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Abstract 

Motivation. Molecular three–center electronic integrals over Slater–type orbitals are required for ab initio and 
density functional theory (DFT) molecular structure calculations. They occur in many millions of terms, even for 
small molecules and require rapid and accurate evaluation. 
Method. In this work, we present a very efficient approach based on properties of Bessel and sine functions and 
on nonlinear transformations for accurate numerical evaluation of integrals under consideration. 
Results. Numerical results are obtained for three–center nuclear and three–center two–electron Coulomb and 
hybrid integrals over Slater–type orbitals for HCN, C2H2, Zn3, BH3, and CH4 molecules. We also performed the 
same calculations using existing codes to show the accuracy of the new algorithm. 
Conclusions. The results obtained in this work illustrate the efficiency of the algorithm based on the 

DS approach, which will lead to a definitive suite of ab initio Slater software. 
Keywords. Molecular electronic integrals; Slater type orbitals; B functions; nonlinear transformations; 
convergence accelerators; numerical integration. 

Abbreviations and notations 
STO, Slater–type orbital  ETO, exponential–type orbital 
GTO, Gaussian–type orbital  

1 INTRODUCTION 

Three–center nuclear attraction, hybrid and three–center two–electron Coulomb integrals 
contribute to the total energy of the molecule which is required to a precision sufficient for small 
fractional changes to be evaluated reliably. In practice, the precision threshold for the total energy is 
of order 10–3 atomic units and therefore individual integrals must be accurate to 10–8 to 10–10 au. 

STOs [1,2] are chosen for the expansion of atomic orbitals. These functions have a dominating 
position among ETOs, due to the fact that their analytical expression is very simple. STOs are better 
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suited than GTOs to represent electron wave functions near the nucleus and at long range, provided 
that multicenter integrals using such functions could be computed efficiently. 

STOs can be expressed as finite linear combinations of B functions [3,4,5]. The Fourier 
transforms of these B functions are exceptionally simple [6,7] and well adapted to the Fourier 
transform method [8,9], which led to analytical expressions for multicenter electronic integrals over 
B functions. These analytical expressions involve two–dimensional integral representations, which 
present severe numerical and computation difficulties. The integrand of the inner semi–infinite 
integral is a very oscillating function due to the presence of spherical Bessel function. 

The molecular integrals under consideration are to be evaluated via a numerical quadrature of 
integral representations in terms of nonphysical integration variables. These integral representations 
were derived with the help of the Fourier transformation method. 

The semi–infinite integrals can be transformed into infinite series of integrals of alternating sign. 
These series are slowly convergent and this is why their use is prohibitively long for sufficient 
accuracy. The epsilon algorithm of Wynn or Levin's u transform, accelerate the convergence of 
infinite series but in the case of the semi–infinite integrals involved in the analytical expressions of 
molecular integrals, the calculation times for a sufficient accuracy still long. Therefore new 
numerical integration techniques are required. 

Recently, we developed an efficient and rapid algorithm based on the DS approach [10,11]. It is 
shown that the DS approach is much more efficient and rapid compared with the alternative cited 
above. The application of the nonlinear D transformation of Sidi [12,13] is greatly simplified with 
the introduction of the DS approach. Recurrence relations were developed to control the degree of 
the accuracy and for a better stability of the algorithm [14,15]. 

In the present work, we performed calculation for HCN, C2H2, Zn3, BH3, and CH4 molecules, to 
show that the progress represented by the DS approach is another useful step in developing 
software for evaluating molecular integrals over STOs. 

2 Definitions and Properties

Slater–type orbital (STOs) are given by [1,2]: 
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where rr
m
lY ,  stands for the spherical harmonic. 

The B function is defined as follows [4,5]: 
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1  stands for the reduced Bessel function. 

The three–center nuclear attraction integral over STOs is defined by : 

(3)

The three–center two–electron Coulomb integral over STOs is defined by : 
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The hybrid integral over STOs is defined by : 
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3 Analytical and Numerical Evaluations of Molecular Integrals

STOs can be expressed as finite linear combination in terms of B functions. From this, it follows 
that the molecular integrals over STOs can be expressed as finite linear combinations of integrals 
over B functions. 

The Fourier transformation method allowed the development of analytic expressions for 
molecular multicenter integrals over B functions [8,9]. The obtained analytic expressions turned out 
to be extremely difficult to evaluate because of the presence of two–dimensional integral 
representations. These integral representations are the principal source of severe numerical and 
computation difficulties in the evaluation of molecular integrals. The inner semi–infinite integrals, 
which are highly oscillatory because of the presence of spherical Bessel functions, are of the form : 
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where h(x) is a non–oscillating function. 

Recently, we developed a very efficient, rapid and simple algorithm for the numerical evaluation 
of the above semi–infinite integrals [14,15]. This algorithm is based on the DS approach [10,11], 
which consists on transforming the semi–infinite integrals involving spherical Bessel functions into 
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semi–infinite integrals involving the simple sine function as follows: 

0

11 )sin(
,

)),((ˆ)(1 dxvx
xs

xsRkxhxdx
d

v nx (7)

The strong oscillations of the integrands are thus reduced. Once the semi–infinite integral 
involving the spherical Bessel function is transformed into a semi–infinite integral involving the 
sine function, we apply the nonlinear D transformation of Sidi [12,13] using Cramer's rule as 
suggested in [12]. 

The approximation of the semi–infinite integral (7) is given by: 
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where the functions F(x) and G(x) are given by : 
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For the computation of Eq. (8), we developed recurrence relations for both the numerator and the 
denominator [14]. This result led to a better control of the degree of accuracy and to a better 
stability of the algorithm [14,15]. 

Table 1. Exponents of STOs for a series of orbitals 
Orbitals Zn S B C N F H 

1s 28.979194 15.396775 4.649767 5.636105 6.621925 8.593356 1.00000
2s 9.212368 4.468108 1.076139 1.346562 1.612481 2.154463 
2p 13.015418 5.987867 1.226030 1.581274 1.929475 2.561510  
3s 4.615722 1.723750    
3p 4.754359 1.684294      
3d 4.660219 1.584294      
4s 0.966290       
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Table 2. The Geometry used for the molecular calculations 
Molecules Geometry Cartesian Coordinates 

HCN
Linear

H–C = a = 2.000 a.u. 
C–N = b = 2.187 a.u. 

H(0.0, 0.0, –a) 
C(0.0, 0.0, 0.0) 
N(0.0, 0.0, b) 

C2H2

Linear
H–C = a = 2.002 a.u. 
C–C = b = 2.281 a.u. 

H1(0.0, 0.0, –a–b/2) 
C1(0.0, 0.0, –b/2) 
C2(0.0, 0.0, b/2) 

H2(0.0, 0.0, a+b/2) 

Zn3

Equilateral Triangle, Planar 
Zn–Zn = a = 5.03593 a.u. 

 b = 2.90749 a.u. 

Zn1(b, 0.0, 0.0) 
Zn2(–b/2, a/2, 0.0) 

Zn3(–b/2, –a/2, 0.0) 

BH3

Equilateral Triangle, Planar 
B–H = a = 2.250 a.u. 

 b = 3.897 a.u. 

B ( 0.0, 0.0, 0.0) 
H1( 0.0, 0.0, a) 

H2( b/2, 0.0, –a/2) 
H3(–b/2, 0.0, –a/2) 

CH4

Regular Tetrahedron 
C–H = a = 2.0665 a.u. 

 b = 1.1931 a.u. 

C ( 0.0, 0.0, 0.0) 
H1( b, b, b) 
H2(b,–b, –b) 
H3(–b,b, –b) 
H4(–b,–b, b) 

4 RESULTS AND DISCUSSION 

For the computation of the function G(x), we used useful properties of the reduced Bessel 
function which are given by : 
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For the computation of the function F(x), we transform the finite integral as follows : 
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For the numerical evaluation of each term of the finite sum in the right hand side of equation 
(13), we used the following procedure : 

When 1v , we used Gauss–Legendre quadrature of order 20. 
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Table 3. Values obtained for the three–center nuclear attraction integrals over STOs 
Molecules Integrals Values 

HCN <1sN | 1/RNH | 1sC> 0.381875917(–4) 
 <2sN | 1/RNH | 1sC> 0.343932422(–1) 
 <2pz

N | 1/RNH | 1sC> –0.460301915(–1) 
 <2pz

N | 1/RNH | 2pz
C> –0.846763083(–1) 

 <2p+1
N | 1/RNH | 2p+1

C> 0.908692109(–1) 
   

C2H2 <1sC1 | 1/RC1H1 | 1sC2> 0.588771147(–4) 
 <1sC1 | 1/RC1H1 | 2sC2> 0.360164917(–1) 
 <2sC1 | 1/RC1H1 | 2sC2> 0.197610020(0 ) 
 <2pz

C1 | 1/RC1H1 | 2sC2> 0.883417584(–1) 
 <2pz

C1 | 1/RC1H1 | 2pz
C2> –0.663963358(–1) 

 <2p+1
C1 | 1/RC1H1 | 2p+1

C2> 0.104661604(0 ) 
   

Zn3 <3sZn1 | 1/RZn1Zn3 | 3sZn2> 0.256568979(–5) 
 <3pz

Zn1 | 1/RZn1Zn3 | 3pz
Zn2> 0.208995809(–6) 

 <3dz
Zn1 | 1/RZn1Zn3 | 3dz

Zn2> 0.182968766(–5) 
   

BH3 <1sB | 1/RBH2 | 1sH1> 0.360887086(–1) 
 <2sB | 1/RBH2 | 1sH1> 0.188340741(0 ) 
 <2pz

B | 1/RBH2 | 1sH1> 0.135277743(0 ) 
   

CH4 <1sC | 1/RCH2 | 1sH1> 0.358308926(–1) 
 <2sC | 1/RCH2 |1sH1> 0.226630147(0 ) 
 <2pz

C | 1/RCH2 |1sH1> 0.583812120(–1) 

When 110
15 v , we divided the finite interval 1, ii xx  into M subintervals,

where NM v ,min 2 . The finite integral, which occur in the right hand side of equation (13), can 

be re–written as : 
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For the evaluation of each finite integral involving in the above finite sum, we used Gauss–
Legendre quadrature of order 20. 

The value of M  was determined after a series of numerical tests on different values of v . In the 
case of three–center nuclear attraction integrals N = 100, and in the case of hybrid and three–center 
two–electron Coulomb integrals N = 200. 

Table 1 contains values of screening parameters that occur in the analytic expression of STOs. 
Table 2 contains the geometry used for the calculations that we performed in the present work. 
Table 3 contains values obtained for three–center nuclear attraction integrals over STOs. Table 4 
contains values obtained for hybrid integrals over STOs. Table 5 contains values obtained for two–
electron three–center Coulomb integrals over STOs. In Tables 4 and 5, ValuesSTOnG are obtained 
using ADGGSTNGINT code developed by Rico et al. [17]. 
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Table 4. Values obtained for the hybrid integrals over STOs 
Molecules Integrales Values Values STOnG 

HCN <1sN 1sN | 1sN 1sc> 0.189680244(–3) 0.189611087(–3) 
 <2sN 2sN | 1sN 1sc> 0.887205039(–4) 0.887224163(–4) 
 <2pz

N 2pz
N | 1sN 1sc> 0.111238306(–3) 0.110883723(–3) 

 <2p+1
N 2p+1

N | 1sN 1sc> 0.953438610(–4) 0.955261424(–4) 
 <2pz

N 2pz
N | 1sN 2pz

c> 0.924888121(–1) 0.924884562(–1) 
 <2p+1

N 2p+1
N | 1sN 2pz

c> 0.918988732(–1) 0.918985099(–1) 
    

C2H2 <1sH1 1sH1 | 1sH1 1sC1> 0.394551433(–1) 0.394551427(–1) 
 <1sH1 1sH1 | 1sH1 2sC1> 0.336441046( 0) 0.336441060( 0) 
 <1sH1 1sH1 | 1sH1 2pz

C1> –0.331044695( 0) –0.331044702( 0) 
 <1sC1 1sC1 | 1sC1 1sC2> 0.191531264(–3) 0.191349811(–3) 
 <1sC1 1sC1 | 1sC1 2pz

C2> –0.263608734( 0) –0.263607524( 0) 
 <2pz

C1 1sC1 | 1sC1 2pz
C2> –0.248837120(–2) –0.248839248(–2) 

 <2pz
C1 2pz

C1 | 1sC1 2pz
C2> –0.869945452(–1) –0.869943801(–1) 

 <2pz
C1 2pz

C1 | 2pz
C1 2pz

C2> –0.199708012( 0) –0.199708010( 0) 
    

Zn3 <4sZn1 4sZn1 | 4sZn1 4sZn2> 0.118817489( 0) 0.118817489( 0) 
 <4sZn1 4sZn1 | 4sZn1 4sZn2> –0.327900521(–3) –0.327844315(–3) 
 <3pz

Zn1 3dz
Zn1 | 3pz

Zn1 3dz
Zn2> –0.113150435(–6) –0.105624731(–6) 

    

BH3 <1sB 1sB | 1sB 1sH1> 0.159929779( 0) 0.159928754( 0) 
 <2sB 2sB | 2sB 1sH1> 0.233221831( 0) 0.233221808( 0) 
 <2pz

B 2pz
B | 2pz

B 1sH1> 0.240407770( 0) 0.240407770( 0) 
    

CH4 <1sC 1sH1 | 1sH1 1sH1> 0.361522242(–1) 0.361522237(–1) 
 <2sC 1sH1 | 1sH1 1sH1> 0.325746729( 0) 0.325746742( 0) 
 <2pz

C 1sH1 | 1sH1 1sH1> 0.186412471( 0) 0.186412475( 0) 

Table 5. Values obtained for the two–electron three–center Coulomb integrals over STOs 
Molecules Integrals Values Values STOnG 
HCN <1sN 1sN | 1sC 1sH> 0.350683920(–1) 0.350683917(–1) 
 <2sN 2sN | 1sC 1sH> 0.340387248(–1) 0.340387246(–1) 
 <2pz

N 2pz
N | 1sC 1sH> 0.391235521(–1) 0.391235519(–1) 

 <2p+1
N 2p+1

N | 1sC 1sH> 0.323982101(–1) 0.323982100(–1) 
 <2pz

N 2pz
N | 2pz

C 1sH> –0.108226943( 0) –0.108226943( 0) 
 <2pz

N 2p+1
N | 2p+1

C 1sH> –0.590789136(–2) –0.590789136(–2) 
 <2p+1

N 2p+1
N | 2pz

C 1sH> –0.100877778( 0) –0.100877777( 0) 
    

C2H2 <1sH1 1sH1 | 1sC1 1sC2> 0.580191754(–4) 0.580191863(–4) 
 <1sH1 1sH1 | 1sC1 2sC2> 0.340731246(–1) 0.340731242(–1) 
 <1sH1 1sH1 | 2sC1 2sC2> 0.189880723( 0) 0.189880723( 0) 
 <1sH1 1sH1 | 2pz

C1 2sC2> 0.965493985(–1) 0.965493984(–1) 
 <1sH1 1sH1 | 2pz

C1 2pz
C2> –0.747697058(–1) –0.747697057(–1) 

 <1sH1 1sH1 | 2p+1
C1 2p+1

C2> 0.103010386( 0) 0.103010385( 0) 
    

Zn3 <3sZn1 3sZn1 | 3sZn2 3sZn3> 0.256043336(–5) 0.254437595(–5) 
 <3pz

Zn1 3pz
Zn1 | 3pz

Zn2 3pz
Zn3> 0.207524636(–6) 0.206357464(–6) 

 <3dz
Zn1 3dz

Zn1 | 3dz
Zn2 3dz

Zn3> 0.184579771(–5) 0.183796183(–5) 
    

BH3 <1sB 1sB | 1sH1 1sH2> 0.107790849( 0) 0.107790849( 0) 
 <2sB 2sB | 1sH1 1sH2> 0.784265327(–1) 0.784265327(–1) 
 <2pz

B 2pz
B | 1sH1 1sH2> 0.839837472(–1) 0.839837472(–1) 

    

CH4 <1sC 1sC | 1sH1 1sH2> 0.153132818( 0) 0.153132818( 0) 
 <2sC 2sC | 1sH1 1sH2> 0.121381978( 0) 0.121381978( 0) 
 <2pz

C 2pz
C |1sH1 1sH2> 0.126914672( 0) 0.126914672( 0) 
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The numerical results listed in Tables 3–5 are obtained with HCN, C2H2, Zn3, BH3, and CH4

molecules. The molecular integrals over STOs are expressed as finite linear combinations of 
integrals over the so–called B functions. These integrals over B functions are transformed into 
analytical expressions in terms of the semi–infinite integrals given by Eq. (6) [8,9]. The 

DS approach was used for the numerical evaluation of these semi–infinite integrals. Note that this 
approach was demonstrated to be more accurate and more rapid compared with alternatives using 
the D transformation [13], Levin’s u transform [18] or the epsilon algorithm of Wynn [19]. 

For the computation of ),2( j
nDS , we used the recurrence relations developed in [14], which 

allowed a better control of the degree of accuracy, that we set to 10 correct decimals in the present 
work. For the numerical evaluation of Gaunt coefficients which occur in the analytic expressions of 
the molecular integrals, we used the subroutine GAUNT.F developed by Weniger [16]. The 
spherical harmonics rr

m
lY ,  are computed using the recurrence formulae presented in [16]. 

The numerical results obtained in the present work are in complete agreement with those 
obtained using ADGGSTNGINT code developed by Rico et al. [17] (more than 7 similar decimals 
in Table 4 and more than 9 similar decimals in Table 5). Numerical results obtained for three–center 
nuclear attraction integrals over B functions [14] are in complete agreement with those obtained by 
Grotendorst et al. [9]. A comparison with values obtained using the Alchemy package [20] for 
three–center nuclear attraction integrals over STOs showed that in most cases we obtained 10 
similar decimals [14]. 

The abbreviations 2pz, 2p+1, 3pz and 3dz refer to orbitals defined with the quantum numbers: 
n = 2, l = 1, m = 0, n = 2, l = 1, m = 1, n = 3, l = 1, m = 0 and n = 3, l = 2, m = 0 respectively. 
Numbers in parentheses represent powers of 10. All the calculations were performed on a PC–
Workstation with an Intel Xeon Processor with 2.4GHz. 

4 CONCLUSIONS 

Three–center nuclear attraction, hybrid and three–center two–electron Coulomb integrals over 
STOs are expressed as finite linear combination of integrals over the so–called B functions. With 
the help of the Fourier transform method, one can express the molecular integrals under 
consideration in terms of semi–infinite integrals. These semi–infinite integrals turned out to be 
highly oscillatory and difficult to evaluate to a high pre–determined accuracy. 

It was shown that these semi–infinite integrals are suitable to apply the DS approach. The 
spherical Bessel function is replaced by the simple sine function, and this helped the extrapolation 
process.
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A very simple algorithm is now developed and it is now shown to be very efficient. Great 
simplifications are obtained with the help of the recurrence relations satisfied by the terms that 
occur in the expression of the approximations ),2( j

nDS . The numerical and computational study 
showed that the use of DS , combined with quadrature rules can also give accurate results in certain 
regions corresponding to the case where the value of v is very small. 

Numerical results are obtained for HCN, C2H2, Zn3, BH3, and CH4 molecules. All are precise. 
These results confirm that this DS approach, represents another most significant advance on the 
road to routine precise and rapid evaluation of these molecular electronic integrals. 
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