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Abstract 

Membrane proteins can be classified among the following five types: (1) type I membrane protein; (2) type II 
membrane protein; (3) multipass transmembrane proteins; (4) lipid chain–anchored membrane proteins; (5) GPI–
anchored membrane proteins. A new learning machine, the Support Vector Machine, is applied for predicting the 
type of a given membrane protein by incorporating the quasi–sequence–order effect. High success rates were 
obtained by the self–consistency test (2030/2059 = 99%), jackknife test (1696/2059 = 82%), and independent 
data test (2305/2625 = 88%). 
Keywords. Support Vector Machines; membrane protein types; quasi–sequence–order effect. 

1 INTRODUCTION 

A cell is enclosed by the plasma membrane (cell envelope). Inside the cell there are various 
organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and other membrane–
bound organelles. Although the basic structure of biological membranes is provided by the lipid 
bilayer, most of the specific functions are carried out by the membrane proteins. Among membrane 
proteins, some of them are transmembrane proteins. They contain one or more transmembrane 
segments with one or more hydrophobic segments to ensure stable association with the hydrophobic 
interior of the membrane, and hence is relatively easily discriminated from non–membrane proteins 
[1]. The other membrane proteins are anchored membrane proteins. They do not have the 
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hydrophobic membrane spanning portions, but they have a consensus sequence motif at either the 
N– or C– terminus. So they also can be relatively easily discriminated from non–membrane proteins 
[2,3]. In this paper, the discrimination is confined within the scope of membrane proteins only. This 
is because membrane proteins can be reliably distinguished by using existing methods, as 
elaborated by many previous investigators [4,5]. 

The way in which a membrane–bound protein is associated with the lipid bilayer usually reflects 
the function of the protein. The transmembrane proteins, for example, can function on both sides of 
the membrane and transport molecules from one side to other side, whereas the proteins that are 
associated with one side of the lipid monolayer or a protein domain can only function on that side. 
It is clear that the function of new proteins can be determined if an effective algorithm is available 
to predict their types. Chou and Elrod [4] classified membrane proteins into five different types. 
These authors proposed a covariant discriminant algorithm [4] to predict the types of membrane 
proteins. Recently, Cai et al. [6] applied neural network to this problem. 

To improve the prediction quality, Chou proposed [7] a new method in which the covariant 
discriminate algorithm was augmented to incorporate the quasi–sequence–order effect. The new 
method uses the amino acid composition and the sequence–order–coupling numbers (reflecting the 
sequence order effect) in order to improve the prediction quality. The incorporation of the quasi–
sequence–order effect for the prediction of the types of membrane proteins is one step forward in 
this area. Encouraged by the positive impact of including the quasi–sequence–order effect, we try to 
apply Vapnik’s Support Vector Machine [8,9] to approach this problem. 

2 SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) is one type of learning machines based on statistical learning 
theory. The basic idea of applying SVM to pattern classification can be stated briefly as follows. 
First, map the input vectors into one feature space (possible with a higher dimension), either 
linearly or non–linearly, which is relevant with the selection of the kernel function. Then, within the 
feature space from the first step, seek an optimized linear division, i.e. construct a hyperplane which 
separates two classes (this can be extended to multi–class problems). SVM training always seeks a 
global optimized solution and avoids over–fitting, so it has the ability to deal with a large number of 
features. A complete description to the theory of SVMs for pattern recognition is in Vapnik’s book 
[9]. SVMs have been used in a range of bioinformatics problems including protein fold recognition 
[10,11]; protein–protein interactions prediction [12]; prediction of protein subcellular location [13–
15]; protein secondary structure prediction [16]. 

In this paper, we apply Vapnik’s Support Vector Machine [8,9] for predicting the types of 
membrane proteins. We have used the SVMlight, which is an implementation (in the C language) of 
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SVM for the problem of pattern recognition. The optimization algorithm used in SVMlight can be 
found in [17]. 

Suppose we are given a set of samples, i.e. a series of input vectors ),...,1( NiRX d
i , with 

corresponding labels ),...,1}(1,1{ Niyi , where –1 and +1 are used to stand respectively for 

the two classes. The goal here is to construct one binary classifier or derive one decision function 
from the available samples, which has small probability of misclassifying a future sample. Both the 
basic linear separable case and the most useful linear non–separable case (for most real life 
problems) are considered here. 

2.1 The Linear Separable Case 
In this case, there exists a separating hyperplane whose function is 0bXW , which implies 

the following: 

NibxWy ii ,...,1,1)(

By minimizing 2||||5.0 W  subject to this constraint, the SVM approach tries to find a unique 
separating hyperplane. Here 2||||W  is the Euclidean norm of W , which maximizes the distance 
between the hyperplane (Optimal Separating Hyperplane or OSH in [18]) and the nearest data 
points of each class. The classifier is called the largest margin classifier. 

By introducing Lagrange multipliers i, using the Karush–Kuhn–Tucker (KKT) conditions and 
the Wolfe dual theorem of optimization theory, the SVM training procedure amounts to solving the 
following convex QP problem: 
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Only if the corresponding i > 0, these ix  are called Support Vectors. When a SVM is trained, 

the decision function can be written as: 
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where sgn  in the above formula is the sign function. 



Support Vector Machines for Predicting Membrane Protein Types 
Internet Electronic Journal of Molecular Design 2002, 1, 219–226 

222 
BioChem Press http://www.biochempress.com

2.2 The Linear Non–Separable Case 
Two important techniques needed for this case are given respectively as below. 

Soft margin technique. In order to allow for training errors, ref [18] introduced slack variables: 
Nii ,...,1,0

The relaxed separation constraint is given as: 

1)( bXWy ii  , ),...,1( Ni

and the OSH can be found by minimizing: 
N

i
iCw

1

2

2
1

instead of 2||||5.0 W  for the above two constraints. In the above equation C is a regularization 

parameter used to decide a trade–off between the training error and the margin. 

Kernel substitution technique. SVM performs a nonlinear mapping of the input vector x from 
the input space Rd into a higher dimensional Hilbert space, where the mapping is determined by the 
kernel function. Then like in the linear separable case, it finds the OSH in the space H
corresponding to a non–linear boundary in the input space. Two typical kernel functions are listed 
below:

)1(),( x jxixxK d
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The first one is called the polynomial kernel function of degree d which will eventually revert to the 
linear function when 1d , and the latter one is called the RBF (radial basis function) kernel. 
Finally, for the selected kernel function, the learning task amounts to solving the following QP 
problem, 
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where the form of the decision function is 
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For a given data set, only the kernel function and the regularity parameter C must be selected. 
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3 TRAINING AND PREDICTION OF MEMBRANE PROTEIN TYPES 

Following the procedures and rationale as given in [4], membrane proteins are classified into the 
following 5 types: (1) type I membrane protein; (2) type II membrane protein; (3) multipass 
transmembrane proteins; (4) lipid chain–anchored membrane proteins; and (5) GPI–anchored 
membrane proteins. Following the Chou’s sequence–order–coupling procedure [7], the sequence 
order effect of a protein chain can be approximately reflected through a set of sequence–order–
coupling numbers as defined below. Suppose a protein chain of L amino acid residues: 

LRRRRRRRR 7654321 . The sequence order effect can be approximately reflected through a set of 

sequence–order–coupling numbers as defined below: 
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where 1  is called the 1st–rank sequence–order–coupling number that reflects the coupling mode 
between all the most contiguous residues along a protein sequence, 2  is the 2nd–rank sequence–

order–coupling number that reflects the coupling mode between all the 2nd most contiguous 
residues, and so forth. In Eq. [1], the coupling factor jiJ ,  is a function of amino acids iR  and jR ,

given by: 

),(2
, jiji RRDJ (2)

where ),( ji RRD  is the physico–chemical distance from amino acid iR  to amino acid jR  that was 

derived based on the residue properties of hydrophobicity, hydrophilicity, polarity and side chain 
volume [7]. Suppose there are N  proteins forming a set S , which is the union of m subsets:

mSSSSSS 4321 (3)

Each subset is composed of proteins with a same type. Its size is given by ),,3,2,1( mn ,
where n  represents the number of proteins in the subset S . The k th protein in the subset S may 

be described by 
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where jkf , is the normalized occurrence frequency of the 20 amino acids in the k th protein in subset 

S , qk , is the qth–rank sequence–order–coupling number computed according to Eqs. [1] and [2] 
for the k th protein in subset S , and w  is the weight factor for the sequence–order effect. Here, we 

choose w  = 0.1. As we can see from Eqs.[4] and [5], the first 20 components reflects the effect of 
the amino–acid composition, while the components from 120  to 20  reflect the effect of 

sequence order. 

In this research,  = 20, therefore, a protein can be represented by a point or a vector in a 40–D 

space. These are taken as the input of the SVM. As an example, 41BB_HUMAN can be computed 
and represented by a vector in 40–D space: (4.31 9.80 4.31 5.49 6.27 8.24 0.78 2.75 5.10 8.24 1.18 
4.71 7.06 4.71 6.27 8.63 6.67 4.31 0.39 0.78 7.61 8.35 8.34 8.43 9.38 8.98 8.98 8.38 8.95 8.24 8.57 
8.64 9.24 9.22 8.99 8.60 9.59 8.81 8.13 8.37). The computations were carried out on a Silicon 
Graphics IRIS Indigo workstation (Elan 4000). Also for the SVM, the width of the Gaussian RBFs 
(in this paper, we use the default value in SVMlight ) is selected as that which minimized an 
estimate of the VC–dimension. The parameter C that controls the error–margin tradeoff is set at 
1000. After being trained, the hyperplane output by the SVM was obtained. The SVM method 
applies to two–class problems. In this paper, for the five–class problems, we have used a simple and 
effective method: “one–against–others” method [10] to transfer it into two–class problems. We first 
test the self–consistency (model calibration) and leave–one–out cross–validation (jackknife test) of 
the method, followed by testing the method by prediction of an independent dataset. As a result, the 
rates of self–consistency, cross–validation and prediction were quite high. 

4 RESULTS AND DISCUSSION 

In this research, the examination for the self–consistency of the SVM (support vector machines) 
method was tested for the dataset from Chou and Elrod [4] that consists of 435 type I membrane 
protein, 152 type II membrane protein, 1311 multipass transmembrane proteins, 51 lipid chain–
anchored membrane proteins, and 110 GPI–anchored membrane proteins). As a result, the success 
rates reach 98%, 94%, 99%, 100% and 95% for type I membrane protein, type II membrane protein, 
multipass transmembrane proteins, lipid chain–anchored membrane proteins and GPI–anchored 
membrane proteins, respectively. The overall success rate reaches 99%, which shows that after 
being trained, the SVM model has grasped the complicated relationship between the amino acid 
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composition and the types of membrane proteins. 

Next, we examined the prediction quality by the jackknife test. During the process of the 
jackknife test, the training and testing datasets are actually open, and a protein will in turn move 
from each to the other. As a result, the overall success rate reaches 82%. 

The combination of the self–consistency test and jackknife test as conducted above is thought the 
most effective method for examining the power of a method of statistical prediction [19–21]. Also, 
from the cross–validation tests, the jackknife test is thought the most objective approach in 
statistical mathematics. However, as a demonstration of practical application, predictions were also 
conducted for proteins in an independent dataset [7], which contains 2625 membrane proteins, of 
which 478 are type I transmembrane proteins, 180 type II transmembrane proteins, 1867 multipass 
transmembrane proteins, 14 lipid chain–anchored membrane proteins and 86 GPI–anchored 
membrane proteins. As a result, the success rate reaches 85%, 50%, 93%, 64% and 77% for type I 
membrane protein, type II membrane protein, multipass transmembrane proteins, lipid chain–
anchored membrane proteins and GPI–anchored membrane proteins, respectively, and the overall 
success rate reaches 88%. The list of 2625 testing proteins is available upon request. 

Because the extensive details for each classification (number of support vectors, the list of 
support vectors, the SVMlight file for prediction and the prediction results) are quite long, they are 
not detailed in this paper, but they are available upon request. 

5 CONCLUSIONS 

The above results, together with those obtained by the covariant discriminant prediction 
algorithm [4,7] and neural networks [6], have indicated that the types of membrane proteins are 
predictable with a considerable accuracy. It is anticipated that the covariant discriminant algorithm 
[4,7], the neural network method [6], and the SVM, if effectively complemented with each other, 
will become a powerful tool for predicting the types of membrane proteins. The current study has 
further demonstrated that the quasi–sequence–order effect as originally introduced by Chou [7] has 
opened a new and promising approach in dealing with sequence order effect. It has not escaped our 
notice that the concept of quasi–sequence–order effect as well as its mathematical framework can 
be used to improve the prediction quality of other protein properties as well. 
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