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Abstract

Motivation. Solvent–solute interactions greatly influence the behavior of compounds. In chemical reactivity the
solvent should favor the desired reaction disfavoring competitive reactions and enhancing reaction rate. In 
biological activity the ubiquitous presence of water, as the solvent, in contrast to the lipidic composition of many
tissues, affects many macroscopic results, such as compound delivery or excretion. The possibility of modeling
such interactions can reduce experiments and permit better understanding of compound activity.
Method. In recent years, we introduced a novel approach for the prediction of the best solvent in a synthetic
reaction. We generally applied the principle of similarity in solvation, i.e. we calculated an approximate
similarity between reactants, transition states and solvent molecules. We are now proposing an extension of this 
concept to the general evaluation of the interactions between organic compounds and solvents.
Results. The model has been applied to three sets of compounds in order to predict or understand the solvent
role in their biological behavior.
Conclusions. The results show that modeling solvation using structure similarity can represent an alternative to
classical descriptors, also giving an insight into solvation at molecular level. 
Keywords. Solvation; similarity; log P; dermal penetration; aromatic hydrocarbons; aromatic amines.

Abbreviations and notations
ADME, adsorption, distribution, metabolism, excretion PAH, polycyclic aromatic hydrocarbon
DNA, deoxyribonucleic acid QSAR, quantitative structure–activity relationship
log P, water–octanol partition coefficient SSS, solute–solvent similarity
MW, molecular weight

1 INTRODUCTION

The capability of predicting molecule–molecule interaction is the basis of the modeling of many
chemical and biological interactions. Chemical reactivity, enzymatic recognition, drug efficacy, 
compound toxicity, and many other effects, are all influenced by the interaction of two or more
molecules, that often determines the positive or negative result of each process. In this view, it is 

# Dedicated to Professor Haruo Hosoya on the occasion of the 65th birthday.

137
BioChem Press http://www.biochempress.com

* Correspondence author; E–mail: sello@mailserver.unimi.it.



Compound Similarity Used in Solvent–Solute Interaction Modeling
Internet Electronic Journal of Molecular Design 2003, 2, 137–159

necessary to consider all the molecules participating to a complex group of interactions and 
determining one particular outcome. Solvent effects are an important part of the intermolecular
interactions and they have been consequently studied to develop models capable of predicting the 
experimental behavior of compounds in solvents. 

There are basically two different active areas in solvent modeling. The first studies the molecules
soaked in the solvent using diverse calculation methods (e.g. molecular dynamics, continuum
solvent simulation), while the second deduces the solvent effect calculating some macroscopic
variables by the use of molecular descriptors. These two approaches are evidently different in both
aim and scope. In particular, the first precisely models the solute–solvent interaction, whilst the
second predicts the influence of the solvent on the solute behavior from the calculated variables. It 
is clear that the applications are very different. In the second area there are many models available
that can be divided on the basis of the level of the theory used in the descriptor calculation, from 
complete experimental to complete theoretical. In addition, the number and the use of the 
descriptors can greatly vary. 

Recently, many papers [1–8] have discussed the calculation of compound solubility, mainly in
water, because there is increasing interest in the modeling of the ADME properties of molecules.
These approaches can be divided into three groups: (a) the first group calculates aqueous solubility 
using experimental data, thus requiring the availability of such data [1,2]; (b) the second group 
calculates different molecular properties that are then combined to estimate water solubility [3–7]; 
(c) the third group uses atom group contribution to calculate the desired values [8]. All the three 
groups have their own positive and negative features that have been already discussed by the
authors. However, two rather common characteristics are the need of a specific choice of 
descriptors for each case and the use of a training set in order to deal with such choice.

It is our aim to introduce a different way to model solute–solvent interaction; in particular, our
approach will always use a single calculated descriptor and will only modify its mathematical
manipulation to adapt the descriptor to the current problem.

Recently [9], we have proposed a scheme for the evaluation of the best reaction conditions in
organic synthesis. The scheme calculates, among other characteristics, an ordered list of the 
solvents that should enhance the reaction rate of the main reaction with respect to the rates of the 
competing reactions. The procedure to compile the list includes the calculation of the similarity
between the solvents and both the reactants and the hypothetical transition states. The basic
principle is that a good solvent for a reaction will destabilize the reactants and stabilize the
transition state, in order to decrease the activation energy of the reaction. We apply the principle of 
“similarity in solvation”, i.e. we calculate an approximate similarity between reactants, transition
states and solvent molecules. The compounds more similar to the solvent molecules are better 
solvated.
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The calculation of the solute–solvent similarity is based on the comparison, atom by atom, of the 
corresponding structures, following the procedure reported in the next section. The obtained values 
were used in the procedure to order the solvent list and to choose the best solvent for the reaction. In 
this paper, this descriptor will be used to evaluate the solute–solvent interactions in three data sets.

2 MATERIALS AND METHODS 

2.1 Model Description
The first operation applied to the molecules participating to the interaction consists of the

calculation of a coefficient ( ) correlated to the electronic nature of each atom. The coefficient is
calculated for the atoms of both the solute and the solvent.  derives from the combination of two 
parts: one calculated by the Pauling [10] electronegativity ( ) of the atoms and the other dependent 
on the ionic or covalent radii of the atoms, obtained from literature data [10]:

iii rff , (1)

Given an atom i, i is the value of ; if  is the part calculated using the electronegativity of
the atom and of its neighbors, and  is the part derived from its ionic or covalent radius. The
function  is the mean of the electronegativity differences between the atom and its neighbors: 

rf , i

if

iVal

k ik
i

i Val
f

1

1
(2)

where  is the number of the atoms bonded to atom i,iVal i is its electronegativity, and k the 

electronegativity of its neighbors. 

The function  is the ratio ofirf , if  and the ionic or covalent radius multiplied by a 

constant:

i

i
i r

f
rf

100
1, (3)

where irf , represents the sensitivity of the atom to the electron distribution and can be 

associated to its polarizability.

Using the  of all the atoms we can calculate the solvation value of each solvent with respect to
each molecule. The system is based on the similarity between the ’s of the solute atoms and those 
of the solvent atoms. Having calculated the  values we locate, for each atom of the molecule,
excluding the hydrogen atoms bonded to carbon atoms, the value of  most similar to the of a
corresponding atom of the solvent, i.e. for each atom of the molecule: 

Sk
M
k 1min min (4)
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where min is the absolute difference between the two most similar ’s, M is the number of the
solvent atoms,  the value of the molecule atom, and Sk the value of the solvent atom k. Then, the 

min are summed obtaining a first similarity value, that only considers the most similar atoms:
N

i i
S

1 minmax (5)

where Smax is the value of the highest similarity between the molecule and the solvent, i.e. the value 
that we should have if the solvent is made only by the atoms most similar to those of the molecule.
N is the number of the molecule atoms.

The next step is the calculation of the mean similarity between the molecule and the solvent; this
value is obtained summing all the  resulting from the comparison of all the ’s of the solute atoms
and of the solvent atoms, and dividing the result by the number of the solvent atoms:

N

j

M

k SkjM
S

1 1mean
1

(6)

Finally, we can calculate the similarity of each molecule atom to each solvent atom. It is
obtained summing Smax and Smean and dividing by the number of the molecule atoms:

meanmax
1 SS
N

SSS (7)

The scheme reported above was used to order the solvents in the reaction simulation model.
However, even keeping the essential characteristic (i.e. the similarity hypothesis) of the approach 
we decided to make the calculation more exact in the perspective of extending its use. In Table 1, 
we report all the variables used in the previous equations with their definitions. 

Table 1. Definitions of the variables used in equations 1–7
Variable nameDefinition Variable nameDefinition

Atomic similarity coefficient Smax Solute–solvent maximum similarity
Atom electronegativity Smean Solute–solvent medium similarity

Val Atomic valence M Number of solvent atoms
r Atom covalent radius N Number of solute atoms
min Smallest difference in similarity coefficients SSS Solute–solvent similarity 

The principal source of uncertainty in the previous calculation is represented by the used
electronegativities. In fact, the direct use of Pauling’s electronegativities is not sufficient to take
care of all the intramolecular perturbations in the molecule. For example, in this approach all the sp3

carbon atoms are equal if they are bonded to similar atoms, a situation that does not consider the 
influence of atoms on the successive spheres. However, we have available a calculation scheme of 
electronegativity that is more precise [11–13]. It recursively considers all the intramolecular effects,
even the distant ones. 

140
BioChem Press http://www.biochempress.com



G. Sello
Internet Electronic Journal of Molecular Design 2003, 2, 137–159

Consequently, we modified the calculation scheme for what concerns the calculation of the 
atomic electronegativities, maintaining all the rest. This permits an improved correspondence 
between the model and the real interaction. 

There are still other improvements that can be imagined, e.g. the use of the three–dimensional
calculation scheme of electronegativities, which we have also available [14], but we presently 
prefer to test the model in a simpler general scheme to have an impression of its potential.

The second significant difference is the need to compare different compounds with respect to the 
same or different solvents. This is not a problem in the ordering of the solvents in the reaction
modeling, because, in that case, the comparison is performed only between the competing reactions
of a single molecular set; consequently, there is no need of calculating an absolute value. Now, the
situation is different; we wish to compare compounds of different sets and, in addition, we wish to 
get quantitative prediction and not only solvent orders. The greater precision introduced by the new 
calculation guarantees a better quantitative estimation of the values. 

More complex is the problem of what kind of similarities must be compared. It is in fact clear 
that speaking about similarity we cannot assign absolute similarity values, but only comparative
similarities (a measure of the similarity of an object with respect to another object and considering a 
precise attribute) [15]. In our view, the model should be capable of estimating the similarity
between a solute and a solvent (i.e. inter–compound similarity). This means that we should be able 
to tune the model to the specific problem (i.e. we can choose the model as a function of the 
attribute). For example, we can choose the solvent when modeling the aqueous solubility (water) or
when modeling the passage through cell walls (a lipophilic solvent simulating a membrane). The 
choice of the specific model will depend on the current problem.

2.2 Chemical Data
To test the solute–solvent similarity (SSS) as a measure of solute–solvent interaction we 

developed three models using three different data sets. The first data set contains the compounds
used by Gute et al. [16] to study the dermal penetration of polycyclic aromatic hydrocarbons 
(PAH). The second data set contains the aromatic amines used by Franke et al. to study their 
carcinogenicity [17]. The third data set contains 95 aromatic primary amines used by Basak et al. in
a study on mutagenicity prediction [18]. 

This choice has been made because the three sets show a good variability of compound
structures. In addition, the solubility of the compounds in the first set is directly applied to model a 
biological activity, thus the literature results can be directly compared to ours; differently, the
solute–solvent interaction of compounds in the other two sets is only one descriptor in a group used 
to rationalize a complex biological effect, thus our results cannot be directly compared to the 
biological data. 
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We are going to develop one model for each problem and to discuss the agreement with the
literature analyses; then, we will try to better understand the potential applicability of our approach; 
finally, we will briefly discuss the reasons that can support our idea of developing many models
based on only one descriptor to represent solute–solvent interactions.

3 RESULTS AND DISCUSSION

3.1 Dermal Penetration of PAHs
In their paper Gute et al. [16] study the possibility of predicting the dermal penetration of PAHs 

using a hierarchical QSAR approach. They use some calculated topological molecular descriptors, 
together with the calculated log P [19] (water–octanol partition coefficient) and MW (molecular
weight), to calibrate a function to predict the PAH dermal penetration. All their best models use 
shape and/or size descriptors, thus they conclude that this kind of descriptors are the most important
for this biological effect. Dermal penetration is defined as the percentage of the applied dose (40 
nmoles per cm2 skin surface) which penetrate the skin [20]. 

From a slightly different viewpoint we would like to check if our calculation of SSS can also
predict this effect, taking in due consideration that ours is not a shape and size descriptor. In 
particular, we will compare our results with both the reported log P’s and the dermal penetration 
data.

The first step, in our approach, consists in the preparation of the hypothesis concerning the 
model structure. From the Gute et al. [16] discussion it appears that PAH dermal penetration is 
governed by the direct interaction between the derma and the compound; in other words, the more 
lipophilic is the compound the better it passes through the dermal barrier. In this view, a classical 
descriptor of lipophilicity is log P, where the compounds that preferentially partition in octanol are 
the most lipophilic. As a consequence, we can assume that the compounds more similar to octanol 
should penetrate better through the derma. We are going to calculate the SSS of the PAHs to 
octanol. One more consideration is worth. Because the data set is highly homogeneous the crude
similarity measures are sufficient to get an acceptable description of the biological results. 

The calculated SSS are reported in Table 2 together with all the other necessary data and the 
compound structures are shown in Figure 1. The first important point concerns the calculated log P.
In homogeneous data set this values are correlated to the number of non–hydrogen atoms in each 
compound. In fact, the regression analysis of the reported log P with the number of non–hydrogen 
atoms gives: log P = 0.272 N + 1.029, n = 60, r2 = 0.85, sd = 0.34, F = 314.3. The regression of 
log P with our SSS values gives: SSS = 1.013 log P + 0.104, n = 60, r2 = 0.88, sd = 0.3, F = 428.7. It 
is clear that the SSSs are in agreement with the calculated log P’s.
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We calculated two more regression lines, correlating either the reported log P’s or our values to
the experimental dermal penetration data. The results are, respectively: %DP = –11.375 log P + 
91.710, n = 60, r2 = 0.60, sd = 8.2, F = 86.6, and %DP = –11.122 SSS + 92.184, n = 60, r2 = 0.667, 
sd = 7.45, F = 117.2, r2LOO = 0.662. Overall, our model is comparable to those reported by Gute et
al. The regression lines are presented in Figure 2. 

Table 2. Literature and calculated data of PAH dermal penetration

No. log P SSS Dermal
penetration

Atom
number No. log P SSS Dermal

penetration
Atom

number
1 7.044 7.772 0.7 24 31 6.128 6.037 20 18
2 7.298 7.860 2 24 32 5.664 5.958 20 18
3 8.266 8.666 6 26 33 5.942 5.598 20 16
4 6.124 6.569 7 20 34 6.838 7.260 20 22
5 7.298 7.868 8 24 35 5.664 5.973 20 18
6 7.067 7.121 8 21 36 5.599 5.691 22 17
7 5.858 6.667 8 20 37 6.962 6.806 24 20
8 7.422 7.415 8.3 22 38 5.399 5.774 25 17
9 6.584 7.163 9 22 39 5.399 5.770 25 17

10 6.838 7.263 9.4 22 40 6.312 6.859 26 20
11 6.124 6.560 10 20 41 6.432 6.908 29 20
12 6.584 7.168 10 22 42 4.95 5.270 30 14
13 6.432 6.893 10 20 43 5.668 5.454 30 16
14 6.842 6.739 10 20 44 6.773 6.993 32 21
15 6.916 7.166 11 21 45 5.139 5.099 33 15
16 6.313 6.384 14 19 46 5.599 5.701 33 17
17 6.124 6.573 14 20 47 5.788 5.518 33 16
18 6.124 6.572 15 20 48 5.664 5.972 35 18
19 6.128 6.034 18 18 49 4.225 4.471 36 13
20 6.716 6.281 20 18 50 5.139 5.096 38 15
21 6.466 6.186 20 18 51 5.273 5.155 38 15
22 6.378 6.679 20 20 52 5.139 5.094 40 15
23 7.067 6.394 20 19 53 4.784 4.800 40 14
24 6.313 6.393 20 19 54 5.214 5.505 40 16
25 6.313 6.384 20 19 55 4.49 4.690 42 14
26 4.674 4.965 20 14 56 4.95 5.272 42 16
27 5.783 6.477 20 19 57 4.874 4.891 49 14
28 5.942 5.541 20 16 58 5.139 5.100 50 15
29 7.186 6.731 20 20 59 4.685 5.078 50 15
30 6.977 7.051 20 21 60 4.49 4.673 50 14

In literature there are other analyses of this data set in addition to that by Gute et al. For the
whole set of 60 PAHs, Roy et al. [19] obtained the following QSAR equation: %DP = 111.9 – 14.7 
log P – 22.0 SHDW6, r2 = 0.640, sd = 7.7, F = 54, where log P is the calculated octanol–water 
partition coefficient, and SHDW6 is the normalized area of the two–dimensional projection of the
molecule onto the Y–Z plane.

An improved model is reported by Ivanciuc et al. [21] and it is obtained with SD1, the average 
electrophilic reactivity: %DP = – 50.10 + 12542 SD1, r2 = 0.711, sd = 6.9, F = 142.8; a second 
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correlation was obtained by these authors using two descriptors, further enhancing the result: %DP 
= 8897 + 12025 SD1 – 2269 SD11, r2 = 0.748, sd = 6.5, F = 84.4, where SD11 is the average
valence of a carbon atom. These models do not use a size and shape descriptor, nor a classic 
solvation index; consequently, their comparison to our result is less straightforward.
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Figure 1. Structure of polycyclic aromatic hydrocarbons.
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Figure 1. (Continued).
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Figure 2. Regression lines relative to PAH dermal penetration analysis.

3.2 Aromatic Amine Carcinogenicity
The second set we are going to study includes 82 aromatic amines studied by Franke et al. [17] 

in order to predict their carcinogenicity against mice and rats. The set includes very different
compounds, containing different number of aromatic rings and diverse functional groups (see 
Figure 3). Therefore, it represents a challenge for the method.

In their paper Franke et al. [17] show that in a correlation equation between molecular
descriptors and carcinogenicity it is often present one term that can be attributed to the transport/
penetration capability of compounds. This part of their model requires the use of either calculated
log P [22] or MR (molar refractivity, i.e. an index of steric properties). Consequently, we are going 
to concentrate on the possibility of correlation between their log P and our SSS. Here, again the first 
step is the choice of the model (solvent or solvents) to use. In this case, we have not a barrier to 
cross, but we must consider the interaction between a compound and its environment, that is mainly
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water. Therefore, even if water and octanol would have been the natural choice to correlate to log P,
we will use water alone. We will see that also the use of the water/octanol pair gives a similar
result. The relevant data are reported in Table 3. 
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Figure 3. Compounds in Franke et al. study.
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Table 3. Literature and calculated data of compounds in the carcinogenicity study

Compound log P water/
self a

water/
octanol b Compound log P water/

self a
water/

octanol b

61 2.61 5.191 4.106 102 0.23 3.190 2.509
62 2.27 4.860 3.741 103 0.95 3.560 2.653
63 2.16 4.179 3.213 104 2 2.692 2.452
64 2.61 5.195 4.112 105 3.71 7.801 4.671
65 2.79 3.687 3.058 106 2.85 6.206 4.205
66 3.6 4.135 3.065 107 1.48 3.954 3.047
67 1.73 4.276 3.258 108 0.94 3.805 3.155
68 3.02 5.985 4.056 109 0.96 3.535 2.795
69 2.95 5.066 3.895 110 0.43 3.308 2.545
70 1.52 3.302 2.442 111 2.25 4.322 3.312
71 0.34 3.153 2.859 112 4.25 3.324 2.780
72 2.56 4.293 3.234 113 2.67 4.690 3.419
73 1.64 4.039 3.345 114 2.95 5.084 3.899
74 1.91 3.750 2.975 115 0.93 2.805 2.562
75 2.2 4.488 3.348 116 4.16 6.059 4.550
76 0.95 3.553 2.653 117 0.2 2.615 2.255
77 1.01 3.637 2.970 118 1.22 3.813 2.969
78 0.96 2.628 2.483 119 2.58 4.884 4.056
79 0.8 3.686 3.154 120 3.09 4.025 3.408
80 1 3.321 2.494 121 2.72 4.081 3.582
81 0.76 3.441 2.834 122 3.73 3.177 2.890
82 2.25 4.085 3.269 123 3.21 4.265 3.354
83 1.69 4.446 3.400 124 3.2 4.011 3.019
84 0.92 2.661 2.440 125 0.57 4.477 3.507
85 0.43 3.278 2.535 126 0.99 3.864 3.351
86 0.48 3.391 2.558 127 1.83 4.281 3.505
87 2.38 4.435 3.426 128 1.69 5.887 4.277
88 1.86 3.865 3.007 129 0.48 3.374 2.545
89 0.95 3.560 2.652 130 0.6 3.426 2.570
90 0.2 3.387 2.844 131 1.04 1.972 1.820
91 2.39 5.072 3.837 132 2.67 4.684 3.412
92 0.93 2.854 2.522 133 1.84 6.000 4.657
93 1.26 4.071 3.162 134 0.2 2.901 2.678
94 1.01 3.604 2.957 135 1.73 4.296 3.267
95 1.78 3.946 3.003 136 0.93 2.819 2.495
96 1 3.321 2.493 137 2.82 3.901 2.755
97 1 3.326 2.495 138 1.73 4.293 3.259
98 2.25 4.150 3.080 139 1.66 3.727 2.989
99 1.48 3.838 3.053 140 3.1 4.404 3.298
100 1.48 3.838 3.053 141 2 2.669 2.416
101 1.31 4.125 3.139 142 3.5 4.631 3.324

a water/self is the ratio between the SSS of the compound to water and to itself 
b water/octanol is the ratio between the SSS of the compound to water and to octanol

The use of the SSS calculated for the similarity to water is not sufficient to explain all the
variance. But, if we modulate the water SSS using the compound self–similarity, we get an 
acceptable correlation (log P = 0.775 SSSwat/SSSself – 1.496, n = 73, r2 = 0.575, sd = 0.63, F = 96.0, 
r2LOO = 0.569). This result, shown in Figure 4, has been obtained excluding 9 compounds that 
contain more than one halogen atom (66, 70, 104, 112, 122, 124, 131, 137, 141).
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Figure 4. Correlation line between calculated and literature log P of Franke et al. data set.

If we use the SSS of water and octanol the result is comparable to the previuos one (log P = 
1.277 SSSwat/SSSoct – 2.396, r2 = 0.57, sd = 0.63, F = 96.0); however, we prefer our first choice 
because it compares the interaction of a compound with water and with itself, similarly to a
solvation index. 

It is worth to comment on the meaning of the similarity ratio. In the present context, i.e.
comparing atom ’s, two compounds are more similar if they have many atoms that are 
electronically similar and few atoms that are electronically dissimilar. If we assume that this
similarity can measure the intermolecular interactions, we can affirm that two similar compounds
have many interactions and, as a consequence, they can mutually exchange without needing much
energy. When we consider the interactions between hydrophobic compounds and water we can 
expect a limited similarity, thus the compounds are not sufficiently characterized. On the contrary, 
the self similarity represents an ideal situation because it must be the best possible similarity; the 
ratio is a method to balance the similarity to water using the best reference similarity. In the log P
the comparison is between the solubility in water and in octanol, where this last is the hydrophobic 
solvent; thus, the similarity to octanol assumes the role of the self similarity, because the
compounds are hydrophobic. The consequence is that the two ratios are in agreement.

3.3 Primary Aromatic Amine Mutagenicity

150
BioChem Press http://www.biochempress.com

The last data set contains the compounds used by Basak et al. [18] to predict their mutagenicity,
an experimental measure of the interaction of each compound with DNA in the well–known Ames 
test [23]. The set used to develop the model contains 95 highly varied compounds. The structures of 
the compounds are presented in Figures 5. This set contains 16 compounds that are also present in 
the previous set, but we will maintain the set as it is in order to make possible a comparison
between the two. 
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In their paper Basak et al. [18] analyze the possibility to predict mutagenicity using some diverse
equations that include from 4 to 9 descriptors, both topological and geometric and electronic. The
correlation equations show different levels of predictive power. One of the descriptors that the
authors have selected is the log P of the compounds; some log P’s are experimental, others are 
calculated [24]. Thus, we considered the possibility to correlate also in this case the log P’s to our 
SSS’s. Here, the choice of the model (solvent or solvents) to use is constrained; in fact, if we would 
like to compare these results to those of Franke et al. we need to use the same model, i.e. the ratio
between the similarity of each compound to water and the self similarity.
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Figure 5. Compounds in Basak et al. study

The procedure applied to the Basak et al. [18] set gives a better correlation than in the Franke
case (log P = 1.029 SSSwat/SSSself – 2.266, n = 90, r2 = 0.741, sd = 0.46, F = 251.66, r2LOO = 0.738); 
also here we excluded the 5 compounds containing more than one atom of chlorine or fluorine (158,
178, 191, 208, 223). The data are reported in Table 4 and the result in Figure 6. It is interesting to 
note that the correlation between the experimental log P’s and our SSS gives r2 = 0.68, that is not as
good as we could have preferred. 
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On the other hand, Basak et al. sometimes calculated the same log P’s for different isomeric
structures; this is not the case with our calculations that are sensitive to regioisomer effects. Last, 
the correlation of the log P’s of the 16 compounds that are common to Franke et al. [17] (62–153,
63–218, 69–203, 70–191, 72–179, 74–202, 95–185, 97–227, 99–195, 100–144, 113–156, 114–164,
115–167, 124–158, 139–213, 140–180) gives r2 = 0.65, a demonstration of the difficulty that is still 
present in the calculation of this property.
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Table 4. Literature and calculated data of compounds in the mutagenicity study.
No log P water/self a water/octanol b No log P water/self a water/octanol b

143 3.92 5.644 4.005 191 1.79 3.302 2.442
144 1.74 3.819 3.048 192 1.72 4.357 3.458
145 1.16 4.392 3.388 193 1.64 3.916 2.943
146 1.24 3.779 3.100 194 1.28 4.391 3.390
147 2.25 4.846 3.741 195 1.23 3.838 3.053
148 2.7 5.412 3.952 196 2.68 4.570 3.532
149 3.26 5.441 4.099 197 1.58 4.166 3.211
150 3.72 5.817 4.268 198 1.64 3.878 2.923
151 1.79 4.363 3.373 199 1.99 4.470 3.406
152 1.64 3.895 2.933 200 2.78 3.809 2.857
153 2.28 4.860 3.741 201 1.77 3.917 2.964
154 3.72 5.820 4.287 202 1.36 3.750 2.975
155 2.68 4.491 3.530 203 2.84 5.066 3.895
156 2.41 4.690 3.419 204 1.64 3.878 2.923
157 2.7 5.435 3.952 205 3.18 5.416 3.954
158 3.51 4.011 3.019 206 3.72 5.838 4.268
159 1.68 4.503 3.352 207 1.9 3.914 2.982
160 1.47 4.422 3.278 208 2.29 2.360 2.133
161 4.2 5.829 4.277 209 2.95 4.539 3.448
162 3.14 5.434 3.952 210 2.68 4.555 3.539
163 2.68 4.618 3.564 211 2.26 4.312 3.305
164 2.86 5.084 3.899 212 1.81 2.788 2.503
165 1.52 3.833 3.072 213 1.81 3.727 2.989
166 2.3 4.499 3.443 214 3.65 5.030 3.817
167 1.36 2.805 2.562 215 2.96 4.337 3.486
168 1.58 4.157 3.208 216 3.66 5.458 3.512
169 2.03 3.912 3.329 217 3.06 4.939 3.671
170 3.26 5.423 4.102 218 1.34 4.179 3.213
171 1.83 4.503 3.354 219 2.48 4.471 3.428
172 2.68 4.652 3.570 220 2.68 4.492 3.535
173 1.16 2.975 2.653 221 2.68 4.619 3.561
174 2.18 4.544 3.391 222 2.18 4.517 3.376
175 2.18 4.322 3.312 223 2.5 3.320 2.852
176 1.84 3.701 2.802 224 2.72 3.823 2.888
177 1.12 3.790 2.846 225 1.63 4.372 3.387
178 1.54 2.565 2.362 226 2.3 4.496 3.443
179 1.59 4.293 3.234 227 1.28 3.326 2.495
180 2.34 4.404 3.298 228 3.26 5.439 4.101
181 3.72 5.844 4.269 229 1.58 4.176 3.209
182 2.68 4.483 3.533 230 3.69 5.425 4.100
183 3.72 5.827 4.273 231 2.3 4.481 3.433
184 2.13 4.391 3.309 232 3.26 5.401 4.090
185 1.88 3.946 3.003 233 2.3 4.486 3.443
186 3.26 5.439 4.100 234 4.98 5.885 4.360
187 1.15 3.068 2.682 235 4.31 5.791 4.273
188 3.56 5.445 4.114 236 4.46 5.538 3.516
189 1.58 4.175 3.204 237 1.64 3.916 2.943
190 3.72 5.809 4.265

a water/self is the ratio between the SSS of the compound to water and to itself 
b water/octanol is the ratio between the SSS of the compound to water and to octanol
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Figure 6. Correlation line between calculated and literature log P of Basak et al. data set.

3.4 Discussion 
Considering that the interest towards the modeling of solvent effects is presently very high and 

its complexity is still challenging we propose a new approach. Its main characteristic is the use of a 
single general descriptor to evaluate the similarity between a compound and a solvent. A second 
attribute is the a priori definition of the environment we are modeling. This point is seldom present 
in current literature, where the environment definition is more a result than a hypothesis. Clearly, 
the definition need is a limit, because the possibility of finding a relation by chance is impossible;
but it is also an advantage, because it calls for a better understanding. In addition, it can be 
effectively used to better define the model that is developing. 

On the other hand, the choice of using a single descriptor is definitely a plus, both for the greater
insight that it permits and for its simplicity. It is not our aim to criticize the multivariate analyses;
on the contrary, we would like to emphasize that complex problems usually needs complex 
answers. However, our need of simplification for understanding is powered by the dissection of 
problems into pieces that can be separately studied.

If a complete, powerful system for the evaluation of the similarity between solutes and solvents
was available, we probably could be in the position to effectively challenge the solvation problem.
But, this is not the case, at least at the moment. There are difficulties inherent in the definition of
similarity, as well as there are real obstacles in the definition of solvent effects. What we can expect 
is a preliminary step that can stimulate further work.

Let us now make a list of the disadvantages and of the advantages of the approach. The first 
problem is the necessity of the correct definition and choice of the model. For example, a popular
problem is the evaluation of the water solubility of solid compounds. In this case it is not sufficient 
to consider the compound to water similarity to have a good response, because part (probably the
most important) of the effect relates to the solid stability. On the other hand, the definition of the 
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model is highly recommended in all the cases where it is possible. A second problem is the 
precision of the value quantification. The system always permits the ordering of the objects, i.e. the
most similar solvent will be always in the first position, etc. The absolute numbers are, however, 
less universal and more difficult to establish. For example, it is hard to imagine a similarity measure
that gives a number you can use outside the single comparison. What is possible is to get a series of 
numbers in a series of comparisons to one reference. Then, we must decide if the comparison of two
series of values has a meaning. If we assume that this is possible, then the measure will be 
acceptable. We must be always very careful in our similarity application. 

Connected to the two mentioned problems is the presence of the outliers. Let we concede that 
there can be some outliers, nevertheless if the outliers are a compound class (as the polyhalogenated 
derivatives in our examples) we have a problem. Presently, we don’t know where the problem is; 
the fact is that the electronegativity similarity between oxygen and fluorine or chlorine atoms has 
not an experimental counterpart. Consequently, the calculated values are always overestimated.
Because we aim at the maximum of generality we don’t want to introduce descriptors to care for
this anomaly; on the contrary, we are still searching for the general solution inside the model.

Coming to the benefits, they are those that we expected: the model is general, flexible, and
understandable. General, because we use the same common definition to solve different problems,
only tuning the mathematical manipulation to conform to the current background. Flexible, because 
the model can be potentially applied to any problem that concerns solvent–solute interactions. It is
up to us to choose the correct representation of the problem. Understandable, because this quality is 
present in the philosophy of the approach and represents its main strength. It is always possible to 
dissect the result to the point where the model limits appear clear. 

Finally, let us comment our application results. We tested the approach by modeling two
different problems: PAH dermal penetration; solvent effects on aromatic amines carcinogenicity
and mutagenicity.

PAH dermal penetration is an experimentally measured quantity, and it is quite approximated, as
demonstrated by the sameness of many experimental values. This not withstanding, Gute et al. [16] 
obtained an acceptable correlation (r2 = 0. 695) selecting a single descriptor that describes the 
size/geometry of the compounds and Ivanciuc et al. [20] obtained an even better result (r2 = 0. 711) 
using an electronic descriptor. The use of our method gives a comparable correlation (r2 = 0.669) 
using a model based on the similarity to octanol. It is interesting that also the correlation between
the SSS and the log P is quite good (r2 = 0.882). This result shows that an extremely simple model
(similarity to octanol) is able to capture the importance of water/octanol partition coefficient in
modeling this biological effect. Part of the success is clearly due to the homogeneity of the set; 
nevertheless, the method is as effective as others and is easier to understand. 

The aromatic amine sets were chosen as representative of multi component studies concerning an
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extremely complex biological activity. Here, the solvent effect is only used to represent one of the 
variables affecting this activity: the compound transport. Thus, a direct correlation with
carcinogenicity or mutagenicity is out of question. The only possible comparison is with the
calculated log P. The use of the weighted similarity of each compound with water gives an 
acceptable result, for both data sets. It is clear that the agreement between the two variables (SSS
and log P) is not good enough to allow for their mutual exchange; but the choice of either of them 
could improve the meaning of the entire study. However, the calculation of the log P for the same
compound sometimes depends on the used method, as demonstrated by the compounds that the two
sets of aromatic amines have in common.

4 CONCLUSIONS 

The interaction between solvents and solutes is definitely a fundamental attribute of the complex
interactions that influence the behavior of a multi component system, and the modeling of the 
perturbation it brings to the chemical activity is a highly desired objective. Due to the complexity of
the problem and to the different expertise of the people interested in its study, there have been many
proposals towards an effective approach to its understanding. Nevertheless, there is still need of 
new contributions to broaden our knowledge. In this perspective, we have introduced a slightly
different approach to solute–solvent interaction modeling; it is based on a general use of the concept 
of similarity in solvation that can be applied to different problems without changing the basic 
principles of the system. We thus propose the use of a single descriptor, the solvent – solute 
similarity, inside a group of models built to consider the specific aspects of each problem. In a 
sense, we propose to move the description complexity from the compound to the environment in the 
conviction that this should allow for a better understanding. It is clear that inside this scheme it will 
be possible to change both the molecular descriptor and the model definition; but we are confident
that the general philosophy can provide many benefits to the problem solution. 

Acknowledgment
Partial financial support by the Consiglio Nazionale delle Ricerche, and by the Ministero dell'Universita' e della

Ricerca Scientifica e Tecnologica, is gratefully acknowledged.

5 REFERENCES 

[1] Y. Ran and S. H. Yalkowsky, Prediction of Drug Solubility by the General Solubility Equation (GSE), J. Chem.
Inf. Comput. Sci. 2001, 41, 354–357.

[2] J. W. McFarland, A. Avdeef, C. M. Berger, and O. A. Raevsky, Estimating the Water Solubilities of Crystalline 
Compounds from Their Chemical Structures Alone, J. Chem. Inf. Comput. Sci. 2001, 41, 1355–1359

[3] D. Yaffe, Y. Cohen, G. Espinosa, A. Arenas, and F. Giralt, A Fuzzy ARTMAP Based on Quantitative Structure–
Property Relationships (QSPRs) for Predicting Aqueous Solubility of Organic Compounds. J. Chem. Inf. Comput.
Sci. 2001, 41, 1177–1207.

[4] N. R. McElroy and P. C. Jurs, Prediction of Aqueous Solubility of Heteroatom–Containing Organic Compounds
from Molecular Structure, J. Chem. Inf. Comput. Sci. 2001, 41, 1237–1247.

158
BioChem Press http://www.biochempress.com



G. Sello 
Internet Electronic Journal of Molecular Design 2003, 2, 137–159

[5] I. V. Tetko, V. Y. Tanchuk, and A. E. P. Villa, Prediction of n–Octanol/Water Partition Coefficients from
PHYSPROP Database Using Artificial Neural Networks and E–State Indices, J. Chem. Inf. Comput. Sci. 2001, 41,
1407–1421

[6] P. Bruneau, Search for Predictive Generic Model of Aqueous Solubility Using Bayesian Neural Nets, J. Chem.
Inf. Comput. Sci. 2001, 41, 1605–1616.

[7] R. Liu and S.–S. So, Development of Quantitative Structure–Property Relationship Models for Early ADME
Evaluation in Drug Discovery. 1. Aqueous Solubility, J. Chem. Inf. Comput. Sci. 2001, 41, 1633–1639.

[8] G. Klopman and H. Zhu, Estimation of the Aqueous Solubility of Organic Molecules by the Group Contribution
Approach, J. Chem. Inf. Comput. Sci. 2001, 41, 439–445.

[9] M. Durante and G. Sello, The Prediction of Organic Reaction Products: Determining the Best Reaction
Conditions, J. Chem Inf. Comput. Sci. 2000, 40, 221–235.

[10] L. Pauling, The Nature of the Chemical Bond 3rd ed., Cornell University, Ithaca NY, 1960. 
[11] L. Baumer, G. Sala, and G. Sello, Residual Charges on Atoms in Organic Structures: A New Algorithm for Their

Calculation. Tetrahedron Comp.Met. 1989, 2, 37–46.
[12] L. Baumer, G. Sala, and G. Sello, Residual Charges on Atoms in Organic Structures: A New Method for the

Identification of Conjugated Systems and the Evaluation of Atomic Charge Distribution on Them. Tetrahedron
Comp.Met. 1989, 2, 93–103.

[13] L. Baumer, G. Sala, and G. Sello, Residual Charges on Atoms in Organic Structures: Molecules Containing
Charged and Backdonating Atoms. Tetrahedron Comp. Met. 1989, 2, 105–118.

[14] G. Sello, Empirical Atomic Charges: a 3–D Approach. Teochem. 1995, 340, 15–28.
[15] G. Sello, Similarity Measures: Is It Possible to Compare Dissimilar Structures? J. Chem. Inf. Comput. Sci.1998,

38, 691–701.
[16] B. D. Gute, G. D. Grunwald, and S. C. Basak, Prediction of the Dermal Penetration of Polycyclic Aromatic

Hydrocarbons (PAHs): A Hierarchical QSAR Approach. SAR QSAR Environ. Res. 1999, 10, 1–16.
[17] R. Franke, A. Gruska, A. Giuliani, and R. Benigni, Prediction of Rodent Carcinogenicity of Aromatic Amines: a 

Quantitative Structure–Activity Relationships Model. Carcinogenesis 2001, 22, 1561–1571.
[18] S. C. Basak, D. R. Mills, A. T. Balaban, and B. D. Gute, Prediction of Mutagenicity of Aromatic and

Heteroaromatic Amines from Structure: A Hierarchical QSAR Approach. J. Chem. Inf. Comput. Sci. 2001, 41,
671–678.

[19] A. Leo, D. Weininger, CLOGP Version 3.2 User Reference Manual. Medicinal Chemistry Project. Pomona
College, Claremont, CA, USA. 1984.

[20] T. A. Roy, W. Neil, J. J. Yang, A. J. Krueger, A. M. Arroyo, and C. R. Mackerer, SAR Models for Estimating the
Percutaneous Absorption of Polynuclear Aromatic Hydrocarbons. SAR QSAR Environ. Res. 1998, 9, 171–185.

[21] O. Ivanciuc, T. Ivanciuc, and A. T. Balaban, QSAR Models for the Dermal Penetration of Polycyclic Aromatic
Hydrocarbons, Internet Electron. J.Mol. Des. 2002, 1, 559–571, http://www.biochempress.com.

[22] TSAR. Oxford Molecular, Oxford, UK.
[23] B. N. Ames, Mutagenesis and Carcinogenesis: Endogenous and Exogenous Factors. Environ. Mol. Mutagen.

1989, 14 (Suppl. 16), 66–77.
[24] A. K. Debnath, G. Debnath, A. J. Shusterman, and C. Hansch, A QSAR Investigation of the Role of

Hydrophobicity in Regulating Mutagenicity in the Ames Test: 1. Mutagenicity of Aromatic and Heteroaromatic
Amines in Salmonella typhimurium TA98 and TA100. Environ. Mol. Mutagen. 1992, 19, 37–52.

159
BioChem Press http://www.biochempress.com


