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Abstract 

Motivation. Organophosphorus compounds are a well known class of toxic chemicals which find their way into 
ecosystem due to their wide spread use. Their detection, identification and quantification are cause of concern 
world over. In environmental samples these compounds are detected and estimated through the gas 
chromatographic response factor. This prompted us to study the quantitative structure–response relationships 
(QSRR) of gas chromatographic response factor of organophosphonate esters. 
Method. In this study attempts have been made to rationalize the gas chromatographic response factor of 
twenty–eight organophosphonates in terms of their physicochemical and electronic descriptors. Combinatorial 
Protocol in Multiple Linear Regression (CP–MLR), a ‘filter’ based variable selection procedure for model 
development in structure–activity or property relationship studies, has been used for the variable selection and 
identification of diverse QSRR models of the GC response factor of organophosphonates. 
Results. The study has resulted in the identification of ten models (equations), having two or three descriptor 
each, to account for the response factor of organophosphonates (cross–validated R2 or Q2 is 0.88 to 0.95). The 
response factor of the compounds is strongly correlated with the total refractivity (TREF), molecular weight 
(MW) and thermodynamic properties, e.g., enthalpy of vaporization (ENTH). In the study, alkyl groups of these 
compounds have shown two–fold influence (namely, steric and branching effect) on the response factor. Also, 
the study suggests that the polarization of (d–p)  bond of P=Oa in these compounds plays a critical role in the 
formation of the responding species. 
Conclusions. The steric and electronic properties of organophosphonates play a determining role in the 
predictive aspect of their gas chromatographic response factor. Also the study suggested a mechanism for the 
formation of the responding species. 
Keywords. Quantitative structure–response relationships (QSRR); combinatorial protocol in multiple linear 
regression (CP–MLR); variable selection; organophosphonates; gas chromatographic response factor; 
mechanism of responding species formation. 

Abbreviations and notations 
CP–MLR, Combinatorial Protocol in Multiple Linear  RF, response factor 

Regression RRF, relative response factor 
GC–TID, Gas Chromatograph equipped with Thermionic  QSRR, quantitative structure–response relationships 

Nitrogen–Phosphorus Detector QSPR, quantitative structure–property relationships 

                                                          
# Dedicated to Professor Nenad Trinajsti  on the occasion of the 65th birthday. 
* Correspondence author; phone: +91–0522–2212411; fax: +91–0522–2223405; E–mail: yenpra@yahoo.com. 



A Combinatorial Protocol in Multiple Linear Regression to Model Gas Chromatographic Response Factor 
Internet Electronic Journal of Molecular Design 2004, 3, 150–162 

151 
BioChem Press http://www.biochempress.com

1 INTRODUCTION 

With ever–increasing awareness of the hazards associated with the toxic chemicals discharge 
into the ecosystem, their detection, identification and quantification have become the prime concern 
of the regulatory and environmental protection agencies. Organophosphorus compounds are one 
such well known toxic chemicals which find their way into ecosystem due to their wide spread use, 
for example in pesticides, insecticides and as well as in chemical warfare agents, and are cause of 
concern world over. The Gas Chromatograph equipped with Thermionic Nitrogen–Phosphorus 
Detector (GC–TID) is one of the most sensitive and important tools for the analysis of these 
compounds [1]. In GC–TID, interaction of these compounds with the excited hot alkali ceramic 
bead (rubidium, Rb), the principal component of this device, leads to the formation of specific 
responding species in the form of charge carriers namely, (P=O)  and (O–P=O) , which is measured 
and quantified in the detector as response factor (RF) [1]. In the light of this, Saradhi and co–
workers recently reported the GC–TID response factors of some organophosphonates (Figure 1) and 
suggested that in thermionic detection process, the molecule and the alkali bead/electron may 
undergo a sort of chemical reaction but not simple combustion [2]. 
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Figure 1. (a) General structure for the 28 compounds considered in the QSRR study. Here R1
is H, Me, Et, and i-Pr and R2 is Me, Et, n-Pr, i-Pr, n-Bu,s-Bu, and i-Bu. (b) Schematic 
representation of Figure 1a showing central phosphorus and its immediate neighboring atoms. 

The derivation of an empirical relationship (model) between a chosen property of a set of 
compounds, a dependent variable, and a group of structural descriptors provides the means to 
understand the interrelationship between structural descriptors and property. Different models 
address different sub–structural regions/ attributes in predicting the chosen property. While the 
simplest among the models will be the best (principle of parsimony) to explain the chosen property, 
the study of a population of various models provides an opportunity to understand the diagnostic 
aspects of different sub–structural regions as well as in averaging and extrapolating the predictive 
aspect beyond the individual models. The Genetic Function Approximation (GFA) [3], MUtation 
and SElection Uncover Models (MUSEUM) [4] and Combinatorial Protocol in Multiple Linear 
Regression (CP–MLR) [5] are a few approaches for the evolution of multiple models in quantitative 
structure–activity relationship (QSAR) and quantitative structure–property relationship (QSPR)/ 
quantitative structure–response relationship (QSRR) studies. Although several QSPR/QSRR reports 
are available on the GC responses of different types of compounds [6–11], little or scant 
information exists on organophoshorus compounds in this direction. Here we present a CP–MLR 
based QSRR study of the GC–TID response factor of organophosphonate esters [2] reported by 
Saradhi and co–workers in terms of the physicochemical and electronic descriptors. CP–MLR is a 
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‘filter’ based variable selection procedure for multiple models evolution [5]. Here, the combination 
rule suggests the groups of descriptors to be evaluated, and filters set the statistical criteria to decide 
the significance of so developed QSAR model. Four filters (inter descriptor correlation limits, t–
values of regression coefficients of descriptors, adjusted multiple correlation coefficient and cross–
validated R2 value) have been embedded in this procedure. The modulation of filters’ cutoff limits 
offers an opportunity to study different models. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
The molar response factors RF, RF = (GC Peak area)(molecular mass)/(volume of 

injection)(amount of sample)(%purity) [2], of organophosphonate esters (Figure 1) [2] have been 
transformed as a relative response factor (RRF), that is, RF of compound i as relative to that of 
dimethyl methylphosphonate (DMMP): 

RRFi = RFi /RFDMMP (1)

As the physicochemical and electronic environment surrounding central phosphorus and its 
immediate neighbors influence the degree of formation of the GC–TID responding species of the 
organophosphonates in the detector, the descriptors of phosphorus, its surrounding atoms and 
groups, and the bonds between them have been considered as the independent parameters of the 
study. Accordingly, the bond lengths and electronic charges of the concerning groups and atoms 
along with thermodynamic descriptors were adopted from Saradhi et al. report [2]. These 
descriptors were computed with HyperChem [12]. The van der Waals volumes (Vw) of alkyl 
substituents (R1 and R2; Figure 1a) surrounding phosphorus have been calculated to parameterize 
their steric features [13,14]. The alkyl branching in the R1 and R2 of the compounds have been 
defined with indicator parameters, I1 and I2 respectively, which take a value of one for branched 
alkyl and zero for the others. The total refractivity (TREF) of the compounds has been computed 
using the Insight II [15–17] software. For this, using the standard fragments library, structures of the 
compounds have been generated in the Builder module of Insight II [15]. They have been optimized 
for geometry, in vacuum, by using the consistent valence force field (cvff) implemented in the 
software. Total refractivity (TREF) of the so generated structures has been computed by using 
Ghose and coworkers program [16,17] implemented in the Apex–3D module of the software. With 
this a total of eighteen parameters are selected as the independent descriptors of the study. Table 1 
lists the names of all descriptors along with a unique number for each one of them. All these 
descriptors can be broadly categorized as (a) global descriptors to describe the given property or 
measurement made on the whole molecule, (b) local or site specific descriptors to address the 
property or measurement of a specific site or a portion of the molecule, and (c) indicator variables 
meant for quantum changes in the defined portions of the molecule. 
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Table 1. Molecular descriptors of organophosphonates considered for the study (Figure 1) 
S.No. Descriptor Name Abbreviation Ref. 
(a) Global descriptors 

1 Total refractivity TREF  
2 Molecular weight (mass) MW 2 
3 Enthalpy of vaporization ENTH 2 
4 Gibbs’ free energy GFE 2 
5 Boiling point BP 2 

(b) Local or site specific descriptors 
6 Van der Waals volume of R1 VwR1
7 Van der Waals volume of R2 VwR2
8 Bond length of P–Ob LPO 2 
9 Bond length of P–X LPX 2 

10 Bond length of Ob–Cd LOC 2 
11 Bond length of P=Oa LPDO 2 
12 Charge on phosphorus CP 2 
13 Charge on Oa of P=Oa COPDO 2 
14 Charge on Ob of P–Ob COPO 2 
15 Charge on Cd of Ob–Cd CCOC 2 
16 Charge on X of P–X CXPX 2 

(c) Indicator variable 
17 For alkyl branching in R1 I1
18 For alkyl branching in R2 I2

Table 2. The relative response factor (RRF), total refractivity (TREF) and van 
der Waals volumes (Vw) of organophosphonates (Figure 1a) 

Comp No R1 R2 TREF VwR1 VwR2 RRF 
1 Me Me 26.50 0.245 0.245 1.00 
2 Me Et 36.00 0.245 0.399 0.96 
3 Me Pr 45.05 0.245 0.553 0.91 
4 Me i–Pr 44.85 0.245 0.503 0.90 
5 Me Bu 54.25 0.245 0.707 0.86 
6 Me s–Bu 53.90 0.245 0.657 0.85 
7 Me i–Bu 54.00 0.245 0.657 0.84 
8 Et Me 31.25 0.399 0.245 0.98 
9 Et Et 40.75 0.399 0.399 0.93 

10 Et Pr 49.80 0.399 0.553 0.88 
11 Et i–Pr 49.60 0.399 0.503 0.86 
12 Et Bu 59.00 0.399 0.707 0.82 
13 Et s–Bu 58.65 0.399 0.657 0.80 
14 Et i–Bu 58.75 0.399 0.657 0.81 
15 i–Pr Me 35.70 0.503 0.245 0.95 
16 i–Pr Et 45.15 0.503 0.399 0.89 
17 i–Pr Pr 54.20 0.503 0.553 0.83 
18 i–Pr i–Pr 54.00 0.503 0.503 0.81 
19 i–Pr Bu 63.45 0.503 0.707 0.77 
20 i–Pr s–Bu 63.05 0.503 0.657 0.74 
21 i–Pr i–Bu 63.15 0.503 0.657 0.75 
22 H Me 16.35 0.056 0.245 1.01 
23 H Et 25.85 0.056 0.399 0.96 
24 H Pr 34.90 0.056 0.553 0.92 
25 H i–Pr 34.65 0.056 0.503 0.91 
26 H Bu 44.10 0.056 0.707 0.87 
27 H s–Bu 43.70 0.056 0.657 0.86 
28 H i–Bu 43.85 0.056 0.657 0.87 
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All the compounds of the study, the values of van der Waals volumes of R1 and R2 groups 
(VwR1 and VwR2) and the total refractivity (TREF) are enumerated along with RRF in Table 2. The 
electronic charges and bond lengths of the concerning groups and atoms are available in the 
previous report [2] and are not listed here. On this data set CP–MLR has been applied to identify 
diverse structure GC response factor relationships of these compounds. The details of the 
computational procedure are presented below. 

2.2 Computational Procedure
CP–MLR is a ‘filter’ based variable selection procedure for model development in QSAR and 

QSPR/ QSRR studies [5]. To extract the optimum and diverse structure–property relationship 
information from the parameter set considered in MLR, a combinatorial strategy with appropriately 
placed ‘filters’ is developed to recurrently select the non–repetitive k independent variables, at a 
time, from a total of p variables for the regression model development. Here, different statistical 
measures are formed as filters to evaluate the significance of the models. If we call a group of 
variables as bundle, then according to the combination rule, a total of pCk bundles emerge from p
variables with k variables in each bundle (original variable bundle, OVB). Here ‘bundle’ represents 
a collection of items, in the present case group of descriptors. If the original descriptors are the 
items of a bundle then it is called as original variable bundle (OVB). Any transformation operation, 
other than scaling, on an original descriptor leads to a transformed descriptor. If the items of a 
bundle are from transformed descriptors then it is called as transformed variable bundle (TVB). 
Accordingly, a variable may contribute to a model in two different ways: (i) by itself alone and / or 
(ii) by itself and its functionally transformed term together. To find the influence of a selected 
function of any variable along with its original form in the model development, the k variables of 
OVB along with their meaningfully transformed functional variables will be adopted for the 
formation of new bundles. We may mention it here that the functionally transformed variable enters 
the bundle only when its original variable is part of that bundle. The OVB provides k variables to 
create the functionally transformed variable bundles (TVBs). In this process, the contents and 
number of variables in the TVBs (s) are varied from one to k' to explore the role of functionally 
transformed variable combinations (kCs; s = 1 to k' where k' k) along with respective OVB. 
Furthermore, the size of the OVB (k) is also varied from a minimum (begin, b) to maximum (end, e)
value with an increment of one. The e value will be governed by the number of observations (n)
with n/e ratio as large as possible (1 b e n/e). This process generates different sizes of OVBs 
of all variables within the limits of k and joins TVBs of different sizes, to the respective OVBs to 
form OVB–TVBs. If no functional transformation is considered in the analysis, all the terms and 
corresponding to TVBs will become null and void. If the size of OVB (k) is restricted to a single 
value, the resultant models contain uniformly k variables in each one of them. Four layers of filters 
embedded in the procedure make this process efficient and offer unique solutions. They are set in 
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terms of inter–parameter correlation cutoff criteria for variables to stay as a bundle (filter–1), t–
values of regression coefficients of variables associated with a bundle (filter–2), square–root of 
adjusted multiple correlation coefficient of regression equation (r–bar) [18] (filter–3), and cross–
validated R2 (Q2) criteria (filter–4). The following equations are used for computing r–bar and Q2.

(r–bar)2 = (1.0 – (1.0 – r2)(n –1)/(n – k – 1)) (2)

r2 = 1.0 – ( (Yc – Yo)2/ (Yo – Ym)2) (3)

Q2 = 1.0 – ( (Yp – Yo)2/ (Yo – Ym)2) (4)

SPRESS = ( (Yp – Yo)2/(n – k – 1)) (5)

SDEP = ( (Yp – Yo)2/n) (6)

In the above expressions Yo, Ym, Yc and Yp are observed, mean, calculated and predicted 
values, respectively, of dependent variable, n is number of observations and k is number of 
independent variables in regression equation. SPRESS and SDEP are standard deviation of 
predictors and standard error of predictors respectively [4]. 

The filter–1 controls the entry of OVBs with inter–correlated variables in the model 
development. The default cutoff value for the tolerance of inter–parameter correlation coefficient 
between pairs of independent variables is set as less than or equal to 0.3 to maintain reasonably 
good independence among the variables of a bundle. The efficiency of CP–MLR is primarily based 
on this filter. The second filter (filter–2) evaluates the significance of variables in a bundle in terms 
of the t–values of regression coefficients. A default value of 2.0 is set for this filter; a bundle will 
pass this filter if the t–values of its regression coefficients are more than or equal to the set threshold 
value. Normally, successive additions of variables to multiple regression equation will increase 
successive multiple correlation coefficient (r) values. In light of this, to compare the internal 
explanatory power of bundles with different number of variables (variable bundles of different 
sizes), r–bar is adopted in this procedure [18]. Accordingly, filter–3 sets predefined threshold level 
for r–bar. Only those variable bundles whose r–bar with the dependent variable is more than or 
equal to the set threshold level will pass this filter. Also, incremental raise in r2 (or r) is associated 
with the best subset regressions, especially when the total number of predictor variables (p)
(corresponding to all bundles) is more than the number of observations (data points) [19]. The 
number of predictor variables could be very large in many a situations. The higher r2 may be 
meaningful only when there is increase in the number of relevant descriptors corresponding to the 
phenomenon under investigation. However, to exclude false or artificial correlations arising out of 
these situations, it is important to validate the relevance of selected bundles in the model generation. 
While the first three filters are designed to check the internal consistency of the data, the fourth 
filter (filter–4) addresses the external consistency in the form of cross–validation of the model with 
leave–one–out procedure as the default option. Finally, ‘goodness of fit’ of the model is measured 
in terms of Q2 statistics. A Q2 is considered to be acceptable only when it has a value between zero 
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(no predictive power) and one (perfect predictive power). A value between zero and one for Q2 will 
result in the collection of a good number of models with different degree of predictive power. Only 
those models whose Q2 value is in the predefined limits are retained for the further study. 

3 RESULTS AND DISCUSSION 

Among the global descriptors of these compounds, the molecular weight (MW) and total 
refractivity (TREF) of the analogues have  shown excellent  correlation with RRF  (r is –0.979 and 
–0.955 respectively). The remaining three global parameters, namely enthalpy of vaporization 
(ENTH), Gibbs’ free energy (GFE) and boiling point (BP) of the compounds have shown almost the 
same degree of correlation with the RRF (r = –0.877). Also, these three parameters are almost 
perfectly inter–correlated with one another (r = 0.998 to 1.0). This indicates that for all practical 
purposes the information content of these three parameters is almost the same. Hence, only one 
descriptor that is ENTH, among these three is considered in the parameter set for the purpose of 
analysis. Apart from global parameters, local descriptors, VwR2 and COPO i.e., charge on oxygen 
(Ob) of P–Ob (Figure 1b), have also shown good correlation with RRF (r is –0.817 and 0.752, 
respectively). The other parameters which displayed directly noticeable correlation with RRF 
(r ~ 0.5) are VwR1, CCOC i.e., charge on the carbon (Cd) of Ob–Cd, LOC i.e., bond length of Ob–
Cd (Figure 1b) and the indicator parameter I2. In this background, the CP–MLR protocol has been 
applied to the sixteen molecular descriptors (p = 16) to identify the best possible regression 
model(s) with complete or near complete explanation to the variation in the RRF of the compounds 
under study. For this in CP–MLR, filter–1 was assigned with a value of 0.3, and filter–2 with 2.0. 
As MW and TREF have shown excellent correlation with RRF, for filter–3 a value of 0.95 has been 
assigned to collect all possible equations with r–bar value of 0.95 and above. The filter–4 is set to 
collect all models with Q2 value between 0.3 and 1.0 (0.3 Q2  1.0). With these filter thresholds a 
search has been carried out for models having up to four original variables (OVBs) and up to two 
transformed variables (TVBs) (k = 1 to 4; s = 1 to 2). As squared term of a descriptor is the most 
often and widely used functional transformation of variables in QSAR and QSPR studies, the same 
is opted for TVBs of this data set also. This resulted in the identification sixteen structure–response 
relationship equations (models) for the RRF of organophosphonates. In the discussion a statistically 
significant regression equation explaining the structure–response relationship is called as a model. 
A model and the corresponding equation are identified with the same number. A model contains 
one or more explanatory descriptors. The descriptors involved in each one of these models along 
with selected statistical indices are listed in Table 3. Furthermore to maintain brevity and facilitate 
easy comparison, in Table 3, the explanatory descriptors of each model are identified with the serial 
numbers allotted to them in Table 1; an ‘s’ character after descriptor number indicates that both the 
descriptor and its squared term are involved in the equation; an asterisk sign before the descriptor 
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number indicates that the regression coefficients of the descriptor and its squared term (transformed 
descriptor) have the same mathematical sign (both are positive or both are negative). 

Table 3. CP–MLR models for the estimation of RRF of organophosphonates and the associated statistical parameters. #

Normal stat.§ Cross–validation stat. Model No. Model¶

var r r–bar SE F Q2 SPRESS SDEP 
7 2 1 0.979 0.978 0.015 602.00 0.950 0.016 0.016 
8 1 1 0.955 0.953 0.022 270.40 0.895 0.024 0.023 
9 1,16 2 0.983 0.982 0.014 364.94 0.958 0.015 0.015 

10 2,16 2 0.983 0.982 0.014 362.35 0.957 0.016 0.015 
11 1,13 2 0.978 0.976 0.016 275.82 0.946 0.017 0.016 
12 6,7 2 0.954 0.951 0.022 127.86 0.890 0.025 0.024 
13 7,9s 3 0.981 0.978 0.016 199.84 0.941 0.019 0.017 
14 3,17,18 3 0.979 0.977 0.015 188.51 0.942 0.018 0.017 
15 7,8,17 3 0.960 0.955 0.022 93.24 0.896 0.025 0.023 
16 3,15,17 3 0.957 0.951 0.022 87.08 0.883 0.026 0.024 
17 3,9s, 18 4 0.981 0.978 0.016 147.65 0.936 0.020 0.018 
18 3,9s, 15 4 0.960 0.953 0.022 67.65 0.881 0.027 0.024 
19 *1s, 16 3 0.988 0.986 0.012 318.46 0.966 0.014 0.013 
20 *1s, *16s 4 0.990 0.989 0.011 290.90 0.969 0.014 0.012 
21 7, *16s, 17 4 0.971 0.966 0.019 96.13 0.918 0.022 0.020 
22 3, *16s, 18 4 0.961 0.954 0.022 68.90 0.888 0.026 0.024 

#, Filter–1 as 0.3; filter–2 as 2.0; filter–3 as 0.95; filter–4 as 0.3 Q2  1.0; ¶, the number 
corresponds to the descriptor serial number given in Table 1. A character ‘s’ after the 
descriptor number indicates that both the normal and squared terms are involved in the model. 
An ‘*’ before the descriptor number indicates that the regression coefficients of the descriptor 
and its squared term have the same mathematical sign; §, in all the models the number of 
compounds are 28; var is number of descriptor variables in the model; SE is standard error of 
the estimate; F is F–ratio between the variance of calculated and observed activities. 

In all the models the t–values of the regression coefficients of the descriptors are significant at 
more than 95% level. Even though the search is carried out up to four original variables and up to 
two of their squared terms, we could not find any statistically significant equation beyond four 
variables (including the squared terms). The identified models indicate that k = 1 to 3 and s = 1 to 2 
as the optimum perimeter for model extraction for the filter thresholds adopted. Of the sixteen 
descriptors considered in the parameter set, twelve have found relevance in one or more multi–
parametric equations in correlating the RRF. Among these twelve descriptors, seven are site–
specific descriptors (VwR1, VwR2, CXPX, CCOC, COPDO, LPX, LPO) and two are indicator 
variables (I1, I2). The indicator parameters I1 and I2 account for the branching of alkyl groups R1 and 
R2 respectively. They take a value of one if the respective alkyl group is branched and zero 
otherwise. All the descriptors, excepting one, (LPX), have shown their presence in the first order 
terms in the equations. In Table 3, for models 19 to 22 the regression coefficients of some of the 
descriptors (identified with an asterisk sign before the descriptor number) and their squared terms 
have the same mathematical sign (both are positive or both are negative). Since this is not normally 
practiced and not expected in QSAR/QSPR studies, they are discounted from considering as good 
models. Table 4 presents the regression equations of the multi–parametric models listed in Table 3. 
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Table 4. Multi–parametric regression equations (models 9–18) showing correlation of RRF of organophosphonates 
with various molecular descriptors. 

Site Specific Descriptors 
Steric Bond Length Atomic Charge 

Indicator 
Variable No* Const 

TREF/
MW/ 

ENTH# VwR1 VwR2 LPO LPX LPX2 COPDO CCOC CXPX I1 I2

9 1.139 0.006 
0.0004$        0.255 

0.082 

10 1.262 0.002 
0.0002        0.095 

0.080 

11 –0.395 0.006 
0.0004      1.074 

0.437     

12 1.142  0.208 
0.051 

0.379 
0.058         

13 –46.74   0.372 
0.041 

61.396 
12.588 

19.361 
3.961      

14 1.752 0.019 
0.002         0.051 

0.014 
0.049 
0.012 

15 –0.454   0.377 
0.056 

0.912 
0.570      0.067 

0.020 

16 2.009 0.019 
0.003       0.555 

0.266 
0.049 
0.021 

17 –30.40 0.019 
0.004    41.209 

13.138 
12.986 
4.134     0.044 

0.012 

18 –29.67 0.019 
0.003    40.555 

18.362 
12.780 
5.667 

0.483 
0.271    

*, Except for LPO and LPX, the sign of the regression coefficients of all variables (including LPX2) are negative; #, in 
models 9 & 11 the regression coefficients are of TREF, in model 10 the regression coefficient is of MW and in models 
14, 16–18 the regression coefficient are of ENTH; $, 95% confidence intervals of the regression coefficients. 

The ease of interaction of compound–alkali metal (Rb) or compound–electron emitted by alkali 
metal is the most crucial and determining step in the formation responding species and, in turn, in 
RRF. The results broadly suggest that the variations in the RRF of the compounds are primarily 
correlated to each of their global properties, namely Eqs. (7)–(11), (14), (16)–(18), and to the local 
descriptor VwR2, namely Eqs. (12), (13), (15), Tables 3 and 4. The multi parametric models formed 
here by the combination of global, site–specific and/ or indicator parameters suggest the role of 
various structural components of organophosphonates in the formation of responding species. The 
discussion of models is organized to address each structural component of organophosphonates 
namely, P=Oa, P–Ob, R1 (X), R2 and O–R2 (Cd–Ob), (Figure 1) in a stepwise manner and models 
(equations) are identified with their numbers mentioned in the Tables 3 and 4. 

The negative regression coefficient of COPDO in Eq. 11 suggests that having electron rich Oa of 
P=Oa is favorable for the formation of desired responding species. In other words, a weak or 
polarized (d–p)  bond between phosphorus and oxygen (Oa) may act like driving force for the 
generation of responding species in the TID. The polarization of (d–p)  electrons towards oxygen 
(Oa) makes the situation conducive for the approach of alkali metal towards the central phosphorus, 
which, in turn, may further facilitate the shift of  electrons to Oa and subsequent transfer of an 
electron from the alkali metal to phosphorus. Even though the initiation of the reaction may be due 
to the polar nature of P=Oa, the whole event may take place like a concerted process. The 
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coefficient of LPDO in the following regression equation also favors polarization of P=Oa bond for 
the ease of formation of the desired responding species. 

RRF=–1.028 – 0.020( 0.004)ENTH + 1.742 ( 1.560)LPDO – 0.043( 0.021)I2
n = 28 r = 0.944 SE = 0.025 F = 65.67 

(23)

In addition, the positive regression coefficient of LPO in Eq. (15) suggests that a longer or less 
conjugated P–Ob bond (sigma bond) is favorable for the formation of responding species. This 
situation may point towards the more localized (d–p)  bond (high–energy state) between 
phosphorus and Oa to initiate the process of formation of desired species. Moreover, the charge on 
oxygen, Ob, of P–Ob (COPO) is positively correlated with RRF (r = 0.752) indicating the 
unfavorable conditions associated with large negative charge on oxygen Ob to initiate the process. 

The site–specific descriptors, VwR1 and VwR2, are coupled with the negative regression 
coefficients in Eqs. (12), (13), (15). This indicates that the increased substitution around central 
phosphorus leads to higher restrictions in the formation of desired species. The Eqs. (9), (10), (13), 
(17) and (18) address the R1 group but in terms of characteristics of atom (X; Figure 1b) 
immediately attached to the phosphorus. The negative regression coefficient of CXPX in Eqs. (9) 
and (10) suggests that the ease of formation of desired responding species is associated with the 
electron rich center (X; Figure 1b) in the neighborhood of phosphorus. Eqs. (13), (17) and (18) are 
quadratic with respect to LPX and suggest 1.586 Å as the optimum separation for P–X bond. While 
the volume addresses spatial requirements, the bond distances can be viewed as its one–dimensional 
operator. Here, optimally separated phosphorus and its immediate neighbor (X; Figure 1b) may 
facilitate the approach of alkali metal or capture of electron and thereby the formation of desired 
species. From these equations it is evident that both electronic and steric effects operate in the 
formation of desired species for the identification in TID. 

The influence of alkyl branching on RRF may be seen through the Eqs. (14)–(17) where the 
indicator parameters, I1 and I2, have uniformly negative regression coefficients. This suggests that 
the branched alkyls in R1 and R2 may lead to decreased formation of the desired responding species 
for detection. In addition to imposing pre–discussed steric restrictions, the branched alkyls may 
function like a ‘curtain’ between the central phosphorus and the approaching alkali metal. It is also 
important to note that the regression coefficients of I1 and I2 are of the same order in the above 
equations. This suggests that restrictions imposed by them will be approximately in the same order. 
The following equations further confirm this observation: 

RRF=0.930 – 0.076( 0.047)I1 – 0.075( 0.041)I2
n = 28 r = 0.703 SE = 0.053 F = 12.20 

(24)

RRF=0.930 – 0.076( 0.031)(I1+I2)
n = 28 r = 0.703 SE = 0.053 F = 25.38 

(25)

Amongst all, Eqs. (16) and (18) suggest the necessity of electron rich carbon (Cd) of Cd–Ob
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(CCOC) in the formation of desired responding species. This probably operates by making the 
cleavage of Cd–Ob bond, i.e., O–R2 bond more facile at a later stage. 

Collectively, the above discussion on the RRF of organophosphonates favors the polarization of 
(d–p)  electrons of P=Oa to Oa with the extraction of an electron from the alkali atom (Rb) as ‘the 
most probable path’ for the formation of the characteristic responding species in the GC–TID 
(Scheme 1). 

PR1
Ob

Ob
Oa

R2

R2

Rb  + PR1
Ob

Ob R2

R2

._

+  Rb
+

PR1
Ob

Ob

R2

_

+  R2
.

OaOa

(a) (b) (c)
Scheme 1. It is proposed that in GC-TID the organophosphonates (a) extract an electron from the 
alkali atom and form the radical anions (b) which in a subsequent step may undergo hemolytic 
cleavage of Ob-R2 to generate characteristic responding species for identification in the detector. 

According to the previous report [2], one possibility is that on the approach of an alkali atom, the 
reaction may proceed by the homolytic fission of Ob–Cd bond of P–Ob–Cd (Figure 1b) to generate 
phosphonyl radical, which in a subsequent step extracts an electron from another alkali atom to 
form the negatively charged ion. The other suggested possibility is that the compound captures an 
electron and simultaneously cleaves the Ob–Cd (Figure 1b) bond in a homolytic manner to generate 
the desired responding species. 

While both these possibilities are centered around the cleavage of Ob–Cd of P–Ob–Cd (Figure 1b) 
as the principal path for the initiation and formation of responding species [2], the equations 
obtained here only favor polarization of (d–p)  bond of P=Oa for the initiation of the reaction as 
discussed above. However, our results support the other observations of previous report [2] such as, 
the influence of global properties, alkyl chain and alkyl branching etc. in deciding the RF (or RRF) 
of the compounds under study. 

4 CONCLUSIONS 

The equations in Table 3 represent the collective information derived here and address the 
influence of different structural features of organophosphonates in the formation of GC–TID 
responding species which, in turn, gets reflected in the quantum of RF. Of all the variables included 
in the study, total refractivity (TREF), Molecular weight (mass) (MW) and thermodynamic 
properties, e.g., enthalpy of vaporization (ENTH) of the compounds are found to be important in 
correlating their response factor. For the GC–TID detection of organophosphonates, the results 
obtained here preferred the polarization of (d–p)  bond of P=Oa for the initiation of the reaction to 
generate the characteristic responding species. 
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Also, the study suggests that the influence of R1 and R2 alkyls on the RRF is two–fold – one in 
terms of their steric bulk and the other in terms of the branching effect of R1 and/ or R2 groups. It 
further suggests that the restrictions imposed due to the branching effect are approximately in the 
same order for both R1 and R2. Recent simulation experiments involving a model adsorbent phase 
and a drug highlighted the importance of liquid chromatographic indices of some compounds in 
predicting their albumin binding affinity [20]. In similar lines, as all the equations presented in 
Table 3 are highly significant, we hope that they serve the predictive aspect by way of providing the 
estimates of GC–TID response factors of new compounds. 
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