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Abstract
Motivation. Narcotic pollutants, that act by nonspecifically disrupting the functioning of cell membranes, are
categorized as polar and nonpolar compounds. The toxicity prediction of narcotic pollutants with QSAR
(quantitative structure-activity relationships) depends on the reliable determination of the mechanism of toxic
action. The classification of the chemical compounds as polar and nonpolar narcotic pollutants based on
structural characteristics is of utmost importance in predicting the aquatic toxicity for new chemicals.

Method. Support vector machine (SVM) is a new machine learning algorithm that proved to be reliable in the
classification of organic and bioorganic compounds. In this study we have investigated the application of SVM
for the classification of 190 narcotic pollutants (76 polar and 114 nonpolar). Using an efficient descriptor
selection algorithm, the energy of the highest occupied molecular orbital, the energy of the lowest unoccupied
molecular orbital, and the most negative partial charge on any non—hydrogen atom in the molecule, all computed
with the AM1 method, were found to be necessary for the discrimination of the polar and nonpolar compounds.
The prediction power of each SVM model was evaluated with a leave—20%—out cross—validation procedure.

Results. The classification performances of SVM models generated with the dot, polynomial, radial basis
function, neural, and anova kernels, show that the statistical performances of SVM depend strongly on the kernel
type and various parameters that control the kernel shape. An SVM model obtained with the anova kernel
offered the best results, with three errors in calibration and four errors in prediction, all for nonpolar chemicals.

Conclusions. SVM is a powerful and flexible classification algorithm, with many potential applications in
molecular design, optimization of chemical libraries, and QSAR. In the present study we have demonstrated
such an application for the identification of the aquatic toxicity mechanism.

Keywords. Support vector machines; structure—toxicity relationships; aquatic toxicity; mechanism of action.

1 INTRODUCTION

Because numerous organic chemicals can be environmental pollutants, considerable efforts were
directed towards the study of the relationships between a compound’s structure and its toxicity [1—

16]. Significant progress has been made to classify chemical compounds according to their
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mechanism of toxicity and to screen them for their environmental risk assessment. The prediction of
the mechanism of action using structural descriptors has major applications in selecting the
appropriate quantitative structure—activity relationships (QSAR) model, to identify chemicals with
similar toxicity mechanism, and in extrapolating toxic effects between different species and

exposure regimes [7-16].

Organic compounds that act as narcotic pollutants are considered to disrupt the functioning of
cell membranes. Narcotic pollutants are represented by two classes of compounds, namely nonpolar
(class 1) and polar (class 2) compounds. The toxicity of both polar and nonpolar narcotic pollutants
depends on the octanol-water partition coefficient, but the toxicity of polar compounds depends also
on the propensity of forming hydrogen bonds. Recently, Ren [15] developed nonlinear discriminant
functions to separate polar and nonpolar narcotic pollutants based on their octanol-water partition
coefficients and hydrogen bonding quantum descriptors computed with the AM1 method. Support
vector machines (SVM) represent a new class of machine learning algorithms that found numerous
applications in various classification and regression models. In this study we present the application
of SVM for the classification of polar and nonpolar narcotic pollutants using the dataset explored in
Ref. [15]. The influence of the kernel type on the SVM performances was extensively explored
using various kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels.
A new algorithm for selecting relevant structural descriptors in SVM models was tested with good

results in reducing the input space.

2 MATERIALS AND METHODS

2.1 Chemical Data

Ren [15] used five structural descriptors to discriminate between 76 polar and 114 nonpolar
pollutants, namely the octanol-water partition coefficient log Koy, the energy of the highest
occupied molecular orbital Enomo, the energy of the lowest unoccupied molecular orbital Erymo,
the most negative partial charge on any non-hydrogen atom in the molecule Q, and the most
positive partial charge on a hydrogen atom Q'. All quantum descriptors were computed with the
AM1 method. The 190 compounds investigated in the present study, together with their
classification into polar/nonpolar pollutants, were taken from two recent studies [14,15] and are
presented in Table 1 together with the three quantum descriptors used in the best SVM model to
discriminate between their toxicity mechanism (Enomo, Erumo, and Q) and the experimental,

calibration and prediction classification (nonpolar, +1; polar, —1).

Among the 190 compounds, 114 are nonpolar and 76 are polar pollutants. The nonlinear
discriminant analysis [15] was tested in a leave-one-out cross-validation test that gave eight

classification errors, namely 2-phenoxyethanol, 2,3,4-trimethoxyacetophenone, acetophenone,
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benzophenone,

2,4—dichloroacetophenone,

2-hydroxy—4—methoxyacetophenone,

14—

dichlorobenzene (all nonpolar compounds predicted as polar), and pyridine (polar compound

predicted as nonpolar).

Table 1. Structure of the chemical compounds, theoretical descriptors (Egomo, ELumo and Q) and mechanism
of toxic action (nonpolar, class +1; polar, class —1; experimental, Exp; calibration, Cal; prediction, Pre)

No Compound Enomo ELumo Q SVM Class
Exp Cal Pre
1  methanol -11.135  3.7775 -0.5353 +1 +1 +I
2 ethanol -11.050  3.6513 -0.5360 +1 +1 +1
3  1-propanol -10.940 3.6324 -0.5317 +1 +1 +1
4  2—propanol —10.895  3.4925 -0.5469 +1 +1 +1
5 1-butanol -10.940 3.5041 -0.5422 +1 +1 +1
6 2-butanol -10.952  3.5536 -0.5456 +1 +1 +1
7  isobutanol -10.858  3.5052 -0.5476 +1 +1 +1
8  fert-butyl alcohol -10.991 34384 -0.5517 +1 +1 +I1
9  l-pentanol -10.940 3.5041 -0.5422 +1 +1 +1
10 3—pentanol —10.805  3.4884 -0.5394 +1 +1 +1
11  1-hexanol -10.930 3.4642 -0.5506 +1 +1 +1
12 1-heptanol -10.924 34300 -0.5517 +1 +1 +1
13 1-octanol -10917 34174 -0.5526 +1 +1 +1
14 1-nonanol -10.912  3.4031 -0.5539 +1 +1 +1
15 1-decanol -10.907 33928 -0.5539 +1 +1 +1
16 1-undecanol -10.903  3.3851 -0.5524 +1 +1 +1
17 1-dodecanol -10.900 33793 -0.5506 +1 +1 +1
18 1,2—ethanediol -10.946 32671 -0.5293 +1 +1 +1
19 1,3—propenediol -9.493  1.0283 -0.5567 +1 +1 +1
20 2-methyl-2,4—pentanediol -10.677  3.1360 -0.5777 +1 +1 +I1
21 3—furanmethanol -9.176  0.7497 -0.5465 +1 -1 -1
22 cyclohexanol -10.304 09217 -0.4832 +1 +1 +I1
23 2,2.2-trichloroethanol —-11.578 -0.4003 -0.5113 +1 +1 -1
24  butyldigol -10.523 24765 -0.5258 +1 +1 +1
25 diethyleneglycol -10.982 24265 -0.5148 +1 +1 +I
26 tricthyleneglycol -10.281 23815 -0.5460 +1 +1 +1
27 2-methoxyethanol -10.807 2.8028 -0.5114 +1 +1 +I1
28 2-—cthoxyethanol -10.687  2.6958 -0.5150 +1 +1 +1
29 2-isopropoxyethanol -10.670  2.6498 -0.5233 +1 +1 +I1
30 2-butoxyethanol -10.650  2.6755 -0.5209 +1 +1 +1
31 2-(2—ethoxyethoxy)ethanol -10.584 23600 -0.5514 +1 +1 +1
32 2-phenoxyethanol -8973 05669 -0.5669 +1 -1 -1
33 acetone -10.668  0.8443 -0.4700 +1 +1 +1
34 2-propanone —10.646  0.8489 -04779 +1 +1 +1
35 2-butanone -10.541 0.8772 -0.4659 +1 +1 +1
36 3—pentanone -10.420 09096 -0.4578 +1 +1 +I
37 2-octanone -10.512  0.8723 -04751 +1 +1 +1
38 S5-nonanone -10.392 09090 -04763 +1 +1 +1
39 2-decanone -10.509  0.8715 -04726 +1 +1 +I
40 3-methyl-2—butanone -10.409 09131 -0.4635 +1 +1 +I1
41 6—methyl-5—hepten—2—one -9.445 0.8556 04760 +1 +1 +1
42 2.3 4-trimethoxyacetophenone  —9.581 -0.4590 -0.4887 +1 +1 +I1
43 acetophenone -9.936 -0.3606 -0.4591 +1 +1 +1
44 3,3-dimethyl-2—butanone -10.337 09430 -04722 +1 +1 +1
45 4-methyl-2—pentanone -10.493  0.8962 -04713 +1 +1 +I1
46 benzophenone -9.875 -0.4759 -0.4512 +1 +1 +1
47 24-dichloroacetophenone -9.890 -0.5146 —0.4423 +1 +1 +1
48 cyclohexanone -10.616  3.3960 -0.5584 +1 +1 +1
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Table 1. (Continued)

No Compound Enomo ELumo Q SVM Class
Exp Cal Pre
49  ethyl acetate -11.006  1.1370 -0.5045 +1 +1 +1
50 diethyl ether -10.393 29807 -0.4057 +1 +1 +1
51 diiso—propyl ether -10.383  2.8648 -0.5014 +1 +1 +I
52  dibutyl ether -10.388  2.8852 -0.4487 +1 +1 +I1
53  dipentyl ether -10.389  2.8700 -0.4523 +1 +1 +I1
54  diphenyl ether -8.955 0.1708 -0.4029 +1 +1 +1
55  tert-butylmethyl ether -10.431 29892 04234 +1 +1 +1
56 furan -9.317 0.7228 -0.2135 +1 +1 +1
57 tetrahydrofuran -10.180  3.1103 -0.3943 +1 +1 +1
58 2,6—dimethoxytoluene -9.424 02306 -0.3773 +1 +1 +1
59 1,4-dimethoxybenzene -8.568 03924 -03696 +1 +1 +1
60 2-hydroxy—4-methoxyacetophenone  -9.119 -0.0249 -0.4636 +1 -1 -1
61 dichloromethane —-11.390 0.5946 —0.1854 +1 +1  +1
62 chloroform -11.771 -0.3035 -0.2708 +1 +1  +1
63 tetrachloromethane -12.379 -1.1170 -0.2974 +1 +1  +1
64 1,1-dichloroethane -11.422  0.5822 -0.1724 +1 +1  +1
65 1,2-dichloroethane -11.417 0.6838 -0.1151 +1 +1  +1
66 1,1,1-trichloroethane -11.992 -0.2658 -0.1807 +1 +1  +1
67 1,1,2—trichloroethane -11.513  0.3239 -0.1659 +1 +1 +1
68 1,1,2 2-tetrachloroethane —-11.655 -0.0738 -0.2785 +1 +1  +1
69 pentachlorocthane -11.870 -0.6817 -0.2966 +1  +1 +I1
70  hexachloroethane -12.182 -0.9677 -0.2913 +1 +1  +1
71  1,2—dichloropropane -11.290 1.1169 -0.2122 +1 +1 +I1
72 1,3—dichloropropane -11.372  1.0193 -0.1625 +1 +1 +I1
73  1,2,3—trichloropropane -11.442  0.7594 -0.2074 +1 +1 +1
74  l-chlorobutane -11.133 1.5109 -0.1880 +1 +1  +1
75 trichloroethene -9956 -0.0608 -0.0901 —+1 +1  +1
76 tetrachloroethene -9.902 -0.4367 -0.0372 +1 +1  +1
77  hexachlorobutadiene -9.542 -1.3444 -0.1091 +1 +1  +1
78 lindane -11.475 02284 -0.1923 +1 +1 +1
79  chlorobenzene -9.561  0.1545 -0.1262 +1 +1 +1
80 1,2-dichlorobenzene -9.602 -0.1425 -0.1028 +1 +1  +1
81 1,3—dichlorobenzene -9.682 —0.1580 -0.1298 +1 +1  +1
82 1,4-dichlorobenzene -9.523 -0.2162 -0.7993 +1 +1  +1
83 1,2,3-trichlorobenzene -9.784 -0.3646 -0.1345 +1 +1  +1
84 1,2,4-trichlorobenzene -9.623 -0.4691 -0.1004 +1 +1  +1
85 1,3,5-trichlorobenzene -9.921 -0.4022 -0.1888 +1 +1  +1
86 1,2,3,4-tetrachlorobenzene -9.735 -0.6518 -0.0587 +1 +1  +1
87 1,2,3,5-tetrachlorobenzene -9.763 -0.6841 -0.1772 +1 +1  +1
88 1,2,4,5-tetrachlorobenzene -9.655 -0.7308 -0.0512 +1 +1  +1
89 3-chlorotoluene -9.444  0.1844 -0.2176 +1 +1  +1
90 4-chlorotoluene -9.299  0.1351 -0.2161 +1 +1  +1
91 2.4-dichlorotoluene -9.447 -0.1489 -0.2153 +1 +1  +1
92 2.4 5-trichlorotoluene -9.475 -0.4355 -0.2593 +1 +1  +1
93  3,4-dichlorotoluene -9.407 -0.1363 -0.2519 +1 +1  +1
94  pentachlorobenzene -9.786 —-0.8904 -0.0571 +1 +1 +1
95  2—chloronaphthalene -8.868 —0.5063 -0.1939 +1 +1 +1
96 hexane -11.084 3.7357 -0.1641 +1 +1 +I1
97 octane —-11.066  3.6386 —0.1330 +1 +1  +1
98 decane -11.063  3.5774 -0.1293 +1 +1 +I1
99 benzene -9.653  0.5551 -0.0921 +1 +1 +1
100 toluene -9.330  0.5204 -0.1922 +1 +1  +1
101 o—xylene -9.183  0.5231 -0.1838 +1 +1 +1
102 m—xylene -9.186  0.5250 -0.1782 +1 +1 +1
103 p—=xylene -9.062 04871 -0.1846 +1 +1 +1
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Table 1. (Continued)

No Compound Enomo ELumo Q SVM Class
Exp Cal Pre
104 1,2, 4-trimethylbenzene -8.972 0.5030 -0.2105 +1 +1  +1
105 1,3,5-trimethylbenzene -9.165 0.5756 -0.2229 +1 +1  +1
106 1,2.4,5-tetramethylbenzene -8.832 0.4947 -0.2022 +1 +1 +1
107 ethylbenzene -9.381 0.5281 -0.1464 +1 +1 +1
108 cumene -9.383  0.5417 -0.1710 +1 +1  +1
109 1-methylnaphthalene -8.584 —-0.2668 —0.1574 +1 +1 +1
110 2—methylnaphthalene -8.620 —0.2459 -0.1959 +1 +1 +1
111 biphenyl -8.952 -0.0680 -0.1264 +1 +1 +1
112 cyclopentane -10.970  3.6228 -0.1258 +1 +1 +1
113 cyclohexane -10.937  3.6562 -0.0753 +1 +1 +I1
114 methylcyclohexane -10.822  3.6095 -0.2031 +1 +1 +I
115 nitrobenzene -10.562 -1.0679 -0.4939 -1 -1 -1
116 2-nitrotoluene -10.171 -1.0109 -0.5043 -1 -1 -1
117 3-nitrotoluene -10.197 -1.0138 -0.4984 -1 -1 -1
118 4-nitrotoluene -10.305 -1.0449 -0.5017 -1 -1 -1
119 2,3-dimethylnitrobenzene -9.941 -0.9491 -0.5097 -1 -1 -1
120 3,4-dimethylnitrobenzene -10.077 -0.9975 -0.5050 -1 -1 -1
121 2-chloronitrobenzene -10.332 -1.0722 -0.4984 -1 -1 -1
122 3—chloronitrobenzene -10.367 -1.2855 -0.4842 -1 -1 -1
123 4-—chloronitrobenzene -10.475 -1.3436 -0.4911 -1 -1 -1
124 2,3—dichloronitrobenzene -10.283 -1.2297 -0.4900 -1 -1 -1
125 2,4—dichloronitrobenzene -10.470 -1.3555 -0.4938 -1 -1 -1
126 2,5-dichloronitrobenzene -10.218 -1.2921 -0.4879 -1 -1 -1
127 3,5-dichloronitrobenzene -10.416 -1.4880 -0.4772 -1 -1 -1
128 2-—chloro—6-nitrotoluene -10.146 -0.8587 -0.4966 -1 -1 -1
129 4-—chloro—2—nitrotoluene -10.324 -1.2798 -0.4952 -1 -1 -1
130 4—chloro—3-—nitrotoluene -10.036 -1.0159 -0.5006 -1 -1 -1
131 phenol -9.114 03976 -0.4958 -1 -1 -1
132 2—methylphenol -8960 0.4093 -0.4813 -1 -1 -1
133  3—methylphenol -9.052 03732 04963 -1 -1 -1
134 4-methylphenol -8.880 04317 -04927 -1 -1 -1
135 2,4-dimethylphenol -8.784 03979 -0.4980 -1 -1 -1
136  2,6—dimethylphenol -8.885 03940 -04751 -1 -1 -1
137 3,4-dimethylphenol -8.803 04360 -04982 -1 -1 -1
138 2,3,6-trimethylphenol -8.833 03648 04751 -1 -1 -1
139 2,4,6-trimethylphenol -8.691 04322 04750 -1 -1 -1
140 4—ethylphenol -8912 04334 04931 -1 -1 -1
141 4-propylphenol -8.903 04383 04964 -1 -1 -1
142  4-n—butylphenol -8903 04362 -04930 -1 -1 -1
143  4—tert-butylphenol -8.894 04709 -0.4990 -1 -1 -1
144 2—tert-butyl-4—methylphenol ~ -8.761 04780 -0.4381 -1 -1 -1
145 4—n—pentylphenol -8.902 04370 -0.4951 -1 -1 -1
146 4—tert—pentylphenol -8.885 04722 -04992 -1 -1 -1
147 2-allylphenol -9.016 03597 -04818 -1 -1 -1
148 2-phenylphenol -8.731 -0.0489 04813 -1 -1 -1
149 1-naphthol -8.455 -0.2472 04810 -1 -1 -1
150 4-chlorophenol -9.125  0.0946 -0.4928 -1 -1 -1
151 4-—chloro—3—methylphenol -9.051 0.0930 -0.489%4 -1 -1 -1
152 4-—chloro-3,5-dimethylphenol ~ —8.977  0.1466 -0.4982 -1 -1 -1
153 3—methoxyphenol -8.941 04134 04939 -1 -1 -1
154 4—methoxyphenol -8.636 03034 04790 -1 -1 -1
155 4-phenoxyphenol -8.806 0.1133 04904 -1 -1 -1
156 pyridine -9.932  0.1385 -0.6610 -1 -1 -1
157 quinoline -9.181 -0.4666 -0.6538 -1 -1 -1
158 aniline -8.522 0.6392 08545 -1 -1 -1
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Table 1. (Continued)

No Compound Euomo  ELumo Q SVM Class
Exp Cal Pre

159 2-methylaniline -8.435  0.6007 -0.9317 -1 -1 -1
160 3-methylaniline -8.478  0.6051 -0.9380 -1 -1 -1
161 4-methylaniline -8.356  0.6156 -0.9429 -1 -1 -1
162 2,3-dimethylaniline -8.399  0.5917 -0.9301 -1 -1 -1
163 3,4-dimethylaniline -8.314  0.6089 —0.9480 -1 -1 -1
164 N,N—dimethylaniline -9332 04336 -0.6200 -1 -1 -1
165 2—cthylaniline -8.431 0.6081 -0.9294 -1 -1 -1
166 3—cthylaniline -8.482  0.6107 -0.9510 -1 -1 -1
167 4-cthylaniline -8.379  0.6219 -0.9589 -1 -1 -1
168 4-butylaniline -8.376  0.6182 -09518 -1 -1 -1
169 2,6—diisopropylaniline -8.338 0.6459 -0.8995 -1 -1 -1
170 2—chloroaniline -8376 0.3928 -0.6743 -1 -1 -1
171 3-chloroaniline -8.458 0.3781 -0.6965 -1 -1 -1
172 4-chloroaniline -8.577 0.2920 -0.9487 -1 -1 -1
173 2,4-dichloroaniline -8.466  0.1239 -0.6755 -1 -1 -1
174 2,5-dichloroaniline -8.589  0.0302 -0.6638 -1 -1 -1
175 3,4-dichloroaniline -8.499  0.1307 -0.6796 -1 -1 -1
176 3,5-dichloroaniline -8.687 0.0543 -0.6550 -1 -1 -1
177 2,3,4-trichloroaniline -8.607 —0.1427 -0.6808 -1 -1 -1
178 2,3,6-trichloroaniline -8.702 -0.2406 -0.6761 -1 -1 -1
179 2,4,5-trichloroaniline -8.630 -0.1974 -0.6849 -1 -1 -1
180 4-bromoaniline -8.393  0.4109 -0.6621 -1 -1 -1

181 o,0,0,4tetrafluoro-3—-methylaniline —8.759 -0.3958 -0.6372 -1 -1 -1
182  o,0,0,4tetrafluoro-2-methylaniline —8.934 -0.4233 08982 -1 -1 -1

183 pentafluoroaniline -9.272 -1.0127 -0.8360 -1 -1 -1
184 3-benzyloxyaniline -8.540 03454 09448 -1 -1 -1
185 4-hexyloxyaniline -8371 04853 09489 -1 -1 -1
186 2-nitroaniline -9.068 -0.7937 -0.6488 -1 -1 -1
187 3-nitroaniline -9.254 -0.9503 -0.9468 -1 -1 -1
188 4-nitroaniline -9.160  0.7050 -0.6493 -1 -1 -1
189 2-chloro—4-nitroaniline -9.256 -0.9066 -0.6434 -1 -1 -1
190 4-—cthoxy—2—nitroaniline -8.994 -0.8747 08070 -1 -1 -1

2.2 Structure—Toxicity Models with Support Vector Machines

Support vector machines were developed by Vapnik [17-19] as an effective algorithm for
determining an optimal hyperplane to separate two classes of patterns [20-30]. In the first step,
using various kernels that perform a nonlinear mapping, the input space is transformed into a higher
dimensional feature space. Then, a maximal margin hyperplane (MMH) is computed in the feature
space by maximizing the distance to the hyperplane of the closest patterns from the two classes. The

patterns that determine the separating hyperplane are called support vectors.

This powerful classification technique was applied with success in medicine, computational
biology, bioinformatics, and structure—activity relationships, for the classification of: microarray
gene expression data [31], translation initiation sites [32], genes [33], cancer type [34-37],
pigmented skin lesions [38], HIV protease cleavage sites [39], GPCR type [40], protein class [41],
membrane protein type [42], protein—protein interactions [43], protein subcellular localization [44—
46], protein fold [47], protein secondary structure [48], specificity of GalNAc—transferase [49],
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DNA hairpins [50], organisms [51], aquatic toxicity mechanism of action [16], carcinogenic activity
of polycyclic aromatic hydrocarbons [52], structure—odor relationships for pyrazines [53], cancer

diagnosis from the blood concentration of Zn, Ba, Mg, Ca, Cu, and Se [54].

In this study we have investigated the application of SVM for the classification of polar and
nonpolar pollutants using structural descriptors. The 190 compounds presented in Table 1 were
taken from the literature [14,15], and consist of 114 nonpolar data compounds (SVM class +1) and
76 polar compounds (SVM class —1). All SVM models from the present paper for the classification
of polar and nonpolar pollutants were obtained with mySVM [55], which is freely available for
download. Links to Web resources related to SVM, namely tutorials, papers and software, can be
found in BioChem Links [56] at http://www.biochempress.com. Before computing the SVM model,
the input vectors were scaled to zero mean and unit variance. The prediction power of each SVM
model was evaluated with a leave—20%—out (L20%0Q) cross—validation procedure, and the capacity
parameter C took the values 10, 100, and 1000. We present below the kernels and their parameters

used in this study.
The dot kernel. The inner product of x and y defines the dot kernel:
K(x,y)=x-y (1)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and

y defines the polynomial kernel:
K(x,p)=(x-y+1)* ()

The radial kernel. The following exponential function in the variables x and y defines the radial

basis function kernel, with the shape controlled by the parameter y (values 0.5, 1.0, and 2.0):
K(x,y)=exp(-y |l x=» ) 3)
The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1,
and 2):
K(x,y) =tanh(ax-y +b) 4)
The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with

the shape controlled by the parameters y (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3):
d
K(x,y)= (Z exp(—=y(x; =¥, ))) )

2.3 Descriptor Selection in Support Vector Machines

All studies that develop QSAR models from a large set of structural descriptors use a wide range

of algorithms for selecting significant descriptors. Currently, there is no widely accepted algorithm
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for selecting the best group of descriptors for an SVM model. Because an exhaustive test of all
combinations of descriptors requires too large computational resources, we have used a heuristic
method for descriptor selection. This heuristic algorithm starts from the set of 5 structural
descriptors used by Ren [15] (namely, log Kow, Enomo, ELumo, Q, and Q+) and develops SVM
models by applying the following steps:

(1) Starting from the complete group of N descriptors, all SVM models with one descriptor each
are computed. For each descriptor or group of descriptors, 78 experiments were performed using the
dot, polynomial, radial basis function, neural, and anova kernels, with various parameters (see Egs.
(1)—(5) and Table 2). The prediction performances of each SVM experiment are evaluated with the
L20%O0 cross—validation procedure, and the accuracy index AC is computed for each experiment,
namely AC = (TP + TN)/(TP + FP + TN + FN), where TP is the true positive number, FP is the
false positive number, TN is the true negative number, and FN is the false negative number. The

descriptor that gives the maximum prediction AC is selected for further experiments.

(2) Using the descriptor selected in step (1) and each of the remaining N — 1 descriptors, pairs of
descriptors are tested in SVM models. The pair of descriptors with the maximum prediction AC is

selected for further experiments.

(3) In each step, a new descriptor is selected, namely the one that, together with the descriptors
selected in previous steps, gives the maximum prediction AC. The process stops when prediction
AC does not increase by adding a new descriptor, or when a certain maximum number of

descriptors are selected.

3 RESULTS AND DISCUSSION

The results of the descriptor selection algorithm show that SVM models obtained with Epomo
(the energy of the highest occupied molecular orbital), £ umo (the energy of the lowest unoccupied
molecular orbital), and Q  (the most negative partial charge on any non-hydrogen atom in the
molecule) give the maximum prediction AC, = 0.98. Because adding a fourth descriptor does not
increase the prediction AC, we will discuss only SVM models obtained with these three quantum
descriptors. The SVM results obtained with Eyomo, ELumo, and Q are presented in Table 2. The
calibration of the SVM models was performed with the whole set of 190 compounds (114 nonpolar,
SVM class +1; 76 polar, SVM class —1). The calibration results reported in Table 2 are: TP, true
positive in calibration, the number of +1 patterns (nonpolar compounds) computed in class +1; FN,
false negative in calibration, the number of +1 patterns computed in class —1; TN,, true negative in
calibration, the number of —1 patterns (polar compounds) computed in class —1; FP,, false positive
in calibration, the number of —1 patterns computed in class +1; SV., number of support vectors in

calibration; BSV,, number of bounded support vectors in calibration; AC,, calibration accuracy.
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Using sophisticated kernels, SVM can be calibrated to perfectly discriminate two populations of
patterns, but only a cross—validation prediction test can demonstrate the potential utility of an SVM
model. For each SVM model we present in Table 2 the following leave—20%—out cross-validation
statistics: TPp, true positive in prediction; FN,, false negative in prediction; TN, true negative in
prediction; FP,, false positive in prediction; SV,,, average number of support vectors in prediction;

BSV,, average number of bounded support vectors in prediction; AC,, prediction accuracy.

Table 2. Results for SVM classification of polar and nonpolar pollutants using Exomo, ELumo and Q. “

Exp C K TP, FN. TN, FP, SV, BSV, AC, TP, FN, TN, FP, SV, BSV, AC,
1 10 D 105 9 76 0 27 23 095 104 10 76 0 222 184 095
2100 106 8 76 0 25 21 096 104 10 76 0 202 162 0.95
31000 106 8 76 0 25 21 096 108 6 76 0 196 156 097
d
4 10 P 2 109 5 75 1 21 12 097 108 6 75 1 180 92 096
5 100 2 109 5 76 0 20 10 097 108 6 74 2 152 60 096
6 1000 2 109 5 76 0 19 9 097 108 6 72 4 148 54 095
710 3 112 2 76 0 21 7 099 108 6 73 3 152 48 095
8 100 3 113 1 76 0 19 2 099 107 7 73 3 152 12 095
9 1000 3 114 0 76 0 18 0 100 106 8 73 3 144 00 094
10 10 4 112 2 76 0 22 5 099 106 8 73 3 170 24 094
11 100 4 114 0 76 0 20 0 100 106 8 72 4 158 00 094
12 1000 4 114 0 76 0 20 0 100 106 8 72 4 158 00 094
13 10 5 114 0 76 0 19 1 100 107 7 70 6 150 04 093
14 100 5 114 0 76 0 20 0 100 107 7 70 6 150 0.0 093
15 1000 5 114 0 76 0 20 0 100 107 7 70 6 150 0.0 0.93
Y
16 10 R 05 109 5 76 0 26 14 097 107 7 75 1 236 11.0 096
17 100 05 112 2 76 0 20 4 099 108 6 74 2 170 42 096
18 1000 0.5 113 1 76 0 19 2 099 108 6 74 2 158 06 096
19 10 1.0 112 2 76 0 35 7 099 109 5 75 1 340 54 097
20 100 1.0 113 1 76 0 28 2 099 109 5 75 1 264 14 097
21 1000 1.0 114 0 76 0 21 0 100 109 5 75 1 218 00 097
2 10 20 113 1 76 0 45 5 099 109 5 74 2 448 30 096
23100 2.0 114 0 76 0 43 0 100 109 5 75 1 408 00 097
241000 2.0 114 0 76 0 43 0 100 109 5 75 1 408 0.0 097

25 10 N 05 00 102 12 68 8 26 24 089 102 12 66 10 242 214 0.88
26 100 0500 102 12 64 12 28 25 0.87 104 10 63 13 234 200 0.88
27 1000 0500 102 12 64 12 28 24 087 103 11 62 14 220 18.6 0.87
28 10 1.0 00 98 16 60 16 34 32 083 95 19 61 15 306 280 0.82
29 100 1.0 00 98 16 60 16 34 32 083 100 14 56 20 314 290 0.82
30 1000 1.0 00 98 16 60 16 34 32 083 95 19 60 16 296 274 0.82
31 10 20 00 8 29 48 28 60 58 070 8 34 55 21 452 438 0.1
32 100 20 00 87 27 48 28 58 55 071 8 34 55 21 452 432 071
33 1000 20 00 8 29 47 29 60 58 069 8 28 48 28 47.6 450 0.71
34 10 0510 9 19 53 23 53 50 078 92 22 52 24 414 38,6 0.76
35 100 0510 92 22 53 23 49 46 076 &9 25 51 25 394 364 0.74
36 1000 0510 92 22 53 23 49 45 076 &9 25 50 26 392 364 0.73
37 10 1.0 1.0 8 29 47 29 61 58 0.69 8 27 50 26 446 428 0.72
38 100 10 1.0 98 16 59 17 35 33 083 8 31 52 24 438 412 0.71
39 1000 10 1.0 98 16 59 17 35 33 083 84 30 46 30 480 454 0.68
40 10 20 1.0 8 28 43 33 64 64 068 8 28 50 26 356 340 0.72
41 100 20 1.0 8 28 43 33 64 64 068 94 20 55 21 266 248 0.78
42 1000 20 1.0 8 28 43 33 64 64 068 97 17 46 30 340 32,6 0.75
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Table 2. (Continued)
Exp C K a b TP, FN. TN, FP. SV. BSV, AC. TP, FN, TN, FP, SV, BSV, A(,

43 10 NO0520 8 27 46 30 67 65 070 9 24 44 32 542 520 0.71
44 100 0520 84 30 46 30 63 60 068 8 29 44 32 51.0 484 0.68
45 1000 0520 84 30 46 30 62 60 068 84 30 44 32 502 478 0.67
46 10 1.0 20 8 31 45 31 64 62 067 71 43 50 26 52.0 504 0.64
47 100 1.0 20 8 31 45 31 64 62 0.67 82 32 45 31 51.6 494 0.67
48 1000 1.0 20 8 31 45 31 64 62 0.67 82 32 45 31 51.6 494 0.67
49 10 2020 8 29 46 30 63 60 069 75 39 65 11 460 446 0.74
50 100 2020 97 17 58 18 37 35 082 79 35 68 & 420 400 0.77
51 1000 2020 97 17 58 18 37 35 082 82 32 65 11 382 358 0.77
y d
52 10 A05 1 110 4 76 0 26 16 098 106 8 75 1 220 12,6 095
53 100 05 1 111 3 76 0 17 9 098 108 6 74 2 154 56 096
54 1000 05 1 112 2 76 0 14 4 09 109 5 73 3 132 28 0.96
55 10 1.0 1 111 3 76 0 26 11 098 109 5 75 1 204 86 097
56 100 1.0 1 111 3 76 0 18 5 098 110 4 74 2 160 3.6 097
57 1000 1.0 1 113 1 76 0 17 3 099 110 4 72 4 146 16 096
58 10 20 1 111 3 76 0 24 6 098 110 4 76 0 206 46 098
59 100 20 1 113 1 76 0 18 3099 109 5 73 3 178 1.6 0.96
60 1000 20 1 114 0O 76 0 14 0 1.00 109 5 70 6 152 0.0 094
61 10 05 2 112 2 76 0 24 7 099 107 7 75 1 184 48 096
62 100 05 2 112 2 76 0 20 3099 108 6 74 2 168 1.6 096
63 1000 05 2 114 0 76 0 15 0 1.00 107 7 74 2 142 00 095
64 10 1.0 2 112 2 76 0 21 4 099 108 6 75 1 188 24 096
65 100 1.0 2 114 O 76 0 20 0 1.00 107 7 73 3 166 0.0 095
66 1000 1.0 2 114 O 76 0 20 0 1.00 107 7 73 3 166 0.0 0095
67 10 20 2 114 0 76 0 24 2 100 108 6 73 3 246 1.0 095
68 100 20 2 114 0 76 0 22 0 1.00 108 6 73 3 230 0.0 0095
69 1000 20 2 114 O 76 0 22 0 1.00 108 6 73 3 230 0.0 0095
70 10 05 3 112 2 76 0 21 4 099 108 6 74 2 170 18 096
71 100 05 3 114 O 76 0 17 0 100 107 7 73 3 154 0.0 0095
72 1000 05 3 114 O 76 0 17 0 1.00 107 7 73 3 154 0.0 095
73 10 1.0 3 114 O 76 0 20 0 1.00 107 7 74 2 204 00 095
74 100 1.0 3 114 O 76 0 20 0 1.00 107 7 74 2 204 00 095
75 1000 1.0 3 114 O 76 0 20 0 1.00 107 7 74 2 204 00 095
76 10 20 3 114 0 76 0 38 0 1.00 108 6 74 2 372 00 096
77 100 20 3 114 O 76 0 38 0 1.00 108 6 74 2 372 00 096
78 1000 20 3 114 O 76 0 38 0 1.00 108 6 74 2 372 00 096

“ The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis
function R; neural N; anova A) and corresponding parameters, calibration results (TP, true positive in calibration; FN,
false negative in calibration; TN, true negative in calibration; FP,, false positive in calibration; SV, number of support
vectors in calibration; BSV,, number of bounded support vectors in calibration; AC,, calibration accuracy) and L.20%0O
prediction results (TP, true positive in prediction; FN,,, false negative in prediction; TN,, true negative in prediction;
FP,, false positive in prediction; SV, average number of support vectors in prediction; BSV,, average number of
bounded support vectors in prediction; AC,, prediction accuracy).

The results from Table 2 show that the classification results depend on the kernel type and
parameters: dot kernel, with AC. between 0.95 and 0.96 and AC, between 0.95 and 0.97;
polynomial kernel, with AC. between 0.97 and 1 and with AC, between 0.93 and 0.96; radial basis
function kernel, with AC. between 0.97 and 1 and with AC, between 0.96 and 0.97; neural kernel,
with AC. between 0.68 and 0.89 and with AC, between 0.64 and 0.88; anova kernel, with AC,
between 0.98 and 1 and with AC,, between 0.94 and 0.98. The overfitting of SVM models is clearly

detected in several cases. For example, as the degree of the polynomial kernel increases from 2 to 5,
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AC. increases from 0.97 to 1, while AC, decreases from 0.96 to 0.93. These results show that SVM
models are capable of overfitting, and the only sound method to identify the optimum model is by

comparing prediction statistics.

The maximum prediction AC, = 0.98 was obtained in experiment 58, with the anova kernel, SV,
=24, SV, = 20.6, and AC. = 0.98 (see Table 2). The SVM model from experiment 58 has three
classification errors in calibration, all nonpolar compounds (class +1) situated on the polar (class
—1) region of the SVM hyperplane: 21, 3—furanmethanol; 32, 2—phenoxyethanol; 60, 2-hydroxy—4—
methoxyacetophenone. The leave-20%-out cross-validation has four errors in prediction, all
nonpolar compounds predicted to be polar, i.e., the three compounds from calibration (21, 32, and
60) and 23, 2,2,2-trichloroethanol. These results show that SVM models obtained with Epowmo,
Erumo, and Q  are capable of discriminating between polar and nonpolar pollutants. Good
prediction results are obtained also with a group of SVM models that have AC, = 0.97, namely
experiments 3 (polynomial kernel); 19-24 (radial kernel); 55 and 56 (anova kernel). The results
from Table 2 show that several experiments have AC, = 1: experiments 9 and 11-15 (polynomial
kernel); 21, 23, and 24 (radial kernel); 60, 63, 65-69, and 71-78 (anova kernel). However, the
corresponding prediction values for AC, are between 0.93 and 0.96 for the polynomial and anova
kernels, and only the experiments with the radial kernel, having AC, = 0.97, can be regarded as

interesting alternatives to experiment 58.

4 CONCLUSIONS

Narcotic pollutants, that act by nonspecifically disrupting the functioning of cell membranes, are
categorized as polar and nonpolar compounds. The toxicity prediction of narcotic pollutants with
QSAR (quantitative structure-activity relationships) depends on the reliable determination of the
mechanism of toxic action. The classification of the chemical compounds as polar and nonpolar
narcotic pollutants based on structural characteristics is of utmost importance in predicting the
aquatic toxicity for new chemicals. Support vector machines represent an efficient machine learning
algorithm that separate two classes of patterns by determining a unique hyperplane that maximizes
the separation between the two classes. In this study we have investigated the application of SVM
for the classification of 190 narcotic pollutants (76 polar and 114 nonpolar) using literature data
[14,15]. Using an efficient descriptor selection algorithm, the energy of the highest occupied
molecular orbital Eyomo, the energy of the lowest unoccupied molecular orbital Eyrymo, and the
most negative partial charge on any non—hydrogen atom in the molecule Q, all computed with the
AMI1 method, were found to be necessary for the discrimination of the polar and nonpolar

compounds.

We have explored the influence of the kernel type on the SVM performances by testing various

kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. The prediction
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power of each SVM model was evaluated with a leave—20%—out cross—validation procedure. Our
experiments with various kernels clearly demonstrate that the performance of the SVM classifier is
strongly dependent on the kernel shape. The best prediction results were obtained with the anova

kernel, followed by the radial basis function kernel.

This study demonstrates that SVM models can be used with success to discriminate between
polar and nonpolar pollutants, providing reliable predictions. The heuristic algorithm proposed here
for the efficient selection of structural descriptors for SVM models was able of significantly
reducing the dimensionality of the input space. Further studies regarding the use of SVM in
structure—activity relationships should compare this heuristic algorithm with other descriptor
selection methods, such as the genetic algorithm. Considerable effort should be directed also
towards the investigation of various kernel functions, with the aim to develop reliable methods for

selecting the best kernel for a particular classification problem.

Supplementary Material
The mySVM model files for experiment 58 is available as supplementary material.
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