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Abstract 

A relationship between the 3D structure and biological activity was studied for a set of 105 flavonoid derivatives 
using a counterpropagation neural network. The 3D structures were determined in two ways, either by the 
empirical structure generator CORINA or by optimization within the semiempirical AM1 approximation. 
Furthermore, we compared two types of structure representations, the radial distribution function (RDF) method 
and the ‘spectrum–like’ representation. We show how different methods for 3D structure determination and 
different representations influence the quality of QSAR models. For all methods considered we found 
comparable models for the relationship between structure and biological activity. The computation times in 3D 
structure determination are visibly shorter for CORINA as against the AM1 method. 
Keywords. 3D structure representation; CORINA; neural networks; flavonoid derivatives. 

Abbreviations and notations 
AM1, Austin model PEOE, partial equalization of orbital electronegativity 
HF, Hartree–Fock QSAR, quantitative structure–activity relationships 
MPPT2, MPPT3, Moeller–Plesset perturbation theory QSPR, quantitative structure–property relationships 
NMR, nuclear magnetic resonance RDF, radial density function 

1 INTRODUCTION 

Drug–receptor interaction is a process of molecular recognition. A drug molecule interacts with 
the biological target in a specific conformation [1]. It is clear that for understanding this interaction 
the knowledge of the 3D structure is of crucial importance. The most reliable data on 3D structures 
are obtained by X–ray diffraction or by multi–dimensional NMR measurements. Unfortunately, 
these kind of experimental data are rather scarce. Therefore, computational modeling techniques 
play an important role in drug research. 

                                                          
# Dedicated to Professor Haruo Hosoya on the occasion of the 65th birthday. 
* Correspondence author; phone: 00386–1–4760315; fax: 00386–1–4259244; E–mail: marjan.vracko@ki.si. 
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Bearing in mind the 3D drug–receptor picture we can select different strategies in the search for 
optimum drug. If the 3D geometry of the active site of a receptor is known one can try to tailor the 
proper drug molecule. Different methods of this kind are often referred to as the receptor–dependent 
methods [2]. In most cases, the exact structure of the active site is not known, but we know the 
structures of some highly active molecules. The consideration in such a case follows the idea that 
'similar structures show similar activity'. This strategy is often referred to as receptor–independent 
and represents a basis for quantitative structure–property/activity relationship (QSPR/QSAR) 
studies. Mathematically, this method has to search for the relationship between descriptors and a 
property/activity [3]. 

In a standard QSAR model the descriptors are parameters calculated from a topological [4], a 
geometric, or a quantum chemical picture [5] of a molecule, but descriptors carry the information 
on the molecular structure only implicitly. To include the precise 3D structure into QSPR/QSAR 
studies 3D QSAR seems to be a promising method [1]. Here, molecules are embedded into a 3D 
box with a grid of points. A molecule is represented by the values of a molecular field (or a similar 
quantity) in each point [6,7]. Alternatively, a molecular 3D structure can be represented with a 
‘spectrum–like’ representation [8], which is briefly described in section Methods. The next question 
in QSPR/QSAR modeling is the selection of a proper mathematical tool for the statistical treatment 
of data. Beside the multivariate linear regression methods several methods for clustering, 
partitioning, and modeling are available [9]. 

In the present work we treat a set of 105 flavonoid derivatives [10,11] with a counterpropagation 
neural network [12] using radial distribution functions (RDF) and the ‘spectrum–like’ 
representation. A brief description of methods is given in section Methods. 

Many flavonoid derivatives play important roles in different biochemical processes and some of 
them have therapeutic effects (see for example Moon et al. [13]). Here, we consider the inhibitory 
activity of flavonoids against protein–tyrosine kinase p56lck. Several QSAR studies were reported 
on this set of molecules using different descriptors and different methods of modeling. Nikolovska–
Coleska et al. [14] treated a set of 104 derivatives, which are all included in the set treated in this 
study, with a standard linear regression technique using classical and quantum chemical descriptors. 
Novi et al. [15] and Oblak et al. [16] treated the same data with a counterpropagation neural 
network and with CODESSA software, respectively. Vra ko et al. [17] treated the electronic 
structures of 28 derivatives (a subset of the set treated in this study) with different chemometric 
methods, such as linear regression, counterpropagation neural networks and principal component 
analysis. Ami et al. [18] reported the QSAR study on the set of 19 flavonoid derivatives using 
linear regression method. A comprehensive ab initio study of 3D structures of some flavonoids is 
reported by Meyer [19]. 
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2 MATERIALS AND METHODS 

In Table 1 we used the set of 105 flavonoid derivatives considered with their biological 
activities, i.e., the inhibitory activities against protein–tyrosine kinase p56lck [10,11]. The biological 
activity is given as log(1/IC50), where IC50 is the molar concentration of the flavonoids necessary to 
give half–maximum inhibition. The compounds with activity equal or less than 2.70 are regarded as 
non–active.

Table 1. 105 flavonoid derivatives with experimental biological activity (Exp) 
Ac denotes acetyl, Bn denotes benzyl, R denotes tert-butyldimethylsilyl. 
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No Substituent Exp 
1 5-OH; 7-OH; 3'-OH; 4'-OH 4.88 
2 3-OH; 7-OH; 3'-OH; 4'-OH 4.86 
3 5-OH; 7-OH; 4'-OH 4.83 
4 5-OH; 4'-OH 4.80 
5 6-OH; 3'-OH 4.80 
6 5-OH; 7-OH 4.71 
7 5-OH; 7-OH; 3'-OH; 4'-OH 4.46 
8 7-OH; 3'-OH 4.41 
9 6-OH; 3'-OCH3; 4'-OCH3; 5'-OCH3 4.22 

10 3-OH; 5-OH; 7-OH; 3'-OCH3; 4'-OH; 5'-OCH3 4.16 
11 3-OH; 5-OH; 7-OH; 3'-OH; 5'-OH 4.00 
12 6-OH; 4'-OH 3.93 
13 7-OH; 8-OH; 3'-OCH3; 4'-OH; 5'-OCH3 3.92 
14 6-OH; 4'-OR 3.92 
15 6-OH; 3'-OCH3; 4'-OH; 5'-OCH3 3.89 
16 7-OH; 4'-OH 3.78 
17 7-OH; 8-OH; 3'-OH 3.75 
18 3-OH; 5-OH; 7-OH 3.53 
19 5-OH; 7-OCH3; 4'-OH 3.55 
20 5-OH; 3'-OH 3.50 
21 7-OH; 8-OH 3.50 
22 7-OH 3.47 
23 6-OH; 3'-OCH3; 4'-OR; 5'-OCH3 3.43 
24 7-OH; 8-OH; 3'-OCH3; 4'-OCH3; 5'-OCH3 3.40 
25 7-OH; 4'-OR 3.01 
26 7-OH; 3'-OCH3; 4'-OH; 5'-OCH3 2.90 
27 7-OH; 3'-OCH3; 4'-OR; 5'-OCH3 2.82 
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Table 1. (Continued) 
No Substituent Exp 
28 7-OH; 4'-OBn 2.69 
29 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
30 7-OH; 8-OH; 3'-OCH3; 4'-OR; 5'-OCH3 2.70 
31 7-OAc; 8-Ac; 3'-OCH3; 4'-OR; 5'-OCH3 2.70 
32 6-OCH3; 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
33 7-OH; 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
34 7-OAc; 3'-OCH3; 4'-OH; 5'-OCH3 2.70 
35 7-OAc; 3'-OCH3; 4'-OR; 5'-OCH3 2.70 
36 7-OCH3; 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
37 5-OH; 4'-OBn 2.70 
38 6-OH; 4'-NH2 5.92 
39 5-OH; 7-OH; 4'-NH2 5.13 
40 3'-OCH3; 4'-OH; 5'-OCH3 4.57 
41 7-OH; 4'-NH2 3.86 
42 4'-NH2 3.68 
43 3-COOCH3; 4'-OH 3.36 
44 4'-OH 3.30 
45 3-COOCH3; 4'-NH2 3.09 
46 3-COOH; 7-OCH3; 4'-OH 2.99 
47 3-COOH; 3'-OCH3; 4'-OH 2.80 
48 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
49 3-COOCH3; 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
50 3-COOCH3; 3'-OCH3; 5'-OCH3 2.70 
51 3-COOCH3; 3'-OCH3; 4'-OCH3 2.70 
52 3-COOCH3; 4'-OCH3 2.70 
53 3-COOCH3; 4'-Br 2.70 
54 3-COOCH3; 4'-OBn 2.70 
55 3-COOCH3; 7-OCH3; 4'-OBn 2.70 
56 3-COOCH3; 6-OCH3; 4'-OBn 2.70 
57 3-COOCH3; 4'-NO2 2.70 
58 3-COOCH3; 7-OCH3; 4'-NO2 2.70 
59 3-COOCH3; 6-OCH3; 4'-NO2 2.70 
60 3-COOCH3; 5-OBn; 7-OBn; 4'-NO2 2.70 
61 3-COOH; 3'-OCH3; 4'-OCH3; 5'-OCH3 2.70 
62 3-COOH; 3'-OCH3; 5'-OCH3 2.70 
63 3-COOH; 3'-OCH3; 4'-OCH3 2.70 
64 3-COOH; 4'-OCH3 2.70 
65 3-COOH; 4'-Br 2.70 
66 3-COOH; 4'-NO2 2.70 
67 3-COOH; 7-OCH3; 4'-NO2 2.70 
68 3-COOH; 6-OCH3; 4'-NO2 2.70 
69 3-COOCH3; 7-OCH3; 4'-OH 2.70 
70 3-COOCH3; 6-OCH3; 4'-OH 2.70 
71 3-COOCH3; 7-OCH3; 4'-NHAc 2.70 
72 3-COOCH3; 6-OCH3; 4'-NHAc 2.70 
73 3-COOH; 5-OH; 7-OH; 4'-NO2 2.70 
74 4'-NO2 2.70 
75 7-OH; 4'-NO2 2.70 
76 6-OH; 4'-NO2 2.70 
77 5-OH; 7-OH; 4'-NO2 2.70 
78 5-NH2; 6-OH; 7-NH2; 4'-NH2 4.74 
79 5-NH2; 6-OH; 7-NH2; 3'-NH2 4.34 
80 6-OCH3; 8-NH2; 3'-NH2 4.25 
81 6-NH2; 4'-NH2 3.99 
82 6-NH2; 8-NH2; 4'-NH2 3.97 
83 6-OH; 8-NH2; 4'-NH2 3.93 
84 8-NH2; 4'-NH2 3.91 
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Table 1. (Continued) 
No Substituent Exp 
85 6-NH2; 7-OH; 4'-NH2 3.85 
86 6-NH2; 3'-NH2 3.70 
87 5-OH; 6-NH2; 4'-NH2 3.65 
88 5-OH; 8-NH2; 4'-NH2 3.49 
89 7-OH; 8-NH2; 4'-NH2 3.48 
90 6-OCH3; 8-NH2; 4'-NH2 3.42 
91 6-NH2; 7-OH; 3'-NH2 3.30 
92 6-NH2; 7-OH; 8-NH2; 4'-NH2 3.12 
93 6-NO2; 7-OH; 8-NO2; 4'-NO2 2.81 
94 5-CH3; 8-NH2; 4'-NH2 2.79 
95 7-OH; 8-NO2; 4'-NO2 2.73 
96 6-NO2; 4'-NO2 2.70 
97 8-NO2; 4'-NO2 2.70 
98 6-NO2; 7-OH; 4'-NO2 2.70 
99 5-OH; 8-NO2; 4'-NO2 2.70 
100 6-OCH3; 8-NO2; 4'-NO2 2.70 
101 5-OCH3; 8-NO2; 4'-NO2 2.70 
102 6-NO2; 8-NO2; 4'-NO2 2.70 
103 6-OH; 8-NO2; 4'-NO2 2.70 
104 5-OH; 6-NO2; 4'-NO2 2.70 
105 5-NO2; 6-OH; 7-NO2; 4'-NO2 2.70 

3 METHODS 

3.1 Molecular Structures 
The constitution of a molecule is described by a molecular graph or by a connection table. It 

contains information on bonds, but it carries no information on metric properties such as bond 
distances and bond angles. On the other hand, the 3D structure, which is defined by the coordinates 
of all atoms, carries the complete information on all distances between any pair of atoms. The 3D 
molecular structures of 105 flavonoid derivatives (see Table 1) were calculated in two different 
ways. First, we used the program package CORINA [20]. This program determines geometry 
parameters of a molecule by only taking the connection table of a molecule's constitution as input. 
As a second method, we selected an optimization of the geometry by the semi–empirical AM1 
approximation. The program package MOPAC with the standard input parameters for geometry 
optimization was used [21]. 

3.2 Atomic Charges 
Beside the 3D structures, the atomic charges were also included into the calculations to account 

for electronic effects. When CORINA geometries were used, the charges were calculated with the 
PEOE method [22] contained in the program package PETRA [23]. As input, the PEOE method 
only needs the constitution of a molecule as expressed by a connection table. When AM1 
geometries were used, the charges were calculated within the AM1 approximation. 



A QSAR Study on a Set of 105 Flavonoid Derivatives Using Descriptors Derived From 3D Structures 
Internet Electronic Journal of Molecular Design 2002, 1, 527–544 

532 
BioChem Press http://www.biochempress.com

3.3 Radial Distribution Functions (RDF Descriptors) 
The RDF code represents a molecular structure by a radial distribution function. This function 

can be interpreted as a probability distribution to find an atom in a spherical volume of radius r. 
Since the details of the RDF representation are described elsewhere [24,25] only the basic equation 
is given here: 

N

ij

rrB
ji

N

i

ijeAAfrg
2)(

1

)( (1)

where rij represents the distance between atoms i and j, N is the number of atoms in a molecule, Ai

and Aj are properties associated with the atoms i and j, respectively. In our study all the parameters 
A were set to one. Furthermore, B is the smoothing and f is the scaling factor. In our calculations B
was equal 25 Å–2 and f was set to one, which were the optimal values according to study reported by 
Hemmer et al [24]. The RDF representation is uniform and invariant under translation and rotation 
of molecules. In the computational treatment here, a distribution function is given in a discrete 
form, i.e., it is given as a vector with equidistant values of r. The dimension of the vector was set to 
64 and the distribution function g(r) was defined in the interval from 0.0 Å to 12.6 Å. 

3.4 The ‘Spectrum–Like’ Representation 
As a second method for structure description, a ‘spectrum–like’ representation of 3D structures 

was used. Since the details of the representation have recently been published only some basic ideas 
will be given here [8]. A representation of a molecule is constructed in three steps. First, from the 
3D molecular structure one constructs three projections, on the xy, on the xz, and on the yz plane. In 
the second step, each projection (figure) is treated separately. A figure is put into a circle of 
arbitrary radius. A projection beam from the center of a circle produces a pattern of points on the 
circle where each point represents a particular atom. In the third step each point on the circle is 
taken as a center for a Lorentzian curve of the form: 

22)(
)(

ii

i
is (2)

where i and i are the distance between the origin of the coordinate system and the position of the 
i–th atom and its polar angle, respectively, i is a free parameter, which can be associated with any 
atomic property. If we consider only molecular geometries, the i values are set to one, otherwise 
we selected atomic charges as atomic property. It can be shown that the representation is uniform, 
unique and reversible. The spectrum related to the figure is a sum of all atomic Lorentzians and it is 
defined in the interval (0, 2 ). By selecting k equidistant points on this interval, each projection is 
represented by a k–dimensional vector. The complete 3D structure is represented with three spectra. 
In our studies the parameter k was set to 60, i.e., a structure was represented with three vectors 
composed into a vector in 180 dimensional space. 
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3.5 Counterpropagation Neural Network 
The neural network with counterpropagation learning strategy has been described in many 

articles and textbooks [26,27]. It is a suitable tool for clustering, classification and QSAR 
modelling, where the neural network models the functional relationship between input and output 
variables [28,29]. It consists of two layers of neurons (a Kohonen and an output layer), which are 
arranged in a two–dimensional rectangular matrix. The Kohonen layer (input layer) obtains the 
input variables that represent the considered objects. During the learning process the output values 
(in our case biological activities) are given to the output layer, which has the same arrangement of 
neurons as the Kohonen layer. 
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Figure 1. Compound 22. The 3D structure on the top was calculated by 
CORINA, the one in the bottom by AM1 optimization procedure. 

Learning in the Kohonen layer is done in the same way as in a Kohonen network. This means, a 
vector of input variables is presented to all neurons. The program selects that neuron that has 
weights, which are the most close to the input values (winning neuron). The position of the winning 
neuron is transferred from the Kohonen to the output layer, and the weights in the output layer are 
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corrected in such a way that they are becoming similar to the given values (biological activity). 
After the weights are stabilized, the counterpropagation neural network is considered to be trained. 
In a trained network the objects with similar input vectors are located close to each other. It is 
expected that they also have similar output values. 

In the present study the dimension of network was set to 15×15 neurons. The networks were 
trained during 400 learning epochs. 

4 RESULTS 

4.1 3D Structures and Atomic Charges 
For some of the compounds considered the geometries as calculated in both approximations, the 

CORINA model and the one calculated by the AM1 method, are quite different. An example is 
given in Figure 1. We illustrate the 3D structure of compound No. 22 (see Table 1) as calculated by 
CORINA program (Figure 1, top) and as derived by the AM1 method (Figure 1, bottom). As we see 
for this compound CORINA gives a coplanar position for all three rings (A, C, and B) and the 
hydrogen atom of hydroxy–group, which is attached to position 7, is oriented out of the plane. 

5 10 15 20 25 30 35

Atoms

-2

-1

0

1

2

C
ha

rg
e

Figure 2. Atomic charges of compound 22 (  represents PEOE charges,  represents AM1 charges). 
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In the entire set of 105 compounds CORINA produces 71 compounds where the rings A, C, and 
B are coplanar. In contrast the three rings in the 3D structures obtained with the AM1 
approximation are not planar. For example in the compound 22 the ring B is twisted out of the plane 
while the hydroxy–group is situated in the plane defined by rings A and C. In the entire set of 105 
compounds none of the compounds has coplanar rings A, C, and B although in six cases the rings 
are almost planar. Meyer [19] reported that for this kind of compounds the AM1 optimization 
provides reasonable results compared to the results obtained with the high level ab initio methods, 
such as HF, MPPT2, and MPPT3 with extended basis sets. He also reported that the energy barrier 
between coplanar and twisted conformations is very small (~ 0.7 kcal/mol). 

The atomic charges were calculated by the PEOE method and in the AM1 approximation. Figure 
2 shows the charges in both approaches for the compound 22. The atomic charges calculated with 
different methods come out to be quite similar. 

4.2 List of Models Considered 
In this study six models have been analyzed: (A) the 3D geometries were determined with the 

CORINA geometries, and represented with the RDF method; (B) the 3D geometries were 
determined with the AM1 geometries, and represented with the RDF method; (C) the 3D 
geometries were determined with the CORINA, and represented with the 'spectrum–like' method; 
(D) the 3D geometries were determined with the CORINA, and described with the 'spectrum–like' 
representation. In addition, the PEOE charges were included into the representation; (E) the 3D 
geometries were optimized within the AM1 approximation, and described with the 'spectrum–like' 
representation; (F) the 3D geometries were optimized within the AM1 approximation, and 
described with the 'spectrum–like' representation. AM1 charges were included into the 
representation. The models were tested in their recall ability and their prediction ability. 

4.3 The Recall Ability Test 
In the first step we analyzed the recognition ability of the models looking for molecules that are 

recognized as identical by the counterpropagation neural network. Such molecules are situated in 
the same neuron in the neural networks. The inability to distinguish molecules is not a shortcoming 
of neural networks. It simply means that the representations of some molecules are too similar to be 
discriminated by the neural networks. A conflict situation occurs when two (or more) molecules 
with very different biological activities are located in the same neuron. More exactly, we define a 
conflict when a non–active compound with a value of activity 2.70 or less and an active compound 
with activity value larger than 3.00 are located in the same neuron. In such a case, one molecule is 
an outlier, but the question is which one. To answer this we analyze the neighbors in the network. If 
the closest neighbors are non–active, the active compound is an outlier and vice versa [29]. 
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Figure 3. Molecules 89 (top), 91 (in-between) and 103 (bottom), which are 
recognized as equivalent by neural network. Results are from model C. 
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Figure 4. Molecules 95 (top), 99 (in-between) and 103 (bottom), which are 
recognized as equivalent by neural network. Results are from model E. 
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Table 2. The groups of molecules which are recognized as equivalent. * denotes 
outliers (experimental activities are in parentheses). Models A-F are described in 
text. In model B the compound 38 is an outlier as described in text. 
 Model A Model B Model C Model D Model E Model F 
1 1 (4.88) 

11 (4.00) 
1 (4.88) 
2 (4.86) 

1 (4.88) 
11 (4.00) 
18 (3.53) 

1 (4.88) 
11(4.00) 

1 (4.88) 
7 (4.46) 

1 (4.88) 
7 (4.46) 

20 (3.50) 
21 (3.50) 
22 (3.47) 

17 (3.75) 
18(3.53) 

2 (4.86) 
17 (3.75) 
21 (3.50) 

17 (3.75) 
21 (3.50) 

      20 (3.50) 
22 (3.47) 

2 23 (3.43)* 
27 (2.82) 
30 (2.70) 

23 (3.43)* 
27 (2.82) 
30 (2.70) 

23 (3.43) 
27 (2.82) 

23 (3.43) 
27 (2.82) 

23 (3.43) 
27 (2.82)* 
30 (2.70)* 

27 (2.82) 
30 (2.70) 

3 88 (3.49) 
89 (3.48) 

84 (3.91) 
88 (3.49) 

83 (3.93) 
88 (3.49) 

82 (3.97) 
98 (2.70)* 

81 (3.99) 
82 (3.97) 

83 (3.93) 
88 (3.49) 

      84 (3.91) 
89 (3.48) 

4 55 (2.70) 
56 (2.70) 

54 (2.70) 
56 (2.70) 

55 (2.70) 
56 (2.70) 

5 98 (2.70) 
104 (2.70) 

96 (2.70) 
104 (2.70) 

    

6   80 (4.25) 
90 (3.42) 

80 (4.25) 
90 (3.42) 

68 (2.70)* 
80 (4.25) 
90 (3.42) 

68 (2.70)* 
90 (3.42) 

    67 (2.70) 
68 (2.70) 

7 78 (4.74) 
79 (4.34) 

78 (4.47) 
79 (4.34) 
105 (2.70)* 

78 (4.74) 
79 (4.34) 

78 (4.74) 
79 (4.34) 

8   19 (3.55) 
100 (2.70)* 

91 (3.30) 
100 (2.70)* 

86 (3.70) 
91 (3.30) 

86 (3.70) 
91 (3.30) 

9 14 (3.92) 
25 (3.01) 

14 (3.92) 
25 (3.01) 

14 (3.92) 
25 (3.01) 

14 (3.92) 
25 (3.01) 

10 45 (3.09) 
57 (2.70) 

43 (3.36) 
45 (3.09) 

45 (3.09) 
57 (2.70) 

43 (3.36)* 
53 (2.70) 

45 (3.09)* 
52 (2.70) 
57 (2.70) 

52 (2.70) 
57 (2.70) 

11   38 (5.92) 
74 (2.70)* 
76 (2.70)* 

12 (3.93)* 
38 (5.92) 
76 (2.70)* 

38 (5.92) 
76 (2.70)* 

12 9 (4.22)* 
48 (2.70) 

9 (4.22)* 
48 (2.70) 

9 (4.22) 
24 (3.40) 

9 (4.22) 
48 (2.70)* 

9 (4.22)* 
48 (2.70) 

13 32 (2.70) 
36 (2.70) 

32 (2.70) 
36 (2.70) 

14 6 (4.71) 
8 (4.41) 

6 (4.71) 
8 (4.41) 
20 (3.50)* 

6 (4.71) 
16 (3.78) 

6 (4.71) 
18 (3.53) 

15 47 (2.80) 
65 (2.70) 

47 (2.80) 
65 (2.70) 

47 (2.80) 
65 (2.70) 

47 (2.80) 
65 (2.70) 

47 (2.80) 
65 (2.70) 

16 43 (3.36)* 
53 (2.70) 

43 (3.36)* 
53 (2.70) 

43 (3.36)* 
53 (2.70) 

43 (3.36)* 
53 (2.70) 

17 28 (2.69) 
37 (2.70) 

   28 (2.69) 
37 (2.70) 

18 15 (3.89) 
40 (4.57) 

    26 (2.90)* 
40 (4.57) 

13 (3.92) 
26 (2.90)* 
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Table 2. (Continued) 
 Model A Model B Model C Model D Model E Model F 
19 4 (4.80) 

5 (4.80) 
5 (4.80) 
44 (3.30)* 

3 (4.83) 
4 (4.80) 

3 (4.83) 
4 (4.80) 

20    92 (3.12) 
93 (2.81) 

93 (2.81) 
102 (2.70) 

93 (2.81) 
102 (2.70) 

21   58 (2.70) 
59 (2.70) 

58 (2.70) 
69 (2.70) 

58 (2.70) 
69 (2.70) 

    59 (2.70) 
70 (2.70) 

22   89 (3.48) 
91 (3.30) 
103 (2.70)* 

95 (2.73) 
99 (2.70) 
103 (2.70) 

95 (2.73) 
103 (2.70) 

23 85 (3.85) 
87 (3.65) 

85 (3.85) 
87 (3.65) 

87 (3.65) 
98 (2.70)* 

87 (3.65) 
104 (2.70)* 

24 12 (3.93) 
44 (3.30) 

12 (3.93) 
42 (3.68) 

42 (3.68) 
74 (2.70)* 

42 (3.68)* 
74 (2.70) 
75 (2.70) 

25 38 (5.92)* 
41 (3.86) 

39 (5.13) 
41 (3.86)* 

39 (5.13) 
75 (2.70)* 

39 (5.13) 
41 (3.86)* 

26  97 (2.70) 
99 (2.70) 

    

27 49 (2.70) 
61 (2.70) 

    49 (2.70) 
61 (2.70) 

28 24 (3.40)* 
33 (2.70) 

     

29    31 (2.70) 
35 (2.70) 

30     94 (2.79) 
101 (2.70) 

The groups of molecules that are recognized as identical are given in Table 2. With six models 
112 groups were found. Table 2 is organized in such a way that we can follow the groups of 
identical molecules through different models. Groups with at least one common molecule are placed 
into the same row. For models A, B, C, D, E, and F we found 22, 17, 16, 21, 18, and 18 such 
groups, respectively. Each group can be analyzed comparing the biological activities of molecules 
in the group. If the differences in activity within the group are small we conclude that the 
correlation between structures and activities is good for particular compounds. In 56 (50%) groups 
the difference in activity lies between 0.0 and 0.5, in 19 (17%) groups the difference lie in the 
interval 0.5 and 1.0, and in two groups (1%) the difference is between 1.0 and 1.5. 35 (32%) groups 
show the conflict situation described above. In the group 2 (Table 2) in models A, B the compound 
23 is an outlier. The closest neighbors in the network are compounds: 31, 35, 36, and 37, all with 
the activity value 2.70. In the model E the closest neighbors are compounds 14 and 25 with 
activities 3.92 and 3.01, respectively. Contrary to the model A the compounds 27 and 30 can be 
considered as outliers. Looking to the next neighbors in the map of model E the compounds 14, 23,
and 25 build a cluster surrounded by non–active compounds (31, 35, 37, 58, 71, 72).
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4.4 Training – Test Set Division 
To analyze the prediction ability of models we divided the set into outliers, training and test set. 

The division of a set into training and test set was performed in three steps. In the first step, we 
selected the outliers as described above. In the second step, we have chosen a Kohonen network to 
divide the objects into the training and the test set. Here, the entire Kohonen map is divided into 
sub–parcels selecting the objects for training set from each sub–parcel equivocally. It is expected 
that such a training set possesses the information content of the entire set (for details see Simon et
al. [30]). This division of compounds in training and test set was used for training and testing the 
model. In the next step, the initial training set was improved by adding a few compounds which 
were formerly placed in the test set. In this way, the information content of the training set was 
improved. 

Table 3. Number of compounds in training/test sets and outliers for 
models A-F. Models A-F are described in text. 
Model Training set Test set Labels (see Table 1) of outliers 
A 66 33 9, 23, 24, 26, 38, 43 
B 63 36 9, 20, 23, 38, 41, 44 
C 62 35 43, 74, 75, 76, 98, 100, 103, 105 
D 74 24 12, 41, 43, 74, 76, 98, 100 
E 62 34 27, 30, 42, 43, 45, 48, 68, 76, 104 
F 76 25 9, 26, 43, 68 

The number of compounds in the training/test sets and the outliers for all models are given in 
Table 3. Following the method described above in the model B five compounds were viewed as 
outliers. In addition, the compound number 38 with the activity 5.92 was also set as an outlier. In 
this case it was not a conflict in the sense described above, but the compound 38 was situated in a 
neighborhood in the neural network that was dominated with non–active compounds. The 
remaining 99 compounds were divided then into the training set with 63 compounds and the test set 
with 36 compounds. Only in the models F the compound 38 is located in neighborhoods with highly 
active compounds. 

Table 4. Statistical parameters (R, correlation coefficient; b0 and b1, parameters of 
the linear correlation between experimental and predicted values; F, Fisher criterion; 
RSS, residual sum of squares; MS, mean squares). Models A-F are described in text. 

r b0 b1 F RSS MS 
A Training set 0.997 0.058 0.982 10087.814 0.256 0.004 
 Test set 0.854 0.180 1.013 83.740 2.411 0.078 
B Training set 0.985 0.154 0.954 2028.155 1.285 0.021 
 Test set 0.883 0.383 0.954 120.739 3.923 0.115 
C Training set 0.941 0.479 0.856 466.733 6.081 0.085 
 Test set 0.775 1.007 0.693 30.080 4.471 0.203 
D Training set 0.987 0.111 0.967 2856.868 1.119 0.016 
 Test set 0.887 0.277 0.952 81.229 2.385 0.108 
E Training set 0.919 0.541 0.838 394.884 7.464 0.102 
 Test set 0.904 0.837 1.062 102.864 1.652 0.072 
F Training set 0.965 0.240 0.928 1002.375 3.247 0.044 
 Test set 0.907 –0.292 1.183 108.346 1.181 0.056 
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Figure 5. Predicted versus experimental activity for training set (top) and test set (bottom) for model A. 
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Table 4 shows the statistical parameters for the seven models considered. As the statistical 
parameters we report the correlation coefficient r, Fisher criterion F, residual sum of squares RSS, 
mean squares MS, and the parameters b0 and b1 of the linear correlation between predicted and 
experimental biological activities [31]. Here, b0 and b1 are the intercept and the slope of the line, 
respectively. An example of regression lines for training and test set is shown in Figure 5. 

5 DISCUSSION AND CONCLUSIONS 

The question addressed in this work is how different methods of determination of 3D molecular 
structures influence the models. The 3D structures were determinated in two alternative ways, with 
the program CORINA and also by optimization with the AM1 method. Superior models could 
suggest that corresponding structure determination method and corresponding geometries are 
'correct'. This means that the particular geometries probably describe the drug–receptor situation 
better. From analyzing the 3D geometry parameters we could thus gather information on the 
unknown receptor geometry. According to the remarks in the Introduction this leads into receptor 
dependent QSAR. The necessary condition for useful QSAR applications is that the representation 
of 3D structures is sensitive enough to differences in geometry parameters. This condition is 
satisfied in both used representations, RDF and ‘spectrum–like’ representation. 

The models were tested on the recognition (recall) ability and on the prediction ability. The 
recall ability can be evaluated considering the groups of molecules that are recognized as identical 
(Table 2), and considering the statistical parameters for the training sets (Table 4). Generally, none 
of the models considered is superior to the others. The correlation coefficients for training sets for 
the CORINA models lie between 0.941 < r < 0.997, and for the AM1 models between 0.919 < r < 
0.985. The prediction ability can be evaluated considering the statistical parameters of test sets. The 
correlation coefficients for CORINA models lie between 0.775 < r < 0.887, and for AM1 models 
between 0.883 < r < 0.907. 

It was shown that the program CORINA generates geometrical parameters, which give models 
of comparable quality to the models built with geometry parameters after the quantum chemical 
optimization procedure. We should emphasize that the program CORINA is significant faster in 
generating 3D structures. For a molecule considered in this study an average CPU time on SUN 
IPX working station was 10 minutes using the AM1 procedure in comparison to a tenth of a second 
needed for the CORINA generator. When considering a large scale data sets with over 100,000 
compounds the computation time may become an important factor. 

Nikolovska–Coleska et al. [14] studied the set of 104 compounds, which are all included in the 
set reported here. Authors used limited number of classical and quantum chemical descriptors and 
multiple linear regression for modeling. For the entire set the best correlation coefficient was r = 
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0.750. For different subsets the reported coefficients were between 0.715 < r < 0.820. Oblak et al.
[16] reported correlation coefficient for training set of 70 compounds to be r = 0.8988. Novi et al.
[15] considered the same set of 105 compounds using the same modelling technique, but different 
descriptors (classical and quantum chemical descriptors). The authors found the correlation 
coefficients for the training set to be larger than 0.9700, and for the test set between 0.8200 < r < 
0.9100. In our approach the correlation coefficients for test sets are comparable to those obtained by 
linear methods and the correlation coefficients for training sets are even higher. 
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