
Internet Electronic Journal of Molecular Design 2002, 1, 173–184 ISSN 1538–6414
BioChem Press http://www.biochempress.com

Internet   Journal  of Electronic
Molecular Design

April 2002, Volume 1, Number 4, Pages 173–184 

Editor: Ovidiu Ivanciuc 

Special issue dedicated to Professor Alexandru T. Balaban on the occasion of the 70th birthday 
Part 4 

Guest Editor: Mircea V. Diudea 

The QM/MM Method. An Overview 
Valentin Gogonea 

Department of Chemistry, Cleveland State University, 1983 East 24th Street, Cleveland, Ohio 44115 

Received: March 25, 2002; Accepted: April 4, 2002; Published: April 30, 2002 

Citation of the article:
V. Gogonea, The QM/MM Method. An Overview, Internet Electron. J. Mol. Des. 2002, 1, 173–
184, http://www.biochempress.com.

Copyright  ©  2002 BioChem Press



V. Gogonea
Internet Electronic Journal of Molecular Design 2002, 1, 173–184

Internet Journal
of Molecular Design

BioChem Press
http://www.biochempress.com

Electronic

The QM/MM Method. An Overview#

Valentin Gogonea* 
Department of Chemistry, Cleveland State University, 1983 East 24th Street, Cleveland, Ohio 44115 

Received: March 25, 2002; Accepted: April 4, 2002; Published: April 30, 2002 

Internet Electron. J. Mol. Des. 2002, 1 (4), 173–184
Abstract

The paper presents an overview of the development of the QM/MM method and its application to the study of
enzyme reactivity. Different approaches for the treatment of QM/MM boundary (link–atom, LSCF,
pseudoatoms) are review and their strengths and weaknesses are discussed. The QM/MM Hamiltonian is briefly
presented, its terms are defined and discussed, and the latest developments of the QM/MM method are presented.
Finally, many of the applications of the QM/MM method over the last decade are briefly reviewed and few of
the most recent results are discussed (e.g. opsin shift in bacteriorhodopsin, tunneling dynamics in liver alcohol
dehydrogenase). The QM/MM method proved to be one of the most successful theoretical approach for studying 
biomolecular systems, and its future development will make it the most sophisticated computational tool for the
investigation of enzyme reactivity. In addition, the newly developed linear scaling QM algorithms and the
composite Hamiltonian approach are among the latest developments that promise to make the QM/MM method a
very efficient and versatile computational tool for biochemistry.
Keywords. QM/MM method; composite Hamiltonian; QM/MM boundary; enzyme reactivitiy. 

Abbreviations and notations
QM, quantum mechanical/mechanics MPn, Möller–Plesset perturbation theory of order n 
MM, molecular mechanical/mechanics CC, coupled–cluster method
QM/MM, quantum mechanical molecular mechanical MCSCF, multi–configuration self–consistent field
MD, molecular dynamics DFT, density functional theory
HF, Hartree–Fock theory LSCF, local self–consistent field
MO, molecular orbital SLBO, strictly localized bond orbital
SCF, self–consistent field GHO, generalized hybrid orbital
PES, potential energy surface QD, quantum dynamics
CI, configuration interaction O(N), linear scaling method

1 INTRODUCTION

It is well accepted nowadays that the QM method is the ultimate computational tool that can be
employed successfully in studying the structural aspects of matter and a variety of its physical and 
chemical properties [1]. QM calculations are still very demanding in computational resources, but 
the advent of more powerful computers and the development of efficient algorithms for various QM
methodologies (e.g. semiempirical, HF, MPn, CC, DFT) over the last two decades led to state of the
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art quantum chemistry software (e.g. Gaussian [2], Schrödinger [3], Gamess [4]), which made 
calculations on small to medium size molecules a routine task [5]. In addition, recently developed 
algorithms that allow QM methods to scale linearly, O(N), with the system size [6] hint to the fact
that many molecular systems of interest in biology or material sciences can be investigated by QM 
methods in foreseeable future [7]. 

Presently, the most promising theoretical/computational approach for studying large molecular
systems (nano–scale systems, biological systems, supramolecular assembles) is the combined
QM/MM approach [8]. The hybrid QM/MM method is becoming increasingly popular for
investigating the structure and properties of large systems [9], specially the biological systems
[10,11] and the QM/MM Hamiltonian is used in conjunction with MD for studying the dynamical
behavior of matter (formation/breaking of chemical bond into a complex intermolecular
environment [12]). 

This paper presents an overview of the QM/MM approach with emphasis on the application of
the QM/MM method to the investigation of enzyme reactivity [10]. 

2 OVERVIEW OF METHOD DEVELOPMENT

The hybrid QM/MM potential was proposed in 1976 by Warshel and Levitt [13] for the study of
the catalytic mechanism of lysozyme. Many of the pertinent ideas were introduced in this seminal
paper: e.g. the partitioning of the enzyme into QM and MM regions, the construction of the hybrid 
QM/MM Hamiltonian, the evaluation of the total energy for the mixed system, and the treatment of
QM/MM boundary. More than a decade later, Field, Bash and Karplus compared the performance
of the QM/MM approach with the full QM and introduced the concept of link atoms for treating the
QM/MM boundary [14]. The QM/MM methodology was extensively developed in the last decade 
[8] and applied to a variety of bio–molecular systems [15]. 

In the QM/MM approach the system is divided into two regions: a small QM region and a 
significantly larger MM region. The QM part can be described by any level of ab initio QM
(semiempirical, HF, MPn, CI, CC, MCSCF) or DFT, but a QM/MM potential that uses DFT is the 
preferred choice because the DFT Hamiltonian can be more efficiently evaluated than any other
post Hartree–Fock methods [16,17]. 

Other developments in the QM/MM method include: a) the development of the effective
fragment potential method [18]; b) the calculation of analytical second derivatives of the total 
energy [19]; c) the calculation of chemical shifts in large systems [20]; d) the new QM/QM/MM 
approach, which employs a composite QM Hamiltonian constructed by mixing together different
levels of QM. For example, Morokuma and coworkers developed the IMOMO/ONIOM method
[21,22], Gogonea and Merz [23] proposed recently a composite QM Hamiltonian that mixes DFT 
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with the semiempirical QM, and Warshel and coworkers [24] proposed a DFT method in which the 
electronic density of the environment is either frozen or constrained. The QM/QM/MM approach, 
together with the newly developed linear scaling algorithms for QM [6], promise to bring increased 
performance and higher accuracy to the traditional QM/MM approach. 

2.1 The QM/MM Boundary
The boundary between the QM and MM regions is of utmost importance and its treatment

distinguishes between different QM/MM methodologies. Regardless of the method used to describe 
the QM/MM boundary, the boundary itself must be chosen far enough from the reaction center such 
that its influence on the reaction is minimal. This requirement creates a serious challenge for the 
QM/MM approach in situations where the QM region must spread substantially in order to avoid 
the computational artifacts introduced by the QM/MM boundary. While there is no general way of 
deciding on the position of the QM/MM boundary, chemical intuition and careful analysis of the
results seem to be the best strategy employed so far. It is not always possible to position the 
QM/MM boundary between atoms belonging to different molecules and frequently is necessary to 
‘cut’ chemical bonds. The treatment of the bonds that connect atoms positioned on different sides of 
the QM/MM boundary (i.e. in QM and MM regions, respectively) is the most difficult aspect of the 
QM/MM method. Among different methodologies developed for treating the QM/MM boundary 
the following can be distinguished: a) the link–atom approach [14,15]; b) the local self–consistent
field approach [26,27]; c) the connection atom approach [28]; d) the pseudobond approach [29].
These methods will be further reviewed in some detail. 

2.1.1 The link–atom approach

Singh and Kollman were the first to suggest the use of hydrogen atoms to ‘cap’ the dangling
bonds resulted from cutting the bonds across the QM/MM boundary [30]. The term link–atom was 
coined by Karplus and coworkers [14]. Link–atoms do not interact with the MM region, but the 
necessity to take into account this interaction is still debated [31,32]. This method for treating bonds
crossing the QM/MM boundary is not theoretically appealing because of the extra hydrogen atoms
introduced, but is easy to implement and its results are acceptable if the QM/MM boundary is 
sufficiently far away from the reaction center. The link–atom approach was used for many
applications [33–41]. 

2.1.2 The local self–consistent field approach

Warshel and Levitt [13] proposed the use of hybrid orbitals to describe the bonds across the
QM/MM boundary. Starting from this idea, Rivail and co–workers developed the LSCF method
[26,42,43]. In the LSCF approach a frontier bond (i.e. one that is crossing the QM/MM boundary) is 
described by a SLBO. The SLBO’s are obtained from model compounds and are assumed to be 
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transferable as long as the QM/MM boundary is far enough from the reaction site. The rest of the 
MO’s, which are orthogonal to the SLBO are obtained by a local self–consistent calculation [42]. 
LSCF methods based on either ab initio or semiempirical Hamiltonians were developed and applied 
to various organic or biochemical systems [44–47]. Friesner and co–workers [48–50] and Kairys 
and Jensen [51] developed further the LSCF method.

A method similar with LSCF called GHO was proposed by Gao and coworkers [27,52]. In this 
approach the frontier orbitals are divided into auxiliary (frozen) and active orbitals. The auxiliary
orbitals are used to construct an effective core potential for the QM/MM boundary atoms, while the 
active orbitals are included in the SCF calculation for determining the MO’s. When a semiempirical
Hamiltonian is used, the GHO procedure requires new parameters for the boundary atoms.

2.1.3 The connection–atom approach

In this method developed by Antes and Thiel [28], the MM atoms that bind to QM atoms are 
assigned an sp3 orbital which hosts one electron. This procedure introduces a consistent definition 
for the total energy of the QM/MM system. The connection atoms are parameterized in accordance 
with the Hamiltonian used (semiempirical, ab initio or DFT). 

2.1.4 The pseudobond approach

The pseudobond method builds up on the connection–atom idea of Antes and Thiel [28]. Thus, 
MM atoms connected to QM atoms are replaced with pseudoatoms that have effective core 
potentials and one free valence electron [29]. The construction of the effective core potential is
independent of the MM region and the same potential can be used in both ab inito and DFT 
Hamiltonians. Zhang and Yang used the method to study the catalytic activity of enolase [53]. 

2.2 The QM/MM Hamiltonian
In the mixed QM/MM system the (normalized) QM wavefunction, QM, spreads over the QM 

subsystem (including the link–atoms or localized orbitals/pseudobonds, which are positioned at the
QM/MM boundary). The total energy, E, of the mixed QM/MM system is obtained as the
expectation value of the QM/MM effective Hamiltonian, :ĤQM MM

E QM ĤQM MM QM (1)

where the QM/MM effective Hamiltonian is the sum of the QM Hamiltonian, , the QM/MM 
interaction potential, V  and the MM energy, E

ĤQM

Q̂M MM MM:

ĤQM MM ĤQM V̂QM MM EMM (2)

The interaction energy, EQM–MM, is the expectation value of the V  operator, which has the 
following form:

Q̂M MM
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where the first two terms in equation 3 are operators for the interaction of MM point charges, qi,
with the nuclei, Z , and electrons of the QM region, respectively. The third term is the van der
Waals interaction between the QM and MM regions The electron–point charge interaction operator 
leads only to one–electron integrals making the implementation of the QM/MM scheme a relatively
straightforward task. 

The QM Hamiltonian used in the QM/MM scheme is critical for the quality of the final results.
While a high level QM Hamiltonian is desirable, practical considerations limit the sophistication of
the QM Hamiltonian used. Semiempirical QM Hamiltonians (AM1, PM3 [54]) are the most 
efficiently evaluated, but they have deficiencies that are difficult to overcome. For example the 
AM1 Hamiltonian is deficient in the treatment of H–bond [55,56], while both AM1 and PM3 
grossly underestimates the dispersion interaction [57]. In many situations (e.g. when transition
metals are present in the QM region), an ab initio (HF, MPn, MCSCF) or a DFT Hamiltonian is the
method of choice [58,59]. 

3 APPLICATIONS OF THE QM/MM METHOD

The main driving force in the development of the QM/MM method is the need to investigate the
reactivity of enzymes. The benefits for understanding the fine details of the mechanism of enzyme 
reactions fully justifies the considerable amount of work already invested in the development and 
refinement of the QM/MM method. The large number of papers published in the last decade shows
that the QM/MM approach is by now largely accepted as a valuable research tool and the only 
computational approach, devised so far, which is well suited for studying bio–molecular and nano–
scale systems. This fact is emphasized in Field’s recent review on the challenges and perspectives
of the simulation of enzyme reactions [15]. 

Among the many applications of the QM/MM method are studies on the reactions catalyzed by 
acetyl cholinesterase [60], thermolysin [47], aldose reductase [61], carbonic anhydrase [62–64],
catechole O–methyltransferase [65–67], chorismate mutase [68,69], citrate synthase [70–72],
dihydroxyfolate reductase [73–75], enolase [76], formate dehydrogenase [77], glycoxalase I 
[78,79], haloalkane dehydrogenase [80], HhaI methyltransferase [81], orotidine 5’–monophosphate 
decarboxylase [82,83], phenol hydroxylase [84], protein tyrosine phosphatase [85,86], the GTPase 
reaction of p21 RAS [87], ribonuclease A [88], and trypsin [41,89]. 

Many of the enzymes are metalloproteins. If the involvement of the metal ion in the reaction is 
only by its electrostatic field, then its effect can be modeled using the MM force field or the 
semiempirical QM potential. This approach was employed in the study of acetohydroxy–

177
BioChem Press http://www.biochempress.com



The QM/MM Method. An Overview
Internet Electronic Journal of Molecular Design 2002, 1, 173–184

isomeroreductase [90], D–xylose isomerase [91], carbonic anhydrase [63] and metallothionein [92]. 
When the metal ion assists in bond formation/breaking, then DFT or an ab inito method is 
necessary for a satisfactory treatment of the electronic structure of the atom groups directly 
involved in the reaction. The DFT method is most often employed for the QM part. DFT studies 
that neglect the protein environment include the investigation of soluble methane monooxygenase 
[93], cytochrome c oxidase and the water–oxidizing complex in photosystem II [58,59]. Using a 
DFT or ab initio Hamiltonian to describe the QM region is still expensive in terms of computational
resources, thus up to date there are only a few DFT/MM studies of metalloenzymes. Among these 
are the investigations of nickel–iron hydrogenase [94], galactose oxidase [95], copper proteins [96], 
and bacteriorhodopsin [97,98]. 

Many of the references to work published before 1999 can be found in the review of Amara and 
Field [10]. Some of the most recently published work will be overviewed in the last part of this 
section.

Influence of the heme pocket conformation on the structure and vibrations of the Fe–CO 
bond in myoglobin. Rovira et al. [99] used QM/MM (DFT) calculations to study the influence of 
the conformation of the distal pocket of myoglobin (MbCO) on the vibrations of the heme–CO
bond. They showed that the heme–CO structure (described by QM) is quite rigid and is not 
influenced by the conformation of distal pocket (described by MM). They concluded that a relation
between Fe–CO distortions and the different CO infrared absorptions is less likely to exist. On the
other hand, the CO stretch frequency and the strength of the CO...His64 interaction depends 
strongly on the orientation and tautomerization state of His64. 

Substrate autocatalysis in uracil–DNA glycosylase (UDG). Karplus and co–workers [100]
used a hybrid QM/MM to determine the mechanism of catalysis by UDG and showed that the 
reaction proceeds in a stepwise dissociative manner contrary to earlier suggestions (concerted
mechanism). In their reaction mechanism, the glycosylic bond cleavage yields an intermediate
(comprising an oxocarbenium cation and an uracilate anion), which reacts with a water molecule
and the products are obtained following the transfer of a proton to D145. The authors also found 
that a substantial contribution to lowering the activation energy is due to the substrate, rather than 
due to enzyme. They concluded that the observed autocatalysis is due to the burial and positioning 
of four phosphate groups that stabilize the rate–determining transition state, and that the residual
activity observed for mutants that lack key residues confirms the important role of the phosphates. 

Surface crossing process in bacteriorhodopsin. Warshel and Chu [97] have investigated the 
QD of the photoisomerization process in bacteriorhodopsin (bR). They evaluated the surface 
crossing probability using a hybrid QM/MM Hamiltonian of the chromophore–protein–solvent
system. The QM/MM Hamiltonian was adjusted to reproduce relevant ab initio results for the 
chromophore. The authors found that the change in the absorption spectrum of the chromophore is 
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due to the effect of protein permanent dipoles, ionized residues, water molecules (in and around the 
protein), and the induced dipoles of the protein plus water system. They also demonstrated that the
motion along the excited state surface begins with bond vibrations and continues with torsional
motion, some trajectories passing through strict conical intersections whereas others cross through 
regions with nonzero energy gap and a large nonadiabatic coupling, a feature that ensures the 
stability of the photo–biological process with respect to mutations. The average surface crossing
probability provides an approximation for the calculated quantum yield, which the authors found to
be in good agreement with the experimental value. 

Tunneling dynamics in liver alcohol dehydrogenase. Alhambra et al. [101] proposed a
theoretical formalism which combines variational optimization with QM tunneling dynamics, for 
the calculation of rate constants for enzyme reactions. The dynamics is calculated by canonical 
variational theory with optimized multidimensional tunneling contributions, allowing for
Boltzmann averaging over an ensemble of reactant and activated complex conformations. The 
authors applied the method to the calculation of the reaction rate constant for oxidation of benzyl 
alcoholate to benzaldehyde by horse liver alcohol dehydrogenase and the PES for this reaction was 
determined by using a QM/MM (GHO) semiempirical valence bond method. The authors found that 
the variation of the protein mean field as a function of reaction coordinate is significant and affects 
qualitatively the reaction.

Studies of the active site of the blue copper proteins amicyanin and rusticyanin. Comba et
al. [96] studied the structures of the oxidized form of the two blue copper proteins amicyanin and 
rusticyanin. The QM region was described with a DFT Hamiltonian, and it was found that the 
optimized structures are similar to the X–ray crystal structures.

The opsin shift in bacteriorhodopsin. Rajamani and Gao [98] performed molecular dynamics
simulations of bacteriorhodopsin (bR) in membrane matrix. They found that polar solvents 
(methanol, acetonitrile, water) and protein interaction significantly shift the absorption maximum of 
the retinal protonated Schiff base. In bR, retinal changes conformation from 6–s–cis (solution) to 6–
s–trans (in bR). The extension of the –conjugated system and the change in dispersion interactions
further increase the red–shift. The QM/MM calculations gave a theoretical opsin shift of 5200 cm–1

in bR, in good agreement with the experimental value of 5100 cm–1.

4 CONCLUSIONS 
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The increasing number of publications that present the application of the QM/MM method to a 
variety of biochemical reactions is clear evidence of the importance of the QM/MM approach as a 
theoretical tool for our understanding of the fine details of the structure and function of enzymes.
There is no question that at present the QM/MM method together with the computer simulation
methods are the most sophisticated theoretical tools that can be used for determining the reaction 



The QM/MM Method. An Overview
Internet Electronic Journal of Molecular Design 2002, 1, 173–184

mechanism of enzyme catalysis, or in calculating other quantities like e.g. binding constants, and 
pKa values. The QM/MM model for describing biomolecules, while successful, still requires further 
development, which will lead to a better integration of the QM and MM formalisms by solving the 
problem of the QM/MM boundary in a general way. In this sense, the latest developments based on 
the LSCF methods seem to be a step in the right direction. Another aspect of the QM/MM approach 
is the quality of the QM Hamiltonian used. Because many of the enzymatic reactions involve
transition metals, the QM Hamiltonian must include the electron correlation. The post HF methods
are computationally still very expensive, hence the implementation of linear scaling QM methods
will have a great impact on the efficiency of the QM/MM method. They will further extend the use
of the QM/MM method to even larger enzymes and will extend the use of the QM/MM method for 
enzymatic reactions where excited states are involved (photo–chemical processes). The treatment of 
electronic excited states are even more challenging due to the complexity of the electronic structure, 
which usually requires a high level ab inito Hamiltonians (CI, CCSDT, MCSCF). Finally, the
development of composite Hamiltonians, which will mix consistently different levels of QM, will 
greatly assist in obtaining the best ratio of computational resources to the accuracy of calculation.
This composite QM/QM/MM description of a biomolecule, which combines different levels of QM 
with MM will probably be one of the most efficient computational tool for investigating the
electronic structure and the properties deriving from it for biomolecules. Thus, it is expected that 
both the development and the application of QM/MM method will continue to expand strongly in 
the current decade and that the information obtained from QM/MM calculations will be essential for 
a deep understanding of biochemical processes. 
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