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Abstract
Artificial immune systems (AIS) represent a family of machine learning algorithms that use immune system
components and mechanisms as templates in modeling information processes, such as pattern recognition and 
classification. This paper demonstrates the first application of the artificial immune recognition system (AIRS) 
algorithm in modeling structure–activity relationships (SAR). A dataset of 349 drugs was used in the evaluation
of the AIRS algorithm. The learning task was to classify these chemicals into a subset of 106 drugs that induce
torsade de pointes (TdP) and a subset of 243 drugs that do not induce TdP. The chemical structure was described
with five linear solvation energy relationships descriptors, namely the excess molar refraction, the combined
dipolarity/polarizability, the overall solute hydrogen bond acidity, the overall solute hydrogen bond basicity, and
the McGowan’s characteristic volume. The classification performance of the AIRS algorithm depends on a large
number of parameters: affinity threshold scalar, clonal rate, hypermutation rate, number of nearest neighbors,
initial memory cell pool size, number of instances to compute the affinity threshold, stimulation threshold, and 
total resources. The cross–validation predictions were investigated over of a wide range of values for these eight
AIRS parameters. The best leave–10%–out cross–validation predictions of the AIRS algorithm (selectivity
0.783, specificity 0.893, accuracy 0.860, and Matthews correlation coefficient 0.671) surpass those obtained 
with 11 other machine learning algorithms, namely logistic regression, Bayesian network, naïve Bayesian
classifier, alternating decision tree, C4.5 decision tree, logistic model trees, decision tree with naïve Bayesian 
classifiers at the leaves, fast decision tree learner, random trees, random forests, and K* instance–based
classifier. The results obtained suggest that classifiers based on artificial immune systems may be successful in 
structure–activity relationships, drug design, and virtual screening of chemical libraries.
Keywords. Artificial immune system; AIS; artificial immune recognition system; AIRS; torsade de pointes;
TdP; quantitative structure–activity relationships; QSAR. 

Abbreviations and notations 
AIRS, artificial immune recognition system IMPS, initial memory cell pool size 
ATS, affinity threshold scalar NIAT, number of instances to compute the affinity threshold
CR, clonal rate ST, stimulation threshold
HR, hypermutation rate TR, total resources 
kNN, number of nearest neighbors TdP, torsade de pointes
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1 INTRODUCTION 

Biology is a rich source of inspiration for developing algorithms that solve complex problems by 
emulating mechanisms and functions of biological systems. Well–known examples of biologically 
inspired algorithms are artificial neural networks, genetic algorithms, ant colony optimization, DNA 
computing, and particle swarm optimization. Artificial immune systems (AIS) are computational
tools inspired by the processes from the biological immune system [1–6]. AIS use the learning and 
memory capabilities of the immune system to develop computational algorithms for pattern 
recognition, function optimization, classification, process control, and intrusion detection. The 
major AIS algorithms and the most important applications are presented in numerous books and 
conference proceedings: Artificial Immune Systems and Their Applications edited by Dasgupta [7]; 
Artificial Immune Systems: A New Computational Intelligence Approach by de Castro and Timmis
[8]; Immunocomputing: Principles and Applications, by Tarakanov, Skormin, and Sokolova [9]; 
Immunity–Based Systems by Ishida [10]; Artificial Immune Systems: ICARIS 2004 edited by 
Nicosia, Cutello, Bentley, and Timmis [11]; Artificial Immune Systems: ICARIS 2005 edited by 
Jacob, Pilat, Bentley, and Timmis [12]. AIS models were successfully applied to biological and 
medical problems, such as classification of gene expression data [13–15], breast cancer 
identification [16,17], classification of liver disorders [16], detection of heart diseases [18], and 
diagnosis of thyroid diseases [19]. 

Watkins, Timmis, and Boggess developed an efficient machine learning algorithm, the artificial 
immune recognition system (AIRS), which encodes several principles and mechanisms of the 
immune system [20–22]. Brownlee used AIRS for a wide range of classification problems [23], 
confirming its utility as a supervised learning classifier.

In this study we demonstrate the first application of the AIRS algorithm in modeling structure–
activity relationships for drug design. The learning task investigated here is the classification of 
chemical compounds into drugs that induce torsade de pointes (TdP+) and drugs that do not induce 
torsade de pointes (TdP–). Torsade de pointes (TdP) is a polymorphic ventricular arrhythmia that 
may be caused by drugs that induce the prolongation of the QT interval [24–26]. QT prolongation 
and TdP may be caused by a large number of drugs, such as antiarrhytmics, antihistamines,
antimicrobials, antidepressants, and antipsychotics [27–30]. The human ether–à–go–go related gene 
(hERG) encodes the primary component of the K+ channel that is responsible for the repolarization 
of the ventricules [30,31]. Mutations in the hERG K+ channel gene may increase the binding 
affinity for certain chemical compounds that block the channel and induce lethal arrhythmias [30–
33]. The drug design and development costs may be significantly reduced if, along with other 
ADME/Tox filters, chemical compounds that have the potential to bind and inhibit the hERG K+

channel are eliminated as early as possible. The experimental determination of the hERG K+

channel inhibition by a certain chemical compound, which is performed with the voltage clamp
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technique, is time–consuming and expensive. To accelerate the drug development process, the 
inhibition of the hERG K+ channel is predicted with various quantitative structure–activity 
relationships (QSAR) [34–39]. In this study we investigated a dataset of 349 drugs [40] and the 
learning task was to classify these chemicals into a subset of 106 drugs that induce torsade de 
pointes and a subset of 243 drugs that do not induce torsade de pointes. 

2 THE ARTIFICIAL IMMUNE RECOGNITION SYSTEM 

The artificial immune system characteristics that are relevant to AIRS are briefly reviewed below 
[2,20,21]. The immune system protects an organism against infection by identifying and killing 
pathogens. Recognition cells known as B–cells and T–cells identify the pathogens that enter into the 
human body. Receptors situated on the surface of the B–cells and T–cells recognize and bind 
proteins and protein fragments from pathogens, thus forming high affinity antigen–antibody 
complexes. The recognition mechanism encoded into an antibody may be improved upon the 
presentation of several antigens with similar characteristics. In the AIRS classification algorithm, an 
antigen is represented as an n–dimensional vector x = {x1, x2, …, xn}, where each structural 
descriptor xi is a real number (xi R for i = 1, 2, …, n), and an associated class y = {+1, –1}. An 
identical encoding is used for antibodies. An artificial recognition ball (ARB) represents a B–cell, 
and consists of an antibody, a number of resources, and a stimulation value. The stimulation value 
measures the similarity between an ARB and an antigen. Each AIRS model has a limited number of 
resources, and ARBs compete for their allocation. Resources are removed from the least stimulated
ARBs, and ARBs without resources are eliminated from the cell population. The ARB population is 
trained during several cycles of competition for limited resources. In each cycle of ARB training, 
the best ARB classifiers generate mutated clones that enhance the antigen recognition process, 
whereas the ARBs with insufficient resources are removed from the population. After training, the 
top ARB classifiers are selected as memory cells. Finally, the memory cells are used to classify 
novel antigens (patterns). 

Detailed descriptions of the artificial immune recognition system may be found in the literature 
[20–23]. We present here only the most important characteristics of the AIRS procedure, in order to 
highlight the parameters that control its classification ability. The AIRS algorithm consists of the 
following steps: 

(1) Initialization
(2) Train for all Antigens 

(2.1) Antigen Training 
(2.2) Competition for Limited Resources 
(2.3) Memory Cell Selection 

(3) Classification 
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The most important step is represented by the ARB competition for limited resources, which is 
an iterative process: 

(2.2) Competition for Limited Resources 
(2.2.1) Perform Competition for Resources 

(2.2.1.1) Stimulate the ARB Pool with Antigen 
(2.2.1.2) Normalize the ARB Stimulation Values 
(2.2.1.3) Allocate Limited Resources Based on Stimulation 
(2.2.1.4) Remove ARBs with Insufficient Resources 

(2.2.2) Continue with (2.3) if the Stop Condition is Satisfied 
(2.2.3) Generate Mutated Clones of Surviving ARBs 
(2.2.4) Go to (2.2.1) 

The steps of the AIRS algorithm are briefly described below: 

(1) Initialization. The training data are normalized between 0 and 1. The Euclidean distance is 
computed for all pairs of antigens, and then the affinity is determined as the ratio between the 
distance and the maximum distance. The affinity threshold is computed as the average affinity for 
all antigens in the training set. The memory cell pool is populated with randomly selected antigens. 
At the end of the AIRS algorithm, the memory cell pool represents the recognition ARBs used as 
classifiers.

(2) Train for all Antigens 

(2.1) Antigen Training. Each training antigen is exposed to the memory cell pool, and each 
memory cell receives a stimulation value, stimulation = 1 – affinity. The memory cells with the 
highest stimulation are selected, and a number of mutated clones are created and added to the 
ARB pool. The number of clones generated is computed with the formula:

NumberClones = Stimulation×ClonalRate×HypermutationRate (1)

(2.2) Competition for Limited Resources. The scope of this process is to select those ARBs 
that have the best recognition capabilities, while optimally allocating the resources to the best 
ARBs. The number of clones generated in the step (2.2.3) is: 

NumberClones = Stimulation×ClonalRate (2)

The amount of resources allocated to each ARB in the step (2.2.1.3) is: 

Resources = NormalizedStimulation×ClonalRate (3)

The total amount of resources is a user defined parameter. ARBs without resources are removed
from the memory cell pool. The stop condition for the ARB refinement is met when the average 
normalized stimulation is higher than a user defined stimulation threshold. 

(2.3) Memory Cell Selection. In this step, new ARB classifiers are evaluated for inclusion in the 

491
BioChem Press http://www.biochempress.com



O. Ivanciuc 
Internet Electronic Journal of Molecular Design 2006, 5, 488–502 

memory cell pool. An ARB is inserted in the memory cell pool if its stimulation value is better 
than that of the existing best matching memory cell. The existing best matching memory cell is 
then removed if the affinity between the candidate ARB and the existing memory cell is less than 
a CutOff value: 

CutOff = AffinityThreshold×AffinityThresholdScalar (4)

where the AffinityThreshold was computed during the Initialization phase, and the 
AffinityThresholdScalar is a user defined parameter.

(3) Classification. The memory cell pool represents the AIRS classifier. The classification is 
performed with a k–nearest neighbor method, in which the k best matches to a prediction pattern are 
identified and the predicted class is determined with a majority vote. 

3 MATERIALS AND METHODS 

The learning task investigated here is the classification of chemical compounds into drugs that 
induce torsade de pointes and drugs that do not induce torsade de pointes. The dataset was collected 
from the literature [40], and consists of 106 TdP+ drugs and 243 TdP– drugs. The chemical
structure was described with five linear solvation energy relationships (LSER) descriptors [41–43], 
namely the overall solute hydrogen bond acidity A, the overall solute hydrogen bond basicity B, the 
combined dipolarity/polarizability S, the excess molar refraction E, and the McGowan’s 
characteristic volume V. All computations were performed with the AIRS2 implementation of
Brownlee [23] using Weka 3.5.4 (http://sourceforge.net/projects/weka). 

4 RESULTS AND DISCUSSION 

We investigated the classification performance of AIRS2 over a large range of the eight user 
defined parameters, namely affinity threshold scalar, clonal rate, hypermutation rate, number of 
nearest neighbors, initial memory cell pool size, number of instances to compute the affinity 
threshold, stimulation threshold, and total resources. The classification prediction was evaluated 
with leave–10%–out cross–validation. The statistical indices reported for each AIRS model are: 
TPc, true positive in calibration (number of Td+ drugs classified as Td+); FNc, false negative in 
calibration (number of Td+ drugs classified as Td–); TNc, true negative in calibration (number of 
Td– drugs classified as Td–); FPc, false positive in calibration (number of Td– drugs classified as 
Td+); Sec, calibration selectivity; Spc, calibration specificity; Acc, calibration accuracy; MCCc,
calibration Matthews correlation coefficient; TPp, true positive in prediction; FNp, false negative in 
prediction; TNp, true negative in prediction; FPp, false positive in prediction; Sep, prediction 
selectivity; Spp, prediction specificity; Acp, prediction accuracy; MCCp, prediction Matthews 
correlation coefficient. 
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Affinity Threshold Scalar (ATS). ATS takes values between 0 and 1, and it is used in Eq. (4) to 
compute a cut–off value for memory cell replacement. If the affinity between a candidate ARB and 
the best matching memory cell is lower that the threshold computed with Eq. (4), then the ARB 
replaces the memory cell. A low value for ATS results in a low replacement rate, whereas a high 
ATS value increases the replacement rate. In experiments 1–14 (Table 1) we varied the ATS value 
between 0.01 and 0.9 in order to identify the optimum replacement regimen. The initial values for 
the remaining parameters are: clonal rate = 10, hypermutation rate = 2, number of nearest neighbors 
= 3, initial memory cell pool size = 50, number of instances to compute the affinity threshold = all, 
stimulation threshold = 0.5, and total resources = 150. These parameters are optimized in the above 
order, and the optimum value is used in all subsequent experiments. The highest prediction MCC = 
0.6323 is obtained for ATS = 0.05, indicating that for this classification problem a low memory cell 
replacement rate is beneficial. 

Table 1. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of ATS (Affinity Threshold Scalar) 

Exp ATS TPc FNc TNc FPc Sec Spc Acc MCCc
1 0.01 91 15 220 23 0.8585 0.9053 0.8911 0.7490
2 0.04 84 22 226 17 0.7925 0.9300 0.8883 0.7327
3 0.05 87 19 223 20 0.8208 0.9177 0.8883 0.7365
4 0.06 87 19 217 26 0.8208 0.8930 0.8711 0.7015
5 0.07 85 21 216 27 0.8019 0.8889 0.8625 0.6805
6 0.10 83 23 219 24 0.7830 0.9012 0.8653 0.6825
7 0.20 72 34 217 26 0.6792 0.8930 0.8281 0.5856
8 0.30 68 38 213 30 0.6415 0.8765 0.8052 0.5301
9 0.40 53 53 214 29 0.5000 0.8807 0.7650 0.4129

10 0.50 59 47 203 40 0.5566 0.8354 0.7507 0.3999
11 0.60 59 47 204 39 0.5566 0.8395 0.7536 0.4053
12 0.70 60 46 213 30 0.5660 0.8765 0.7822 0.4652
13 0.80 53 53 204 39 0.5000 0.8395 0.7364 0.3544
14 0.90 65 41 200 43 0.6132 0.8230 0.7593 0.4340

Exp ATS TPp FNp TNp FPp Sep Spp Acp MCCp
1 0.01 76 30 213 30 0.7170 0.8765 0.8281 0.5935
2 0.04 78 28 210 33 0.7358 0.8642 0.8252 0.5925
3 0.05 78 28 217 26 0.7358 0.8930 0.8453 0.6323
4 0.06 76 30 210 33 0.7170 0.8642 0.8195 0.5767
5 0.07 76 30 207 36 0.7170 0.8519 0.8109 0.5603
6 0.10 78 28 206 37 0.7358 0.8477 0.8138 0.5710
7 0.20 65 41 213 30 0.6132 0.8765 0.7966 0.5060
8 0.30 71 35 210 33 0.6698 0.8642 0.8052 0.5369
9 0.40 61 45 207 36 0.5755 0.8519 0.7679 0.4387

10 0.50 63 43 203 40 0.5943 0.8354 0.7622 0.4333
11 0.60 59 47 194 49 0.5566 0.7984 0.7249 0.3531
12 0.70 55 51 198 45 0.5189 0.8148 0.7249 0.3394
13 0.80 52 54 200 43 0.4906 0.8230 0.7221 0.3240
14 0.90 49 57 198 45 0.4623 0.8148 0.7077 0.2872

a Notations: Exp, experiment number; TPc, true positive in calibration; FNc, false negative in calibration; TNc, true 
negative in calibration; FPc, false positive in calibration; Sec, calibration selectivity; Spc, calibration specificity; Acc,
calibration accuracy; MCCc, calibration Matthews correlation coefficient; TPp, true positive in prediction; FNp, false 
negative in prediction; TNp, true negative in prediction; FPp, false positive in prediction; Sep, prediction selectivity; Spp,
prediction specificity; Acp, prediction accuracy; MCCp, prediction Matthews correlation coefficient. 
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Clonal Rate (CR). CR takes integer values, and is used in ARB resource allocation and in 
controlling the clonal mutation for the memory cell population. In Eq (1), CR is used to determine
the number of mutated clones generated from each memory cell and then added to the ARB pool. In 
Eq. (2), CR is involved in the computation of the number of clones generated from each ARB 
during the ARB refinement process. Therefore, the number of ARB clones generated is in the range 
[0, CR]. In Eq. (3), CR is multiplied with the normalized stimulation of an ARB to determine the 
number of resources allocated to that ARB. The number of resources allocated to each ARB is in 
the range [0, CR]. 

The clonal rate was varied between 3 and 17, as shown in experiments 15–23 (Table 2). A 
general trend for the prediction MCC is to increase from CR = 3 up to CR = 10, and then to 
decrease when CR increases up to 17. These results suggest that for CR = 10 the AIRS generates 
the optimum number of clones and allocates the optimum number of resources. 

Table 2. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of CR (Clonal Rate); (ATS = 0.05) 

Exp CR TPc FNc TNc FPc Sec Spc Acc MCCc
15 3 75 31 216 27 0.7075 0.8889 0.8338 0.6031
16 5 81 25 215 28 0.7642 0.8848 0.8481 0.6439
17 8 87 19 223 20 0.8208 0.9177 0.8883 0.7365
18 9 86 20 221 22 0.8113 0.9095 0.8797 0.7170
19 10 87 19 223 20 0.8208 0.9177 0.8883 0.7365
20 11 81 25 222 21 0.7642 0.9136 0.8682 0.6853
21 12 91 15 225 18 0.8585 0.9259 0.9054 0.7784
22 15 87 19 220 23 0.8208 0.9053 0.8797 0.7187
23 17 83 23 217 26 0.7830 0.8930 0.8596 0.6708

Exp CR TPp FNp TNp FPp Sep Spp Acp MCCp
15 3 68 38 211 32 0.6415 0.8683 0.7994 0.5185
16 5 71 35 210 33 0.6698 0.8642 0.8052 0.5369
17 8 77 29 218 25 0.7264 0.8971 0.8453 0.6305
18 9 76 30 212 31 0.7170 0.8724 0.8252 0.5879
19 10 78 28 217 26 0.7358 0.8930 0.8453 0.6323
20 11 76 30 216 27 0.7170 0.8889 0.8367 0.6109
21 12 77 29 210 33 0.7264 0.8642 0.8223 0.5846
22 15 76 30 213 30 0.7170 0.8765 0.8281 0.5935
23 17 76 30 210 33 0.7170 0.8642 0.8195 0.5767

Hypermutation Rate (HR). The hypermutation rate takes integer values and is used in Eq. (1) 
to determine the number of clones for each memory cell, which is in the range [0, CR×HR]. We
investigated the TdP classification for values of the hypermutation rate between 1 and 10, as shown 
in experiments 24–33 (Table 3). The best predictions are obtained with HR = 2, with the prediction 
MCC = 0.6323, whereas for other HR values the prediction statistics are slightly lower. The same
HR value was used in the previous experiments, which explains the fact that the predictions are not 
improved in this set of experiments.
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Table 3. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of HR (Hypermutation Rate); (CR = 10) 

Exp HR TPc FNc TNc FPc Sec Spc Acc MCCc
24 1 83 23 222 21 0.7830 0.9136 0.8739 0.7004
25 2 87 19 223 20 0.8208 0.9177 0.8883 0.7365
26 3 93 13 222 21 0.8774 0.9136 0.9026 0.7756
27 4 87 19 223 20 0.8208 0.9177 0.8883 0.7365
28 5 84 22 228 15 0.7925 0.9383 0.8940 0.7455
29 6 91 15 218 25 0.8585 0.8971 0.8854 0.7376
30 7 88 18 221 22 0.8302 0.9095 0.8854 0.7321
31 8 88 18 219 24 0.8302 0.9012 0.8797 0.7205
32 9 90 16 222 21 0.8491 0.9136 0.8940 0.7531
33 10 88 18 215 28 0.8302 0.8848 0.8682 0.6980

Exp HR TPp FNp TNp FPp Sep Spp Acp MCCp
24 1 74 32 215 28 0.6981 0.8848 0.8281 0.5894
25 2 78 28 217 26 0.7358 0.8930 0.8453 0.6323
26 3 77 29 204 39 0.7264 0.8395 0.8052 0.5525
27 4 76 30 215 28 0.7170 0.8848 0.8338 0.6050
28 5 76 30 218 25 0.7170 0.8971 0.8424 0.6227
29 6 79 27 214 29 0.7453 0.8807 0.8395 0.6227
30 7 72 34 218 25 0.6792 0.8971 0.8309 0.5917
31 8 79 27 212 31 0.7453 0.8724 0.8338 0.6114
32 9 75 31 213 30 0.7075 0.8765 0.8252 0.5857
33 10 77 29 212 31 0.7264 0.8724 0.8281 0.5957

Number of Nearest Neighbors (kNN). The number k of nearest neighbors is used in the 
classification process, in which the k most stimulated memory cells to a given antigen vote for the 
class (TdP+ or TdP–) of that antigen. The results obtained in the experiments 34–43 (Table 4) show 
identical prediction accuracy for k = 3 and k = 5. We selected k = 3 for further experiments because 
it is faster to compute.

Table 4. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of kNN (Number of Nearest Neighbors); (HR = 2) 

Exp kNN TPc FNc TNc FPc Sec Spc Acc MCCc
34 1 90 16 228 15 0.8491 0.9383 0.9112 0.7894
35 3 87 19 223 20 0.8208 0.9177 0.8883 0.7365
36 5 87 19 221 22 0.8208 0.9095 0.8825 0.7246
37 7 78 28 220 23 0.7358 0.9053 0.8539 0.6502
38 9 68 38 223 20 0.6415 0.9177 0.8338 0.5922
39 11 60 46 224 19 0.5660 0.9218 0.8138 0.5361
40 13 58 48 230 13 0.5472 0.9465 0.8252 0.5640
41 15 56 50 231 12 0.5283 0.9506 0.8223 0.5560
42 17 55 51 233 10 0.5189 0.9588 0.8252 0.5643
43 19 49 57 230 13 0.4623 0.9465 0.7994 0.4918

Exp kNN TPp FNp TNp FPp Sep Spp Acp MCCp
34 1 78 28 215 28 0.7358 0.8848 0.8395 0.6206
35 3 78 28 217 26 0.7358 0.8930 0.8453 0.6323
36 5 79 27 216 27 0.7453 0.8889 0.8453 0.6342
37 7 75 31 215 28 0.7075 0.8848 0.8309 0.5972
38 9 72 34 217 26 0.6792 0.8930 0.8281 0.5856
39 11 67 39 217 26 0.6321 0.8930 0.8138 0.5462
40 13 65 41 214 29 0.6132 0.8807 0.7994 0.5120
41 15 62 44 219 24 0.5849 0.9012 0.8052 0.5188
42 17 58 48 216 27 0.5472 0.8889 0.7851 0.4672
43 19 55 51 215 28 0.5189 0.8848 0.7736 0.4360
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Initial Memory Cell Pool Size (IMCPS). The number of initial memory cells was modified
from 1 to 220 (experiments 44–59, Table 5), and the classification results show only small
variations, with better results for AIRS models that have IMCPS > 30. Compared with previous 
experiments, a minor prediction improvement is obtained for IMCPS = 80, with a prediction MCC 
= 0.6362. This IMCPS value was adopted for further experiments.

Table 5. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of IMCPS (Initial Memory Cell Pool Size); (kNN = 3)

Exp IMCPS TPc FNc TNc FPc Sec Spc Acc MCCc
44 1 89 17 217 26 0.8396 0.8930 0.8768 0.7168
45 10 84 22 225 18 0.7925 0.9259 0.8854 0.7264
46 20 91 15 221 22 0.8585 0.9095 0.8940 0.7547
47 30 83 23 227 16 0.7830 0.9342 0.8883 0.7316
48 40 82 24 218 25 0.7736 0.8971 0.8596 0.6689
49 50 87 19 223 20 0.8208 0.9177 0.8883 0.7365
50 60 91 15 217 26 0.8585 0.8930 0.8825 0.7321
51 70 93 13 215 28 0.8774 0.8848 0.8825 0.7364
52 80 91 15 216 27 0.8585 0.8889 0.8797 0.7265
53 100 89 17 225 18 0.8396 0.9259 0.8997 0.7635
54 120 89 17 226 17 0.8396 0.9300 0.9026 0.7697
55 140 91 15 225 18 0.8585 0.9259 0.9054 0.7784
56 160 90 16 224 19 0.8491 0.9218 0.8997 0.7649
57 180 83 23 231 12 0.7830 0.9506 0.8997 0.7580
58 200 81 25 232 11 0.7642 0.9547 0.8968 0.7503
59 220 82 24 233 10 0.7736 0.9588 0.9026 0.7645

Exp IMCPS TPp FNp TNp FPp Sep Spp Acp MCCp
44 1 66 40 205 38 0.6226 0.8436 0.7765 0.4688
45 10 71 35 210 33 0.6698 0.8642 0.8052 0.5369
46 20 67 39 211 32 0.6321 0.8683 0.7966 0.5105
47 30 68 38 204 39 0.6415 0.8395 0.7794 0.4798
48 40 73 33 212 31 0.6887 0.8724 0.8166 0.5642
49 50 78 28 217 26 0.7358 0.8930 0.8453 0.6323
50 60 71 35 217 26 0.6698 0.8930 0.8252 0.5777
51 70 75 31 206 37 0.7075 0.8477 0.8052 0.5470
52 80 80 26 215 28 0.7547 0.8848 0.8453 0.6362
53 100 72 34 206 37 0.6792 0.8477 0.7966 0.5229
54 120 76 30 205 38 0.7170 0.8436 0.8052 0.5497
55 140 76 30 213 30 0.7170 0.8765 0.8281 0.5935
56 160 74 32 215 28 0.6981 0.8848 0.8281 0.5894
57 180 76 30 201 42 0.7170 0.8272 0.7937 0.5290
58 200 75 31 208 35 0.7075 0.8560 0.8109 0.5578
59 220 76 30 211 32 0.7170 0.8683 0.8223 0.5823

Number of Instances to Compute the Affinity Threshold (NIAT). During the AIRS 
initialization process, the affinity threshold is computed as the average affinity for NIAT antigens 
from the training set. In experiments 60–71 (Table 6) we tried to identify an optimum value for 
NIAT (in previous experiments the entire training set was used to compute the affinity threshold). 
An improvement is obtained for NIAT = 100, with a prediction MCC = 0.6708, whereas NIAT 
values between 25 and the entire dataset all give good predictions. 
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Table 6. Calibration and Prediction Statistics of AIRS Models Computed for Various Values
of NIAT (Number of Instances to Compute the Affinity Threshold); (IMCPS = 80) 

Exp NIAT TPc FNc TNc FPc Sec Spc Acc MCCc
60 25 94 12 219 24 0.8868 0.9012 0.8968 0.7660
61 50 90 16 217 26 0.8491 0.8930 0.8797 0.7244
62 75 90 16 217 26 0.8491 0.8930 0.8797 0.7244
63 100 95 11 225 18 0.8962 0.9259 0.9169 0.8080
64 125 96 10 223 20 0.9057 0.9177 0.9140 0.8038
65 150 92 14 224 19 0.8679 0.9218 0.9054 0.7798
66 175 91 15 228 15 0.8585 0.9383 0.9140 0.7968
67 200 93 13 222 21 0.8774 0.9136 0.9026 0.7756
68 225 92 14 225 18 0.8679 0.9259 0.9083 0.7858
69 250 92 14 225 18 0.8679 0.9259 0.9083 0.7858
70 275 92 14 225 18 0.8679 0.9259 0.9083 0.7858
71 all 91 15 216 27 0.8585 0.8889 0.8797 0.7265

Exp NIAT TPp FNp TNp FPp Sep Spp Acp MCCp
60 25 83 23 213 30 0.7830 0.8765 0.8481 0.6482
61 50 81 25 213 30 0.7642 0.8765 0.8424 0.6326
62 75 78 28 213 30 0.7358 0.8765 0.8338 0.6092
63 100 83 23 217 26 0.7830 0.8930 0.8596 0.6708
64 125 85 21 209 34 0.8019 0.8601 0.8424 0.6422
65 150 84 22 210 33 0.7925 0.8642 0.8424 0.6397
66 175 80 26 207 36 0.7547 0.8519 0.8223 0.5921
67 200 82 24 209 34 0.7736 0.8601 0.8338 0.6186
68 225 83 23 206 37 0.7830 0.8477 0.8281 0.6107
69 250 78 28 209 34 0.7358 0.8601 0.8223 0.5870
70 275 83 23 214 29 0.7830 0.8807 0.8510 0.6538
71 all 80 26 215 28 0.7547 0.8848 0.8453 0.6362

Stimulation Threshold (ST). The stimulation threshold is a parameter in the range [0, 1] and is 
used to determine the stop condition for the process of refining the ARB pool for a specific antigen. 
The ARB refinement stops when the average normalized ARB stimulation is higher than ST. The 
stimulation threshold was modified from 0.1 to 0.9 (experiments 72–86, Table 7), and the best 
predictions were obtained for ST = 0.5. The same ST value was used in all previous experiments,
and thus no improvement is obtained for the prediction statistics. 

Table 7. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of ST (Stimulation Threshold); (NIAT = 100) 

Exp ST TPc FNc TNc FPc Sec Spc Acc MCCc
72 0.10 92 14 218 25 0.8679 0.8971 0.8883 0.7453
73 0.20 92 14 218 25 0.8679 0.8971 0.8883 0.7453
74 0.30 91 15 212 31 0.8585 0.8724 0.8682 0.7049
75 0.40 92 14 215 28 0.8679 0.8848 0.8797 0.7287
76 0.45 91 15 216 27 0.8585 0.8889 0.8797 0.7265
77 0.47 98 8 216 27 0.9245 0.8889 0.8997 0.7802
78 0.49 92 14 219 24 0.8679 0.9012 0.8911 0.7509
79 0.50 95 11 225 18 0.8962 0.9259 0.9169 0.8080
80 0.51 88 18 217 26 0.8302 0.8930 0.8739 0.7091
81 0.53 93 13 223 20 0.8774 0.9177 0.9054 0.7814
82 0.55 87 19 226 17 0.8208 0.9300 0.8968 0.7549
83 0.60 90 16 223 20 0.8491 0.9177 0.8968 0.7590
84 0.70 90 16 227 16 0.8491 0.9342 0.9083 0.7832
85 0.80 90 16 229 14 0.8491 0.9424 0.9140 0.7957
86 0.90 93 13 226 17 0.8774 0.9300 0.9140 0.7992
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Table 7. (Continued)
Exp ST TPp FNp TNp FPp Sep Spp Acp MCCp
72 0.10 73 33 205 38 0.6887 0.8436 0.7966 0.5256
73 0.20 73 33 205 38 0.6887 0.8436 0.7966 0.5256
74 0.30 75 31 203 40 0.7075 0.8354 0.7966 0.5312
75 0.40 76 30 202 41 0.7170 0.8313 0.7966 0.5341
76 0.45 72 34 210 33 0.6792 0.8642 0.8080 0.5449
77 0.47 77 29 208 35 0.7264 0.8560 0.8166 0.5737
78 0.49 83 23 206 37 0.7830 0.8477 0.8281 0.6107
79 0.50 83 23 217 26 0.7830 0.8930 0.8596 0.6708
80 0.51 83 23 216 27 0.7830 0.8889 0.8567 0.6651
81 0.53 76 30 214 29 0.7170 0.8807 0.8309 0.5992
82 0.55 80 26 205 38 0.7547 0.8436 0.8166 0.5816
83 0.60 82 24 209 34 0.7736 0.8601 0.8338 0.6186
84 0.70 73 33 213 30 0.6887 0.8765 0.8195 0.5699
85 0.80 77 29 210 33 0.7264 0.8642 0.8223 0.5846
86 0.90 73 33 214 29 0.6887 0.8807 0.8223 0.5757

Total Resources (TR). The number of total resources limits the number of ARBs from the ARB 
pool. The amount of resources assigned to an ARB is calculated with Eq. (3) as a number in the 
range [0, CR]. Resources are allocated to the ARBs with high stimulation values, and taken from
those with small stimulation values. ARBs without resources are removed from the cell population. 

In experiments 87–92 (Table 8) the total amount of resources was increased from 25 to 150, 
showing a steady increase of the prediction MCC. The best prediction MCC is obtained for TR = 
125 and TR = 150, but with no improvement over the previous group of experiments.

Table 8. Calibration and Prediction Statistics of AIRS Models Computed for
Various Values of TR (Total Resources); (ST = 0.5) 

Exp TR TPc FNc TNc FPc Sec Spc Acc MCCc
87 25 92 14 218 25 0.8679 0.8971 0.8883 0.7453
88 50 88 18 210 33 0.8302 0.8642 0.8539 0.6710
89 75 89 17 221 22 0.8396 0.9095 0.8883 0.7397
90 100 92 14 222 21 0.8679 0.9136 0.8997 0.7681
91 125 95 11 225 18 0.8962 0.9259 0.9169 0.8080
92 150 95 11 225 18 0.8962 0.9259 0.9169 0.8080

Exp TR TPp FNp TNp FPp Sep Spp Acp MCCp
87 25 73 33 205 38 0.6887 0.8436 0.7966 0.5256
88 50 71 35 209 34 0.6698 0.8601 0.8023 0.5313
89 75 73 33 208 35 0.6887 0.8560 0.8052 0.5418
90 100 72 34 215 28 0.6792 0.8848 0.8223 0.5737
91 125 83 23 217 26 0.7830 0.8930 0.8596 0.6708
92 150 83 23 217 26 0.7830 0.8930 0.8596 0.6708

After performing a large number of experiments, we can conclude that the AIRS procedure is 
stable, and offers good predictions for a wide range of the user defined parameters. The largest 
variation of the prediction MCC was observed in the optimization of the affinity threshold scalar 
ATS. For the remaining groups of experiments, MCCp improved slightly or at all, because the 
default values for these parameters were (near) optimal.
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Comparison with other Machine Learning Algorithms. The same TdP+/TdP– classification 
problem was solved with 11 other machine learning algorithms namely logistic regression 
LogisticReg, Bayesian network BayesNet, naïve Bayesian classifier NaiveBayes, alternating 
decision tree ADTree, C4.5 decision tree J48, logistic model trees LMT, decision tree with naïve 
Bayesian classifiers at the leaves NBTree, fast decision tree learner REPTree, random trees 
RandomTree, random forests RandomForest, and K* instance–based classifier KStar. All 
calculations were performed with Weka.

Table 9. Calibration and Prediction Statistics of Several Machine Learning Models
Model TPc FNc TNc FPc Sec Spc Acc MCCc
LogisticReg 42 64 222 21 0.3962 0.9136 0.7564 0.3704
BayesNet 31 75 232 11 0.2925 0.9547 0.7536 0.3494
NaiveBayes 4 102 240 3 0.0377 0.9877 0.6991 0.0833
ADTree 87 19 203 40 0.8208 0.8354 0.8309 0.6272
J48 92 14 240 3 0.8679 0.9877 0.9513 0.8840
LMT 83 23 233 10 0.7830 0.9588 0.9054 0.7717
NBTree 77 29 232 11 0.7264 0.9547 0.8854 0.7213
REPTree 85 21 226 17 0.8019 0.9300 0.8911 0.7401
RandomTree 106 0 243 0 1.0000 1.0000 1.0000 1.0000
RandomForest 106 0 242 1 1.0000 0.9959 0.9971 0.9933
KStar 106 0 243 0 1.0000 1.0000 1.0000 1.0000

Model TPp FNp TNp FPp Sep Spp Acp MCCp
LogisticReg 42 64 221 22 0.3962 0.9095 0.7536 0.3633
BayesNet 35 71 218 25 0.3302 0.8971 0.7249 0.2770
NaiveBayes 11 95 222 21 0.1038 0.9136 0.6676 0.0277
ADTree 52 54 215 28 0.4906 0.8848 0.7650 0.4106
J48 52 54 216 27 0.4906 0.8889 0.7679 0.4170
LMT 59 47 225 18 0.5566 0.9259 0.8138 0.5351
NBTree 52 54 213 30 0.4906 0.8765 0.7593 0.3982
REPTree 58 48 214 29 0.5472 0.8807 0.7794 0.4548
RandomTree 69 37 198 45 0.6509 0.8148 0.7650 0.4567
RandomForest 78 28 212 31 0.7358 0.8724 0.8309 0.6036
KStar 81 25 211 32 0.7642 0.8683 0.8367 0.6216

The results reported in Table 9 show that the best predictions are obtained with logistic model
trees (MCCp = 0.5351), random forests (MCCp = 0.6036), and K* instance–based classifier (MCCp

= 0.6216). The predictions obtained with the AIRS2 algorithm (MCCp = 0.6708) are higher than 
those obtained with these 11 machine learning procedures, indicating that the artificial immune
recognition system is a powerful classification method, that may be applied with success in 
structure–activity studies. 

5 CONCLUSIONS 

Artificial immune systems use procedures inspired from biological immune systems for pattern 
recognition and classification. In this report we demonstrated the first application of the artificial 
immune recognition system algorithm [20–22] in modeling structure–activity relationships. The 
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learning task was to classify a dataset of 349 chemicals [40] into a subset of 106 drugs that induce 
torsade de pointes and a subset of 243 drugs that do not induce torsade de pointes. The AIRS2 
procedure [23] as implemented in Weka was used for all machine learning experiments. As 
structural descriptors we used linear solvation energy relationships descriptors [41–43], namely the 
excess molar refraction, the combined dipolarity/polarizability, the overall solute hydrogen bond 
acidity, the overall solute hydrogen bond basicity, and the McGowan’s characteristic volume [40]. 

The classification performance of the AIRS2 algorithm was investigated 92 experiments and for 
a wide range of values for the user defined parameters: affinity threshold scalar, clonal rate, 
hypermutation rate, number of nearest neighbors, initial memory cell pool size, number of instances 
to compute the affinity threshold, stimulation threshold, and total resources. The largest variation of 
the prediction statistics was observed for ATS, whereas small or no improvement was observed 
during the optimization of the remaining parameters. The best value for the affinity threshold scalar 
was ATS = 0.05, indicating that for the TdP drug classification problem a low memory cell 
replacement rate is beneficial. 

The best leave–10%–out cross–validation predictions of the AIRS algorithm (selectivity 0.783, 
specificity 0.893, accuracy 0.860, and Matthews correlation coefficient 0.671) surpass those 
obtained with 11 other machine learning algorithms, namely logistic regression, Bayesian network, 
naïve Bayesian classifier, alternating decision tree, C4.5 decision tree, logistic model trees, decision 
tree with naïve Bayesian classifiers at the leaves, fast decision tree learner, random trees, random
forests, and K* instance–based classifier. The results obtained suggest that classifiers based on 
artificial immune systems may be successful in structure–activity relationships, drug design, and 
virtual screening of chemical libraries. 
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