderate–poor human absorption (Abs % < 70), 17 
compounds were well classified, Eq. (12), for a 77.27% of correspondence with the human reported 
data. The global percentage of good extrapolation (from in vitro to in vivo) was 82.76%. 
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Table 5. Results of the virtual screening of 241 drugs. Permeability coefficient from model [Eq. (12)] and observed 
human absorption and bioavailability from literature 
Compounds Prob Ha Prob M–Pb P%c %Abs.d %Abs.e %Bio.f %Abs.g

1–Cisapride 0.65 0.35 30.20 100  100 100 
2–Valproic acid 0.88 0.12 75.35 100 ~100 90(68–100) 100 
3–Salicylic acid 0.80 0.20 60.62 100 100  100 
4–Diazepam 0.99 0.01 97.79 97–100 100  100 
5–Sudoxicam 0.67 0.33 33.14  100  100 
6–Glyburide 0.02 0.98 –96.46    100 
7–Gallopamil 0.99 0.01 98.20  ~100 15 100 
8–Mexiletine 0.97 0.03 94.07  100 88 100 
9–Nefazodone 0.93 0.07 85.33  100 15–23 100 
10–Naproxen 0.98 0.02 96.25 94–99 100 99 99 
11–Lamotrigine 0.78 0.22 56.90 70  98 98 
12–Tolmesoxide 0.99 0.01 98.03 100  85 98 
13–Disulfiran 0.91 0.09 82.59  91  97 
14–Torasemide 0.03 0.97 –94.36   96 96 
15–Metoprolol 0.91 0.09 82.94 95–100 >90 50 95 
16–Naloxone 0.00 1.00 –100.00    91 
17–Terazocin 0.79 0.21 57.18 91 ~100 90 90 
18–Sulindac 0.00 1.00 –100.00  90  90 
19–Sultopride 0.82 0.18 63.56 100 ~100  89 
20–Topiramate 0.00 1.00 –99.12   81–95 86 
21–Tolbutamide 0.09 0.91 –82.98    85 
22–Propiverine 0.99 0.01 97.96  84  84 
23–Digoxin 0.02 0.98 –96.95   67 81 
24–Mercapto ethane sulfonic acid 0.75 0.25 50.49    77 
25–Cimetidine 0.60 0.40 20.22 62–98  60 64 
26–Furosemide 0.00 1.00 –99.26 61 61 61 61 
27–Metformin 0.40 0.60 –19.57   50–60 53 
28–Rimiterol 0.41 0.59 –17.69    48 
29–Cymarin 0.46 0.54 –8.44  47  47 
30–Ascorbic Acid 0.80 0.20 59.87    35 
31–Fosfomycin 0.08 0.92 –84.11    31 
32–Fosmidomycin 1.00 0.00 99.91  30  30 
33–k–Strophanthoside 0.99 0.01 98.20  16  16 
34–Adefovir 0.00 1.00 –99.57 12  12 16 
35–Acarbose 0.00 1.00 –100.00  1–2.  2 
36–Ouabain 0.97 0.03 94.07  1.4  1.4 
37–Kanamycin 0.00 1.00 –99.99    1 
38–Lactulose 0.00 1.00 –99.53 0.6 0.6  0.6 
39–Camazepan 0.99 0.01 98.53 99  100 100 
40–Indomethacin 0.98 0.02 96.62 100  100 100 
41–Levomorgestrel 0.97 0.03 93.03   100 100 
42–Tenoxicam 1.00 0.00 99.91   100 100 
43–Theophyline 0.75 0.25 49.05 96  100 100 
44–Oxatomide 0.91 0.09 81.18 100   100 
45–Desipramine 0.97 0.03 93.61 95–100 >95 40 100 
46–Fenclofenac 0.97 0.03 93.22 100   100 
47–Imipramine 0.99 0.01 98.67 95–100 >95 22–67 100 
48–Lormetazepan 1.00 0.00 99.26 100 100 80 100 
49–Diclofenac 0.91 0.09 81.58 100  90 100 
50–Granisetron 0.92 0.08 84.75 100 100  100 
51–Testosterone 0.93 0.07 86.27 100 100  100 
52–Caffeine 0.91 0.09 82.30 100 100  100 
53–Corticosterone 0.71 0.29 41.91 100 100  100 
54–Ethinyl estradiol 0.97 0.03 93.07 100 ~100 59 100 
55–Isoxicam 0.73 0.27 45.81  100  100 
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Table 5. (Continued) 
Compounds Prob Ha Prob M–Pb P%c %Abs.d %Abs.e %Bio.f %Abs.g

56–Lornoxicam 1.00 0.00 99.90  100  100 
57–Nicotine 0.97 0.03 94.91 100 100  100 
58–Ondansetron 0.99 0.01 97.89 100 100 60 100 
59–Piroxicam 0.79 0.21 58.00 100 100  100 
60–Verapamil 0.99 0.01 98.20 100 >90 10–52. 100 
61–Progesterone 0.97 0.03 94.07 91–100 91  100 
62–Stavudine 0.29 0.71 –41.62   100 100 
63–Toremifene 1.00 0.00 99.89   100 100 
64–Cyproterone acet. 0.99 0.01 98.19   100 100 
65–Praziquantel 0.96 0.04 92.64  100  100 
66–Cicaprost 0.69 0.31 38.42  100  100 
67–Aminopyrine 0.97 0.03 93.79 100   100 
68–Nordazepam 0.96 0.04 92.58 99  99 99 
69–Carfecillin 0.06 0.94 –87.04 100   99 
70–Prednisolone 0.61 0.39 21.45 99  70–100 99 
71–Propranolol 0.96 0.04 91.58 90–100 >90 30 99 
72–Viloxazine 0.91 0.09 82.45 100 ~100 61–98 98 
73–Warfarin 0.98 0.02 96.88 98 ~100 93–98 98 
74–Atropine 0.88 0.12 76.86  90  98 
75–Minoxidil 0.78 0.22 55.17  95  98 
76–Clofibrate 0.98 0.02 95.78 96  95–99 97 
77–Trimethoprim 0.75 0.25 50.53 97  92–102 97 
78–Venlafaxine 0.95 0.05 90.49 92   97 
79–Antipyrine 0.98 0.02 95.26 100 ~100 97 97 
80–Bumetanide 0.01 0.99 –98.81 100 100 ~100 96 
81–Trapidil 0.92 0.08 84.09   96 96 
82–Fluconazole 0.88 0.12 76.60 95–100  >90 95 
83–Sotalol 0.05 0.95 –89.61 95 ~100 90–100 95 
84–Codeine 0.98 0.02 96.99 95  91 95 
85–Flumazenil 0.98 0.02 97.00 95 >95 16 95 
86–Ibuprofen 0.94 0.06 88.38 100   95 
87–Labetalol 0.16 0.84 –68.70 90–95 >90 33 95 
88–Oxprenolol 0.83 0.17 66.92 97 90 50 95 
89–Practolol 0.55 0.45 10.51 95 ~100  95 
90–Timolol 0.60 0.40 19.08 72 >90 75 95 
91–Alprenolol 0.92 0.08 83.35 93–96 >93  93 
92–Amrinone 0.74 0.26 48.93  93  93 
93–Ketoprofen 0.98 0.02 95.23 100 ~100 >92 92 
94–Hydrocortisone 0.51 0.49 2.85 89–95 84–95  91 
95–Betaxolol 0.84 0.16 68.82 90 90 80–89 90 
96–Ketorolac 0.98 0.02 96.14 100 Well 80–100 90 
97–Meloxicam 0.66 0.34 31.42 90  90 90 
98–Phenytoin 0.68 0.32 35.01 90 90 90 90 
99–Amphetamine 0.89 0.11 77.18    90 
100–Chloramphenicol  0.51 0.49 1.33 90  80 90 
101–Felbamate 0.09 0.91 –82.38  90–95 102 90 
102–Nizatidine 0.29 0.71 –41.42 99  >90 90 
103–Alprazolam 0.99 0.01 98.83   80–100 90 
104–Tramadol 0.96 0.04 91.50   65–75 90 
105–Nisoldipine 0.96 0.04 92.96    89 
106–Oxazepam 0.97 0.03 93.08 97 ~100 92.8 89 
107–Tenidap 0.84 0.16 68.23 90  89 89 
108–Dihydrocodeine 0.99 0.01 97.80   20 88 
109–Felodipine 0.98 0.02 96.10 100 100 16 88 
110–Nitrendipine 0.95 0.05 89.75   23 88 
111–Saccharin 0.52 0.48 3.68 97 88  88 
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Table 5. (Continued) 
Compounds Prob Ha Prob M–Pb P%c %Abs.d %Abs.e %Bio.f %Abs.g

112–Mononidine 0.63 0.37 25.07   88 87 
113–Bupropion 0.92 0.08 84.73 87  87 87 
114–Pindolol 0.69 0.31 37.54 92–95 >90 87 87 
115–Lamivudine 0.12 0.88 –76.60   86–88 85 
116–Morphine 0.96 0.04 91.17 100 ~100 20–30 85 
117–Lansoprazole 1.00 0.00 99.89   85 85 
118–Oxyfedrine 0.90 0.10 80.63   85 84 
119–Captopril 0.51 0.49 1.18 77 71 62 84 
120–Bromazepam 0.95 0.05 89.68 84  84 84 
121–Acetylsalicylic acid 0.89 0.11 78.05    82 
122–Sorivudine 0.06 0.94 –88.69 82 82 61 82 
123–Methylprednisolone 0.01 0.99 –97.13 82  82 82 
124–Mifobate 0.90 0.10 80.95    81 
125–Flecainide 0.94 0.06 88.15   81 81 
126–Quinidine 0.96 0.04 92.41 80 81 81 81 
127–Piroximone 0.58 0.42 15.56   81 80 
128–Acebutolol 0.21 0.79 –58.53 90 90 50 80 
129–Ethambutol 0.23 0.77 –53.61  75–80  80 
130–Acetaminophen 0.80 0.20 60.27 80–100 80 68.95 80 
131–Dexamethasone 0.73 0.27 46.17 92–100  80 80 
132–Guanabenz 0.82 0.18 63.42 75   80 
133–Isoniazid 0.60 0.40 19.97    80 
134–Omeprazole 0.92 0.08 84.85    80 
135–Methadone 0.99 0.01 98.82   80 80 
136–Fanciclovir 0.49 0.51 –2.53   77 77 
137–Metolazone 0.06 0.94 –88.71 64 62–64  64 
138–Fenoterol 0.43 0.57 –13.23  60  60 
139–Nadolol 0.63 0.37 26.80 20–35 34 34 57 
140–Atenolol 0.42 0.58 –16.90 50–54 50 50 50 
141–Sulpiride 0.01 0.99 –98.62 36  30 44 
142–Metaproterenol 0.56 0.44 11.12  44 10 44 
143–Famotidine 0.00 1.00 –99.95   37–45 28 
144–Foscarnet 0.03 0.97 –93.98 17 17(12–22)  17 
145–Cidofovir 0.32 0.68 –35.32   <5 3 
146–Isradipine 0.97 0.03 94.44 92 90–95 17 92 
147–Terbutaline 0.40 0.60 –20.16 60–73 50–73 16 62 
148–Reproterol 0.08 0.92 –84.97  60  60 
149–Lincomycin 0.04 0.96 –92.92  20–35  28 
150–Streptomycin 0.00 1.00 –100.00  poor  1 
151–Fluvastatin 0.95 0.05 90.94 100 >90 19–29 100 
152–Urapidil 0.70 0.30 40.00   68 78 
153–Propylthiouracil 0.67 0.33 34.07 75  76(53–88) 76 
154–Recainam 0.33 0.67 –33.16    71 
155–Cycloserine 0.83 0.17 66.46    73 
156–Hidrochlorothiazide 0.03 0.97 –93.76 67–90 65–72  69(65–72)
157–Pirbuterol 0.21 0.79 –57.49    60 
158–Sumatriptan 0.14 0.86 –72.95 55–75 >57 14 57 
159–Amiloride 0.03 0.97 –93.08    50 
160–Mannitol 0.05 0.95 –89.03 16–26   16 
161–Ganciclovir 0.04 0.96 –92.95 3–3.8 3 3 3 
162–Neomycin 0.00 1.00 –100.00    1 
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Table 5. (Continued) 
Compounds Prob Ha Prob M–Pb P%c %Abs.d %Abs.e %Bio.f %Abs.g

163–Raffinose 0.00 1.00 –99.98 0.3   0.3 
164–Phenglutarimide 0.83 0.17 65.50 100   100 
165–Bornaprine 0.79 0.21 58.67 100   100 
166–D–Phe–L–Pro 0.59 0.41 18.69 100   100 
167–Scopolamine 0.87 0.13 74.35 90–100   95 
168–Naloxone 0.94 0.06 87.42 91   91 
169–Ziprasidone 0.91 0.09 81.69 60   60 
170–Guanoxan 0.70 0.30 40.08  50  50 
171–Netivudine 0.13 0.87 –74.27  28  28 
172–Gentamicin–C1 0.00 1.00 –99.90 0 poor  poor 

Zwitterionic drugs 
173–Cefadroxil 0.04 0.96 –91.09   100 100 
174–Ofloxacin 0.98 0.02 95.45   100 100 
175–Pefloxacin 0.99 0.01 97.61   100 100 
176–Cephalexin 0.12 0.88 –75.82 98 100  100 
177–Loracarbef 0.22 0.78 –56.73 100 100  100 
178–Glycine 0.84 0.16 67.41 100   100 
179–Amoxicillin 0.04 0.96 –92.76 94  93 93 
180–Tiagabine 0.92 0.08 83.85   90 90 
181–Telmisartan 1.00 0.00 99.28 90 rapid 43 90 
182–Trovafloxacin 0.92 0.08 83.44 88  88 88 
183–Acrivastine 0.97 0.03 94.20 88   88 
184–Nicotinic acid 0.88 0.12 75.94    88 
185–Levodopa 0.36 0.64 –27.61 100 80–90 86 86 
186–Cefatrizine 0.01 0.99 –98.51   75 75 
187–Ampicilin 0.10 0.90 –80.30    62 
188–Vigabatrin 0.66 0.34 32.52    58 
189–Tranexamic acid 0.54 0.46 8.32 55   55 
190–Eflurnithine 0.95 0.05 89.86    55 
191–Metyldopa 0.50 0.50 0.16  41  41 
192–Ceftriaxone 0.00 1.00 –99.77 1 1  1 
193–Distigminebromide 0.87 0.13 74.89   47 8 
194–Ziduvudine 0.01 0.99 –98.72 100 100 63 100 
195–Ximoprofen 0.80 0.20 59.41 100  98 98 
196–Clonidine 0.86 0.14 72.24 85–100 100 75–95 95 
197–Viomycin 0.00 1.00 –100.00    85 
198–Ceftizoxime 0.01 0.99 –97.70    72 
199–Capreomycin 0.00 1.00 –100.00    50 
200–AAFC 0.46 0.54 –7.46  32  32 
201–Bretvlium tosilate 0.98 0.02 96.45 23  23 23 

Dose–limited, dose–dependent, and formulation–dependent drugs 
202–Spironolactone 0.93 0.07 87.00  >73  73 
203–Etoposide 0.83 0.17 65.54 50  50(25–75) 50(25–75)
204–Cefetamet pivoxil 0.02 0.98 –95.34   47 47 
205–Cefuroximeaxetil 0.15 0.85 –70.25 36  36–58 44(36–52)
206–Azithromycin 0.04 0.96 –91.43 35–37  37 37 
207–Fosinopril 0.48 0.52 –3.48  36 25–29 36 
208–Pravastatin 0.12 0.88 –75.90 34 34 18 34 
209–Cyclosporin 0.00 1.00 –99.99 35  10–60 28(10–65)
210–Bromocriptine 0.18 0.82 –63.87 28 28 6 28 
211–Doxorubicin 0.29 0.71 –42.87 5 trace 5 12(0.7–23)
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Table 5. (Continued) 
Compounds Prob Ha Prob M–Pb P%c %Abs.d %Abs.e %Bio.f %Abs.g

212–Cefuroxime 0.01 0.99 –98.58    1 
213–Iothalamate sodium 0.15 0.85 –69.64 1.9 1.9  1.9 
214–Sulphasalazine 0.03 0.97 –94.60 12–13.   59(56–61)
215–Benazepril 0.72 0.28 43.63 37 >37  37 
216–Lisinopril 0.03 0.97 –93.39 25 25 25–50 28(25–50)
217–Esalaprilat 0.19 0.81 –62.46 9–10. 10–40.  25(10–40)
218–Anfotericina  0.00 1.00 –100.00 5 poor  3(2–5) 
219–Aztreonam 0.00 1.00 –99.96  <1 <1 1 
220–Mibefradil 0.96 0.04 92.12   37–109 69(37–100)
221–Ranitidine 0.33 0.67 –34.45 50–61  50(39–88) 64(39–88)
222–Chlorotiazide 0.00 1.00 –99.32 13–56   49(36–61)
223–Aciclovir 0.03 0.97 –94.91 20–30  15–30 23(15–30)
224–Norfloxacin 0.77 0.23 53.66 35 30–40 ~70 71 
225–Metthotrexate 0.00 1.00 –99.35 20–100 100  70(53–83)
226–Gabapentin 0.75 0.25 50.14 50 well 60A(36–64) 59(43–64) 
227–Prazocin 0.83 0.17 66.16 100  44–69 86(77–95) 
228–Olsalazine 0.17 0.83 –65.21 2.3  2.3 24(17–31) 

Drugs expected to have higher absorption 
229–Ciprofloxacin 0.77 0.23 53.94 69–100  69 69 
230–Ribavirin 0.02 0.98 –95.20   33 33 
231–Pafenolol 0.21 0.79 –57.69   28 29 
232–Azosemide 0.00 1.00 –99.54   10 10 
233–Xamoterol 0.12 0.88 –75.51   5 5
234–Enalapril 0.50 0.50 0.99 66 60–70 29–50 66(61–71) 
235–Phenoxymethyl penicillin 0.19 0.81 –61.16 45 45(31–60)  59(49–68) 
236–Gliclazide 0.08 0.92 –84.02    65 
237–Benzylpenicillin 0.33 0.67 –34.22 30 15–30  30 
238–Thiacetazone 0.38 0.62 –23.02    20 
239–Lovastatin 0.86 0.14 72.39 30 31  10 
240–Cromolym sodium 0.55 0.45 10.94    0.4 
241–Erythromycin 0.03 0.97 –93.89 35  35 35 
Results of the classification (Probability calculated for each subset) of compounds obtained from Eq. (12); a H: High 
absorption group (P  8×10–6 cm/s), and b M–P: moderate–poor absorption group (P < 8×10–6 cm/s). c P% = [P(High 
absorption group) – P(moderate–poor group)]x100. d The data used for QSAR studies was taken from Clark [85] and 
Wessel [32], Palm [86], Yazdanian [7], Yee [17], and Chiou [87]. e Absorption data obtained from the original and 
review literature. f Bioavaililability or absolute bioavailability of oral administration. g Absorption data (or average 
values) chosen in the reference 88 based on the analysis of literature. 

Compounds from 146 to 172, according to the Abraham et al. [88] classification, were 
considered as uncertain and unchecked data. For the 11 compounds with high Abs % values, 10 
were well classified with a high Caco–2 cells “in vitro” permeability (Eq. 12), and only two, with 
moderate–poor human absorption were bad classified. The global good classification was 88.89%.

In the same sense the group of zwitterionic drugs (20), reported by Abraham et al. [88], were 
also analyzed. For this kind of drugs our model only showed a 50% of correct correspondence 
between “in vitro” classification and “in vivo” results. For compounds 193–201 (group of missing 
fragments, according Abraham et al. [88]) were bad predicted with our model more than a half of 
compounds for a 44.4% of correspondence. For the group with dose limited, dose–dependent and 
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formulation–dependent drugs the correspondence between in vitro permeability and the human 
absorption values was 81.5%. Finally, for the analysis of drugs with expected high absorption, 
according to Abraham et al. [88], were not reported a value or average for the human absorption. 
Nevertheless, if the data from the fifth, sixth and seventh columns of data in Table 5 are considered 
our model explained 84.61% of correspondence. If the compounds 146–241 are considered as an 
only great group, where less realistic data of Abs% are reported, the percentage of correct 
correspondence between “in vitro” permeability data [Caco–2 cells, predicted by Eq. (12)] and the 
human absorption is 73.78% (70/95). This group has a less percentage of correspondence than the 
first 145 compounds previously analyzed. 

Considering the full set (241 compounds) the model [Eq. (12)] showed a 78.84% of explanation 
of the human absorption values, which is a logic result considering the structure variability and the 
biological property. 

On the other hand has been widely reported in the literature the influence of transport mechanism 
in the prediction of this biopharmaceutical property, for example: Methotrexate is absorbed by a 
carrier–mediated process, Zidovudine is absorbed by active transport, Amoxicillin and Cefatrizine 
are absorbed via dipeptide carrier system and in the Etoposide case it is suggested that its 
distribution into the brain is partially controlled by an active transport process [85]. Also 
Cefadroxil, Digoxin and Cepahalexin were compounds with known active transport [89]. Other 
compounds with the same skeleton pattern of cephalosporins (Cefatrizine and Ceftizoxime), 
cardiotonic glycosides (Ouabain) and antiviral nucleoside analogues (Stavudine, Lamivudine, 
Sorivudine) appears bad classified (uncorrelation between the permeability predicted in Caco–2 
cells and the human absorption values), suggesting a active transport system for these drugs. In 
addition, in the case of the Viomycin, with an appropriate intestinal absorption (Abs % = 85), it has 
a molecular weight value of 685 g mol–1 (>500), similar with those drugs with poor intestinal 
absorption, for what it could be suggested that this compound can be actively transported, as was 
pointed out by Egan et al. [90] in the case of Rifampicin. 

It is obvious that from these results the quality of the predictions assessing the predictive power 
of the models found and justified it use in the prediction of this important biopharmaceutical 
property. Also, this is not a fortuitous result due to the data set used in this study including any sort 
of absorption model compounds. 

8 CONCLUDING REMARKS 

Computer–aided molecular design has become in a very important tool in the development of 
novel chemical compounds to be used in different areas of human life. The focus of modern drug 
discovery is now not simply on the pharmacological activity, but also on seeking favorable 
absorption, distribution, metabolism, and excretion properties [88,91,92]. The growth in drug 
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discovery of combinatorial chemistry methods, where large numbers of candidate compounds are 
synthesized and screened in parallel for in vitro pharmacological activity, has dramatically 
increased the demand for rapid and efficient models for estimating human absorption. Thus, the 
continuous definition of novel molecular descriptors that could explain different biological 
properties by means of QSAR is necessary. Consequently, we have developed LDA model that 
could permit us to predict by fast in silico screening, the intestinal permeability of chemical and 
outline preliminary conclusions about possible human intestinal absorption profile. This result 
demonstrated that total and local quadratic indices appear to be a very promising structural invariant 
and was able to produce an adequate model for the correct classification of the intestinal 
permeability for structural diverse drugs. Acceptable efficiency and a fairly good predictability was 
found in the prediction of absorption, especially if we take into account the variety of the selected 
data set and the simplicity of the calculations used, which are in relation with the computational 
feasibility of the TOMOCOMD–CARDD method. This approach permits that these indices can be 
applied to large sets of NCEs synthesized via combinatorial chemistry approach. Furthermore, this 
approximation permits to obtain significant interpretation of the experiment result in terms of the 
structural features of molecules. Some works, where the potential of this method in the prediction of 
several biological properties for different classes of organic compounds have been proved, are now 
in progress and will be published in a forthcoming paper. 
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