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Abstract 

A new topological index, the edge structure index (ESI), was proposed in this paper for evaluating the ground-
state properties of one–dimensional macro– to suprabenzenoid hydrocarbons. The ESI was shown to be effective 
in providing good correlations with the ground state properties, such as the ground state energy (E ) and 
resonance energy per  electron (REPE) obtained by density matrix renormalization group (DMRG) using 
valence bond (VB) calculation within the JTH parametric scheme. It was also demonstrated that for one–
dimensional macro– to suprabenzenoid hydrocarbons the edge structure index gives better correlations than the 
connectivity index .
Keywords. Density matrix renormalization group; valence bond; aromaticity; benzenoid hydrocarbon; topology; 
edge structure index. 

1 INTRODUCTION 

Because of their important impact on public health and the environment, benzenoid 
hydrocarbons have attracted for a long time the attention of both experimental and theoretical 
chemists [1–4]. Recently, the potential applications of macro– to suprabenzenoid hydrocarbons as 
nanostructures and electronic materials have become a focus of scientific community’s research 
interests [5–7]. Some ab initio calculations have been carried out on benzenoid hydrocarbons [8–
14], but they were limited only to small to medium sized systems due to the computational 
difficulties. Thus, the semi–empirical approaches are still desirable for the systematic study of large 
to infinite sized benzenoid hydrocarbons. Although the Hückel molecular orbital (HMO) theory can 
treat very large systems [15–18], it is not satisfactory because of the neglect of electron correlations 
in this one–electron model. On the other hand, under certain conditions, the valence bond (VB) 
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theory has been able to successfully describe some physical and chemical properties such as the 
bond lengths, kinetic reactivities, low–lying electronic spectra, and aromaticities of various 
conjugated systems [19–23]. However, the exact solution of the classical VB model of conjugated 
hydrocarbons is currently available only for systems with not more than 30 –electrons due to the 
exponential increase in the number of configuration states with the system size [23–24]. According 
to the resonance theory, by restricting attention just to Kekulé structures, a number of quantitative 
resonance–theoretic VB approaches [25–30] extended the size limitations. But the number of 
Kekulé structures still increases fairly rapidly with the system size. Recently, mean–field resonating 
VB theory [31] was advocated for the description of a variety of conjugated –network species as 
an efficient qualitative resonance–theoretic method. 

Another distinguishing feature of the benzenoid hydrocarbons is their topological dependences 
[32–42], which make it possible to carry out some simple calculations just by the “pen–and–paper” 
approach based on some well–behaved topological indices and to rationalize some interesting 
properties. Wiener introduced the first topological index, the Wiener index W [43] in 1947, and 
Hosoya introduced the Hosoya Z index [44] in 1971. Subsequently, various other topological 
methods [27,28,45–54] for evaluating the properties of benzenoid hydrocarbons, such as the Randi
connectivity index [45] and the conjugated–circuit model [48,49] were proposed. These topological 
indices are especially used by experimental chemists due to their remarkable computational and 
theoretical advantages. However, they suffer from a number of limitations. One important limitation 
is that, when system is very large, it is difficult to enumerate the vertexes or edges, Kekulé 
structures, conjugated circuits, etc. Therefore, the properties of large benzenoid hydrocarbons are 
still difficult to predict. Another important limitation is that these traditional topological indices 
cannot distinguish some isomeric molecules. For example, chrysene and benzo[c]phenanthrene are 
considered to be identical according to all topological indices defined so far. 

To overcome these limitations, we propose an efficient topological index, the edge structure 
index (ESI) to evaluate the ground-state properties of one–dimensional macro– to suprabenzenoid 
hydrocarbons. To test the efficiency of our edge structure index within the classical VB models, we 
perform density matrix renormalization group (DMRG) [55,56] calculations, which have been 
demonstrated to be able to yield nearly exact results for large benzenoid hydrocarbons [57]. 

2 COMPUTATIONAL DETAILS 

2.1 Classical VB Model 
For neutral conjugated hydrocarbons, as all carbon atoms and all conjugated  bonds are 

supposed to be identical in the classical VB model, hence, the Hamiltonian takes the Heisenberg 
form [58]: 
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where ji ~  specifies that the summation is over all the bonded atom pairs for the –electron

skeleton of the molecule, Si denoting the spin operator of the i-th site and J is an (positive) exchange 
parameter. 

It has been demonstrated that for the large benzenoid hydrocarbons, the classical VB model can 
give reasonable results [59]. Using this classical VB model, we perform DMRG calculations to 
obtain the ground state energies for the selected series. 

2.2 Density Matrix Renormalization Group (DMRG) Method 
The difficulty of obtaining the exact solution of VB models for large conjugated systems lies in 

the exponential increase in the number of configuration states with the system size. Our physical 
intuition suggests that not all of those numerous configuration states contribute significantly to the 
low–lying states. There are several schemes proposed for efficiently truncating the configuration 
space. In 1992, White developed a very powerful and accurate numerical method, the density 
matrix renormalization group (DMRG), for many–electron models treating one–dimensional lattice 
systems [55]. 

Recently, we performed DMRG calculations on classical VB models to study polyacene and 
polyphenanthrene series [59]. Here, we extended the DMRG VB calculations to several one–
dimensional benzenoid hydrocarbons by choosing different blocks. Let us take polypentaphenes as 
an illustration. We begin with phenanthrene. In the first step, we calculate the ground state of 
phenanthrene using the standard method. Then we divide the phenanthrene into two parts, L (left) 
and R (right), as shown in Scheme 1. 

+

HL                                    HR

Scheme 1 

Then we form the density matrix of the left block, 
j

jiijii ''
*  where jicijij || , i|

is the set of vectors in the left block and j|  is the set of vectors in the right block. The density 

matrix is diagonalized for choosing m eigenvectors with the largest eigenvalues to induce a new 
system block, HL' = OHLO+, where O is specified by the m eigenvectors with the largest eigenvalues 
of  as columns. In the next step, we form a larger superblock as shown in Scheme 2 using HL', an 

extra ethylene (added block), and HR', which is the reflection of the left block HL. We use HL' plus 
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an extra ethylene (added block) as the new HL and HR' as the new HR. Then we diagonalize the 
combined blocks displayed above and obtain the ground state of chrysene. A further repetition of 
the step (as shown in Scheme 3) leads to the ground state of pentaphene. 

+

HL                                      HR

+

HL                                     HR

Scheme 2 

+

HL                                           HR

+

HL                                     HR

Scheme 3 

By analogy to the repeating steps as described above, we can locate the ground states of higher 
members of the series one by one. Similar treatment can be done for other conjugated systems. 

3 EDGE STRUCTURE INDEX 

3.1 Definition of Edge Structure Index 
It has been well established by theoretical studies at various levels that the electronic properties 

of benzenoid hydrocarbons depend significantly on their molecular sizes and edge structures [32–
39,42]. There are several prototypes for the edge structures of benzenoid hydrocarbons: one of the 
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most important edge structure is “phenanthrene–edge type” (or armchair–edge type) and another is 
“acene–edge type” (or zigzag–edge type) [60], as shown in Scheme 4. For one–dimensional 
benzenoid hydrocarbons, another edge structure, benzo[c]phenanthrene–edge type as shown in 
Scheme 4, is also assumed to be very important. 

Phenanthrene–edge type                                                Acene–edge type 

Benzo[c]phenanthrene–edge type 

Scheme 4 

We propose a new scheme to evaluate the ground state properties of one–dimensional macro– to 
suprabenzenoid hydrocarbons by their edge structures. The series 1–9 (shown in Scheme 5) have 
been selected for our study. 

1 polyacene 

2 polyphenanthrene 

3 polypentaphene 

Scheme 5 
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4 polyheptaphene 

5 polyenneaphene 

6 polyhendecaphene 

7 polytridecaphene 

8 polypentadecaphene 

Scheme 5 (Continued) 
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9

Scheme 5 (Continued) 

According to the classification of edge types as shown in Scheme 4, polyacene 1 can be taken as 
entirely composed of acene–edge structures, and polyphenanthrene 2 is entirely composed of 
phenanthrene–edge structures and other one–dimensional macro– to suprabenzenoid hydrocarbons, 
such as series 3–8, as a mixture of acene–edge structures and phenanthrene–edge structures. 
Interestingly, series 9 and polyphenanthrene 2 have identical acene– and phenanthrene–edge 
structures, so they may have very similar properties. Many topological indices, like the connectivity 
index , also predict identical ground-state properties. However, their real properties are somewhat 
different [61]. We thought that the difference might be contributed as due to the 
benzo[c]phenanthrene–edge structures in series 9.

Here, we define the edge structure index ESI by the following formula: 

)/()( apbp nnncnESI (2)

where pn , an and bn  are defined as the number of phenanthrene–edge structures, acene–edge 

structures and benzo[c]phenanthrene–edge structures, respectively, and c is an empirical parameter 
which in this paper is taken as 0.064 [62]. 

We have studied the units of series 1–9, as shown in Scheme 6. Series 1–8 actually do not have 
benzo[c]phenanthrene–edge structures. Let us take polyheptaphene 4 as an example. The hexagons 
C and D are the only integral hexagons in the duplicational unit of polyheptaphene. There are two 
kinds of edge structures: A–B–C and D–E–F form 2 phenanthrene–edge structures; B–C–D and C–
D–E form 2 acene–edge structures. So that for polyheptaphene 4, np = 2, na = 2, and nb = 0. The 
series 9 is different from the others because it has benzo[c]phenanthrene–edge structures. In its 
duplicational unit, B–C–D, C–D–E, D–E–F, E–F–G, F–G–H form 5 phenanthrene–edge structures 
and B–C–D–E, D–E–F–G–H, F–G–H–I form 3 benzo[c]phenanthrene–edge structures, therefore we 
obtain np = 5, na = 0, and nb = 3. 

3.2 Correlation to Quantitative Indices of the Ground State Properties 
According to the above defined edge structure index ESI, we have studied the topological 

dependences of the ground state properties of series 1–9. The calculated ESIs of series 1–9 are 
shown in Table 1. To test the efficiency of our edge structure index ESI, we perform DMRG VB 
calculations to obtain the ground state energies per  electron (E /N, where N is the number of 
electrons), in the infinite sized limits of series 1–9, as shown in Table 1. 
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Table 1. Edge structure indices and REPE of series 1–9.
edge structure 

series
pn an bn ESI edgen/ E /N a

REPE b

1 0 3 0 0.0000 0.3933 –1.60249 –0.03172 
2 3 0 0 1.0000 0.3966 –1.61882 –0.04535 
3 2 1 0 0.6667 0.3950 –1.61431 –0.04179 
4 2 2 0 0.5000 0.3944 –1.61111 –0.03894 
5 2 3 0 0.4000 0.3941 –1.60908 –0.03711 
6 2 4 0 0.3333 0.3940 –1.60778 –0.03593 
7 2 5 0 0.2857 0.3939 –1.60689 –0.03513 
8 2 6 0 0.2500 0.3938 –1.60627 –0.03457 
9 2 0 3 0.9616 0.3966 –1.61865 –0.04521 

a E /N values obtained by DMRG VB calculations are in J units 
b REPE values obtained by DMRG VB calculations are in J units 
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Figure 1. Plot of E /N versus ESI of series 1–9.
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Figure 2. Plot of REPE versus ESI of series 1–9.

We see from Figure 1 that there exists a good linear relationship between ESI and E /N. Thus, 
E /N can be easily correlated by the following formula: 

ESINE 01693.060233.1/ (3)

The resonance energy per  electron (REPE) [63–68] has been widely used as a criterion of 
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aromaticity for conjugated molecules [26,69–78]. We have also calculated REPEs of series 1–9 in 
the infinite sized limits by DMRG VB calculations within the JTH parametric scheme [66], which 
were listed in Table 1. In fact, ESI also correlates well with REPE (shown in Figure 2). The 
relationship between ESI and REPE approximately satisfies the following formula: 

ESIREPE 01436.003140.0 (4)
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Figure 3. Plot of E /N versus /nedge of series 1–9.
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Figure 4. Plot of REPE versus /nedge of series 1–9.
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It is also worthwhile comparing our ESI with other topological indices. The connectivity index 
is a widely used topological index, so we also computed /nedge (nedge, the number of edges, is 
introduced to compare systems of different sizes), with the results in Table 1. Similarly, we studied 
the correlation between /nedge and E /N, REPE of series 1–9 as shown in Figure 3–4. 

It is clearly shown that ESI has advantages in that: (1) ESI does suggest polyphenanthrene 2
should be thermodynamically more stable than series 9; (2) our ESI gives better correlations with 
E /N and REPE. In conclusion, the edge structure index ESI is a good topological index for 
evaluating the ground state properties of one–dimensional macro– to suprabenzenoid hydrocarbons. 
This scheme provides a convenient way with error ratio less than 2% for experimental chemists to 
predict E  and REPE of one–dimensional macro– to suprabenzenoid hydrocarbons. It would be 
especially useful for synthetic chemistry of nanostructures and electronic materials. 

4 CONCLUSIONS 

Macro– to suprabenzenoid hydrocarbons play an increasingly important role in today’s material 
chemistry, but they are difficult to characterize experimentally and theoretically. As demonstrated 
in this study, the DMRG method provides an efficient and powerful tool for implementing 
calculations within many–electron models for macro– to suprabenzenoid hydrocarbons. Our edge 
structure index ESI was demonstrated to be a useful parameter in quantitative structure–property 
(QSPR) and quantitative structure–activity (QSAR) studies. Since ESI is closely related to edge 
structures and it touches the duplicational units of the molecules directly, it is very convenient for 
predictions of the ground-state properties of large benzenoid hydrocarbons and it has good 
discrimination of isomers. We hope that ESI can be applied to more interesting systems in our 
future work. 
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