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Abstract 

Motivation. One of the most intensively explored areas of contemporary computational chemistry is searching 
for a comprehensive numerical description of chemical structures and for methods that enable to develop 
efficient and credible QSPR (quantitative structure–property relationships) models. Among these methods 
artificial neural networks (ANN) turned out to be a very promising methodology in obtaining models converting 
structural descriptors into different properties of chemicals. 
Method. Five different models relating structural descriptors to refractive indexes of phosphorus containing 
organic compounds have been developed using ANN. A newly elaborated set of molecular descriptors is 
evaluated to determine their usefulness for QSPR studies. Using a data set containing 180 phosphates and 
diphosphates, ANN trained with the back propagation and conjugated gradient algorithms are able to predict the 
refractive index with relatively high accuracy. 
Results. The results obtained show good predictive ability for the ANN models, giving the average prediction 
error of 0.24% and R2

cv equal to about 0.99. 
Conclusions. The QSPR studies described in this paper provide strong evidence that the tested structural 
descriptors are useful and effective for the ANN modeling of the phosphates refractive index. 
Keywords. QSPR; quantitative structure–property relationships; molecular descriptors; artificial neural 
networks; refractive index; phosphate; diphosphate. 

Abbreviations and notations 
ANN, artificial neural network QSPR, quantitative structure–property relationships 
IPS, intelligent problem solver RI, refractive index 
PER, prediction error SA, sensitivity analysis 
PMI, polymethylene index SNN, Statistica Neural Networks 

1 INTRODUCTION 

An estimation of physicochemical properties values for chemical substances, particularly organic 
compounds, has gained an important role and became one of the most explored areas of the research 
in computational chemistry [1,2]. It is caused by the permanent need of physical and chemical data 
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for rapidly developing branches of contemporary chemistry and relative fields like medicine, 
environmental protection etc. Wide application of combinatorial chemistry tools produced special 
interest in obtaining reliable models, which can estimate different properties of the known structures 
but not yet synthesized chemical molecules. Also experimental determination of properties for 
newly synthesized chemical compounds may encounter obstacles coming from insufficient quantity 
or instability of the available material. As a consequence, many methods using quantitative 
structure–property relationships (QSPR) have been proposed to estimate the physicochemical 
properties of these compounds enclosing theoretical and practical aspects of the model 
development; structural parameterization methods [3–8], structure descriptor selection [9–11], 
statistical methods [12–18] and available programs [19–25]. 

Over last decades, besides classical methods of computing the properties of chemical 
compounds, various statistical methods as multiply linear regression, cluster analysis and partial 
least–squares have been used for QSPR studies [26,27]. Currently, neural networks, representing 
general nonlinear methods, were used with encouraging success to correlate structural parameters 
with the observed properties [28–50]. Artificial Neural Networks (ANN) are well–suited to describe 
structure–property relations. Moreover, ANN may consider not only particular structure 
characteristics, but also interrelations and interdependences between mutually influencing structural 
descriptors. Therefore, ANN can be easily adapted for processing large vectors of structural data 
formed by various descriptors. 

A set of indices in the form of an algebraic equation converting structural descriptors into a 
multicomponent vector of numerical values, scaled in the range of 0.1 to 0.9, was proposed [48]. 
The key feature of this coding scheme is the treatment of each molecule as a linear structure with 
linear, branched, and/or cyclic substituents. The elaborated coding method is useful for estimating 
the boiling points of hydrocarbons, nitrogen and oxygen containing compounds [42,48], the 
refractive index of amines [48], the melting points of amides [48], sulfides and sulfones [49]. 
However, it was not applied to compounds with other types of heteroatoms. The work described 
here extends this model for the phosphorus containing compounds. 

Among experimentally determined properties of different types of phosphorus compounds, the 
refractive indexes are probably the most widely available and precisely measured data described in 
accessible data collections. Therefore, refractive index appears to be very convenient for the 
verification of practical applicability of developed descriptors for QSPR modeling. 

Besides, the refractive index n is one of the most important optical properties that is frequently 
employed to characterize organic compounds in laboratory practice and in material science to 
evaluate the applicability of materials for various purposes. The refractive index is strictly 
associated with other significant molecular properties, particularly the molar refraction, 
polarizability, dielectric constant, etc. 
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Over the years numerous methods for estimation these of high importance properties from 
chemical structures have been developed. Two major approaches have been applied for this aim. 
The first was the use of molecular group contribution methods for the estimation of the molar 
refraction [51–53]. All these methods have been developed from experimental data. The difficulty 
of this approach is connected with the definition of a constituent set for groups and by the necessity 
to compute the contribution of each group from a statistically significant number of molecular 
structures where the respective group is present. Obtained group contribution schemes are restricted 
to molecules containing only the fragments present in the calibration set. Also, this method is 
limited to compounds containing structural functionalities for which the group contributions are 
available. Beside this, possible interactions between different groups present in the molecule would 
lead to the non–additivity of a property. 

Second, the QSPR approach has gained nowadays an increasing importance overcoming 
limitations of the group contribution techniques. This undergo was successfully applied to estimate 
the molar refraction [54,55] of alkanes and alkyl substituted benzenes, the refractive index of group 
of diverse organic compounds [56] or both these properties for the alkyl hydroperoxides [57] using 
linear and nonlinear equations converting exclusively structure derivative indices into a needed 
property. Also, neural networks have been applied for a development of models of the refractive 
indices. A model based on seven topological descriptors obtained by Gakh et al. [30] reached an 
average error of 0.16% for predictions of the refractive index of hydrocarbons. Other reported 
models based on ANN having 5:5:1 architecture [58] were able to predict the refractive indexes of 
55 alkanes with a relative standard deviation (RSD) of 0.11% and 66 alkanes [59] with an average 
RSD of 0.13% and R2 = 0.978 respectively. The refractive indexes of 133 alkanes were also 
estimated with the MolNet models developed by Ivanciuc [60]. The best model predictions, 
obtained for 25 alkanes separated in the test set, gave the correlation coefficient equal to 0.972 and 
the standard deviation of 0.0033. The ANN model-estimated refractive indexes of different amines, 
reported in [48], had an average error of 0.17% (R2 0.973). In this paper ANN QSPR models for the 
prediction of the refractive index developed for a data set of 180 phosphates and diphosphates will 
be described. The obtained models, relied on information derived from the compound molecular 
structure only, have shown good predictive performance in estimation of the refractive index. 

2 MATERIALS AND METHODS

2.1 Chemical Data
Chemical structures and refractive indexes of 159 phosphates and 21 diphosphates were selected 

from [61]. The data set contains different types of structures: aliphatic (linear and branched), cyclic 
and aromatic. All experimental refractive index data used in this study were measured at a 
wavelength of 589 nm. Some of the selected compounds had more than one RI reported value 
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measured at different temperatures, ranged between 17–35 ºC. For the purposes of this work, it has 
been decided to use refractive data obtained in the range limited to 20–25 ºC. In this way, 25 
phosphates are characterised by two RI values determined at 20 ºC and at a second temperature 
value from the interval of over 20 to 25 ºC. 

2.2 Generation of Structure Descriptors
The structure descriptors encode the elementary, topological and geometrical characteristics of 

the molecular structure of investigated compounds. For the needs of the present study it has been 
decided to complete the existing set of descriptors with a descriptor for the cyclic phosphates 
moieties (Figure 1) into numerical values. At the beginning it was assumed that the newly 
introduced descriptor should characterize: the size of a ring forming cyclic fragment of a molecule, 
the bonds length between carbon–oxygen and oxygen–phosphorus atoms and the unsaturation 
degree. The basic concept applied in the formulation of the new descriptor, named the 
polymethylene index (PMI), comes from the idea of cyclic substructures described in [49]. 

P
O

O

O
P

O O

O

Figure 1. Substructures of different types of cyclic phosphates. 

The starting point was to compute the size (SR) of the ring. It has been defined as the sum of 
relative bond lengths (rbl) between two adjacent non–hydrogen atoms forming considered ring: 

i
iR rblS (1)

The bond length is related to the average length of carbon–carbon bonds in cyclic hydrocarbons. 
The next element of the elaborated index is the unsaturation degree (UI) of the ring substructure 
defined according to: 

IIIIIV nnnUI 12
2
1

(2)

where nI, nIII, and nIV represent the number of mono–, three–, and four–valent atoms forming the 
cyclic fragment of molecule. The comparative analysis of the bonds length (single, aromatic, double 
and triple) in different types of cyclic and polycyclic compounds shows that the mean relative 
bonds shrinkage from a single into the double bond is –0.122. For this reason the size index SR is 
diminished according to the coefficient: 

UISS RU 122.0 (3)
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Finally, the elaborated components of the polymethylene index (PMI) have been arranged in the 
form of an algebraic equation converting considered structural feature into numerical value, scaled 
in the range 0.1 to 0.9. Therefore, the Su value is scaled down with the coefficient 0.1: 

UISPMI U 122.01.0 (4)

The whole pool of selected structural descriptors is presented in Table 1. 

Table 1. The Set of Structural Descriptors  
No. Descriptor  No. Descriptor 
1
2
3–8
9
10
11
12
13
14–19
20

21–24

25–28

29

30

31

Number of C atoms in a molecule 
Number of C atoms in the main chain 
Numbers of heteroatoms: N, O, S, P, F, Cl 
Cyclic esters (PMI) index 
Total number of atoms in the molecule (without H) 
Geometric isomerism (E/Z) in the main chain 
Number of cyclic fragments 
Number of substitutents connected to main chain 
Types of substituents composed by C and H atoms 
Average distance between tertiary and quaternary C 
atoms in aliphatic part of compounds (measured in 
number of bonds) 
Number and location of tertiary and quaternary C 
atoms in the main chain 
Number and location of double and triple bonds in 
the molecule structure 
Location of cyclic substituents connected to the 
main chain 
Number and location of double bonds in cyclic 
substituents
Location of substituents connected to cyclic 
fragments of molecule (cyclic substituents) 

 32 

33

34

35

36
37
38
39–40

41–42

43

44–46

47–56

Type, number and location of saturated side sub–
stituents connected to the ring 
Type, number and location of unsaturated side 
substituents connected to the ring 
Type, number and location of side substituents with 
heteroatoms connected to the ring 
Indicator of cumulated, coupled unsaturated bonds 
systems, including aromatic 
Unsaturation index of cyclic fragments 
Number and location of O atoms in the main chain 
Location of oxygen atoms in the main chain 
Numbers and locations of heteroatoms as branches 
of the main chain 
Numbers and locations of O atoms as a branches of 
the main chain connected via carbon atoms 
Average distance between carbon atoms with 
multiple bonds and O atoms 
Number and location of O atoms in a substituents of 
the cyclic fragments 
Structural descriptors representing molecular 
descriptors analogous to 37–46, describing the 
presence of phosphorus atoms. 

The structural descriptors collected in Table 1 are grouped under three main groups: the 
elementary composition (1–8, 10), the construction of a molecule (9, 11–36) and the way of 
heteroatoms connection: oxygen (37–46) and phosphorus (47–56). Using the equations described in 
[48] and the newly elaborated cyclic index, structures of investigated compounds were coded into a 
56–component vector of numerical values. When a given structural feature was absent, adequate 
component of the code vector was zeroed. Also, the temperatures of the RI measurement, related to 
coded structures, was scaled according to the following formula: 

Tsc = T/10 (5)

and added as descriptor number 57. 

An example of a numerical representation of the ethyl–isopropenyl–phenyl phosphate and 1,1–
diethyl–2,2–dipropyl diphosphate structures together with the temperature of refractive index 
measurement and its experimental value are presented in Figure 2. 

Other vectors of descriptors numerical values representing structures of all investigated 
compounds together with the value of refractive indexes are placed in the file Phosphate_D.txt (see 
the supplementary material). 
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P
OCH2

O

O

OCCH2
CH3

CH3 Ph_60
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
1.1 0.4 0 0.4 0 0.1 0 0 0 3.1 0.5 0.1 0.03 0.005 0.5755 0 0 0 0 0.1 

x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38
0.1 0.025 0.1 0.05 0 0 0.1 0.00796 0.343 0.062 0 0 0 0 0.3 0.15 0.2 0.09163 

x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 x57 RI
0.1 0.01735 0 0 0.1722 0 0 0 0.1 0.3306 0 0 0 0 0.15714 0 0 0 2 1.4845

PO
O

O O CH2

CH2

P
O

O

O

CH2

CH2CH2

CH2CH3

CH3

CH3

CH3 Ph_58
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
0.1 0.5 0 0.7 0 0.2 0 0 0 4.3 0 0 0.4 0.0343 0.0793 0 0 0 0 0.1

x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39
0 0 0.2 0.04091 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.09333 0.2 

x40 x41 x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 x57 RI 
0.0295 0 0 0.0867 0 0 0 0.2 0.477 0 0 0 0 0.1 0 0 0 2 1.4219

Figure 2. Numerical representation of ethyl–isopropenyl–phenyl phosphate and 1,1–diethyl–2,2–dipropyl diphosphate. 

2.3 Computer Software 
All computations were performed on IBM PC–type microcomputer, running under the MS–

Windows’98 operating system. The artificial neural networks computations were carried out with 
the network simulation program Statistica Neural Networks (SNN) [62]. Data manipulation and 
interpretation of the obtained results was carried out with Microsoft Excel v. 97. 

2.4 Neural Networks 
In this study, the linear and multilayer, feedforward networks were applied. The architecture of 

multilayer networks consists of an input layer, one hidden layer and an output layer. The input layer 
contains one node for each structural index and the temperature at which the refractive index was 
obtained. The output layer has one node generating the estimated value of the investigated property. 
The input and output values were linearly scaled between 0 and 1 by the standard Minimax
conversion function available in the SNN program. 

Because the learning and approximation occurs mainly in the hidden layer, the number of hidden 
neurons needs to be sufficient to ensure that the information contained in the data utilized for the 
network training is adequately represented. On the other hand, the small number of collected 
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examples (possible to select from available data sources) limited the complexity of the networks. 
For this reason only networks with two processing layers and two nodes in the hidden layer were 
considered. The starting networks architectures were determined by applying an automatic 
optimization procedure available in Statistica Neural Network v 4.0 programs package, named 
Intelligent Problem Solver (IPS) [62]. The IPS program was forced to search optimal networks 
according to stated above limits. The sigmoid squashing function was applied for the processing 
neurons in hidden layers and the linear one in an output neuron. The candidate network architecture 
40:2:1 (with the best performance characteristics) was retained for further learning and testing its 
predictive ability. The dimensionality of the input layer in the best network corresponds to the 
number of descriptors having non–zero values for all compounds. These descriptors were chosen as 
valid input variables. The network was preliminary trained for a period of 50 epochs by standard 
back propagation procedure and then the conjugated gradient algorithm was used over a dozen 
learning cycles. 

The final attempt for improvement of the QSPR model was carried out by replacing the linear 
activation function with a sigmoid one in the output neuron. The parallel learning of both networks 
over a period of about 300 epochs gave a slight improvement of predictions obtained with the 
model with sigmoid function in the output neuron. 

2.5 Reduction of Structural Descriptors 
The next experiment on the phosphates and diphosphates compounds was to determine whether a 

reduced set of descriptors could provide similarly effective or better models. The selection of the 
optimal set of input variables for both types of investigated compounds has been carried out on the 
base of a sensitivity analysis (SA), available as a standard procedure in Statistica Neural Network 
program package. To perform the selection of variables a new set of five 40:2:1 networks was 
trained using IPS procedure and applying random subdivision of the entire set of examples (in 
proportion 4:1) into only training and verification sets. All the multilayer neural networks (with 
linear output neuron) were examined separately. Comparing the sets of “unimportant” variables 
proposed by the SA procedure, twenty input variables common for all five sets generated for 
phosphates were removed. The second half of input variables (considered as important for refractive 
indexes prediction) was retained for further processing. These highly active variables for the 
phosphates are: 1, 2, 9, 10, 11, 12, 24, 29, 34, 35, 36, 38, 39, 40, 43, 44, 45, 48, 53 and 57 (see 
Table 1). It should be noted that in the most cases, frequently inactive descriptors (i.e. equal to zero) 
were discarded. 

The reduced data sets containing a 20–component vector of numerical values for phosphates and 
diphosphates were used for the final selection of the optimal network, which was performed 
applying the IPS procedure once again. Because the collected sets of examples are relatively small 
according to the size of input vectors, the cases were randomly reassigned only to training and 
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cross–validation sets in a 4:1 proportion. The best network (20:2:1) from the preliminary optimized 
by IPS automatic procedure (with the lower training and verification mean square errors values) 
was retained for further optimization. The searching of the best network procedure was repeated 
twice for the networks with successively reduced numbers of inputs by removing from selected pool 
of descriptors the variable having the lowest value of the sensitivity index in order: 39 and 43. The 
best networks with structures 19:2:1 and 18:2:1 have been retained for further optimization. 

For the final optimisation the conjugated gradient algorithm was used applying leave–20%–out 
procedure. In this procedure one–fifth of the objects were selected out one after another, whereas 
for every selection the model was build up with remaining part of examples. Next, this model was 
used to predict the refractive index values for the selected compounds. Joined results of the 
refractive indexes estimation gave information on the prediction ability and on the model quality for 
the selected training and prediction sets. Each time the training results were saved when the root 
mean square error averaged over the training set had reached minimum value. Depending on 
particular network structure and the training set, this occurred after about 120 to 200 epochs. 

To avoid over–training of the neural network, the output error between the seen and those 
expected values has been calculated as well as for the training and cross–validation set examples. 
Training was stopped (before the training error has reached the above mentioned value) when the 
RMS error obtained for the control data was the lowest. The linear network (with the structure 40:1) 
generated by IPS, as a least squares linear model [62], has been retained for comparison purposes. 
This and the multilayer final network structures are specified in Tables 2 and 3. 

2.6 Statistical Parameters 
When the optimisation process of all investigated models was completed, the output data 

obtained for both sets of examples has been stored in the Excel data form for further work out. In 
the next step of this investigation, the generated ANN models were evaluated. The statistical quality 
of the ANN modeling results for both the training and cross–validation sets was evaluated using the 
following parameters: squared correlation coefficient R2:

n
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In these equations yi represents the experimental target value (RI) for the i–th compound, y0

denotes the associated mean and yic represents the calculated refractive index value using the ANN 
model, n indicates number of examples in the training and cross–validation sets. 

3 RESULTS AND DISCUSSION 

The main objective of this work was to verify the utility of previously elaborated structural 
descriptors, completed with the newly proposed index describing cyclic esters, for the prediction of 
the refractive index of phosphorus containing organic compounds. The structures of investigated 
phosphates and diphosphates are stored as ISIS Draw files deposited in supplementary material, in 
the archive file Phosphate.zip. 

Numerical representations (vectors of structural indices values) obtained in the coding phase of 
this work, are collected in the file Phosphate_D.txt, also deposited in the supplement to this article. 
The statistical results of the ANN modeling of the phosphates and diphosphates refractive indexes 
obtained with different models are listed in Tables 2 and 3. 

Table 2. Statistics of the Refractive Index Predictions with Linear Neural Network (LNN) Model 
Statistics AER AAE SD R2

Training set
Cross–validation

0.0001 
0.0001 

0.0333 
0.0087 

0.0084 
0.0118 

0.9680 
0.9430 

A linear regression of the refractive index against 40 structural descriptors characterizing 
phosphates molecules, using the linear network, is summarized by the respective statistics in the 
Table 2. The linear model performance characteristics obtained for the training set examples are 
clearly better then those obtained for prediction results, as can be seen from the higher R2 = 0.968 
versus R2

cv = 0.943 as well as lower standard deviation 0.0084 vs. 0.0118. 

Table 3. Statistics of Two–Layers Neural Networks Models for Calculating Refractive Indexes of Phosphates, With 
Sigmoid Activation Function in Output Neuron (sfon) and Linear Output Neuron (lon) 

40:2:1 (sfon) 20:2:1 (lon) 19:2:1 (lon) 18:2:1 (lon) 
Statistics training cross–val training cross–val training cross–val training cross–val 
AER
AAE
SD
R2

0.0004 
0.0029 
0.0040 
0.9926 

0
0.0033 
0.0044 
0.9908 

0.0003 
0.0032 
0.0043 
0.9912 

0.0001 
0.0036 
0.0048 
0.9889 

–0.0007 
0.0033 
0.0045 
0.9906 

0
0.0037 
0.0050 
0.9882 

0
0.0033 
0.0047 
0.9894 

0.0002 
0.0038 
0.0052 
0.9870 



Neural Network Modeling of Refractive Indexes of Phosphorus–Containing Organic Compounds 
Internet Electronic Journal of Molecular Design 2003, 2, 315–333 

324 
BioChem Press http://www.biochempress.com

The statistical results of the multilayer ANN modeling listed in Table 3 have shown the 
significant improvement that has been obtained for refractive indexes prediction using nonlinear 
models comparing with the linear network. The comparison of the statistical parameters obtained 
for the refractive index calibration and prediction, using the multilayer neural networks, reveals the 
superiority of nonlinear models. Both calibration refractive index values and predicted during the 
cross–validation procedure gave better statistical parameters than those obtained with the linear 
network. The best neural model (40:2:1) gives the most accurate predictions with average absolute 
errors of 0.0029 and 0.0044 as well as the highest R2 coefficients equal to 0.9926 and R2

cv 0.9908 
for the training and cross–validation phase, respectively. Predictions obtained for the investigated 
compounds with the model based on twice reduced pool of structural descriptors (network 20:2:1) 
are quite precise: AAE 0.0032, R2 0.9912 and AAEcv 0.0036, R2

cv 0.9889. The predicted refractive 
index values along with the deviation from experimental values (using the 20:2:1 NN model) are 
listed in Table 4. 

Table 4. Experimental and Calculated Refractive Index for 180 Organic Phosphates and Diphosphates 
No Comp Id Phosphates Exp n Calc n n
1 Ph_1 monomethyl  1.4200 e 1.4127 –0.0073 
2 Ph_2 monoethyl 1.4270 e 1.4155 –0.0115 
3 Ph_3 dimethyl 1.4080 e 1.4122 0.0042 
4 Ph_3 dimethyl 1.4070 a 1.4136 0.0066 
5 Ph_4 trimethyl 1.3950 e 1.3968 0.0018 
6 Ph_4 trimethyl 1.3964 a 1.3983 0.0019 
7 Ph_5 ethyl methyl 1.4115 a 1.4180 0.0065 
8 Ph_6 methyl propane–1,2–diyl  1.4250 a 1.4263 0.0013 
9 Ph_7 ethyl dimethyl 1.4015 a 1.4007 –0.0008 

10 Ph_7 ethyl dimethyl 1.3984 c 1.3997 0.0013 
11 Ph_8 diethyl 1.4170 a 1.4194 0.0024 
12 Ph_9 tetramethyl diphosphate 1.4121 e 1.4131 0.0010 
13 Ph_9 tetramethyl diphosphate 1.4136 a 1.4144 0.0008 
14 Ph_10 ethyl propane–1,2–diyl 1.4265 a 1.4260 –0.0005 
15 Ph_11 isopropenyl dimethyl 1.4165 a 1.4192 0.0027 
16 Ph_12 mono(3–methylbutyl) 1.4150 a 1.4233 0.0083 
17 Ph_13 ethyl trimethyl diphosphate 1.4150 a 1.4140 –0.0010 
18 Ph_14 trivinyl 1.4289 a 1.4301 0.0012 
19 Ph_15 propyl propane–1,2–diyl 1.4290 a 1.4293 0.0003 
20 Ph_16 triethyl 1.4043 e 1.4034 –0.0009 
21 Ph_16 triethyl 1.4053 a 1.4048 –0.0005 
22 Ph_17 dipropyl 1.4251 a 1.4250 –0.0001 
23 Ph_18 1,2–diethyl 1,2–dimethyl diphosphate 1.4170 a 1.4145 –0.0025 
24 Ph_19 1,1–diethyl 2,2–dimethyl diphosphate 1.4156 e 1.4143 –0.0013 
25 Ph_19 1,1–diethyl 2,2–dimethyl diphosphate 1.4160 a 1.4155 –0.0005 
26 Ph_20 allyl diethyl 1.4216 e 1.4277 0.0061 
27 Ph_21 butyl propane–1,2–diyl 1.4312 a 1.4324 0.0012 
28 Ph_22 isobutyl propane–1,2–diyl 1.4310 a 1.4307 –0.0003 
29 Ph_23 diethyl isopropenyl 1.4158 e 1.4184 0.0026 
30 Ph_23 diethyl isopropenyl 1.4200 a 1.4198 –0.0002 
31 Ph_24 ethyl 2,2–dimethylpropanediyl 1.4435 a 1.4426 –0.0009 
32 Ph_24 ethyl 2,2–dimethylpropanediyl 1.4388 e 1.4413 0.0025 
33 Ph_25 ethyl 3–methylbutyl 1.4210 e 1.4258 0.0048 
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Table 4. (Continued) 
No Comp Id Phosphates Exp n Calc n n
34 Ph_26 diethyl isopropyl 1.4038 e 1.4053 0.0015 
35 Ph_27 dimethyl pentyl 1.4127 e 1.4051 –0.0076 
36 Ph_28 triethyl methyl  1.4180 a 1.4225 0.0045 
37 Ph_29 dimethyl phenyl 1.4887 a 1.4876 –0.0011 
38 Ph_30 diallyl ethyl 1.4350 a 1.4376 0.0026 
39 Ph_31 diethyl 1–methylenepropyl 1.4270 a 1.4247 –0.0023 
40 Ph_32 cyclohexyl dimethyl 1.4417 e 1.4414 –0.0003 
41 Ph_33 diethyl 1–methylpropenyl 1.4274 a 1.4240 –0.0034 
42 Ph_34 diisobutyl 1.4320 a 1.4265 –0.0055 
43 Ph_35 butyl diethyl 1.4110 e 1.4125 0.0015 
44 Ph_35 butyl diethyl 1.4131 a 1.4138 0.0007 
45 Ph_36 dibutyl  1.4337 a 1.4298 –0.0039 
46 Ph_37 ethyl diisopropyl 1.4044 e 1.4062 0.0018 
47 Ph_38 hexyl dimethyl 1.4180 e 1.4076 –0.0104 
48 Ph_39 diethyl isobutyl 1.4074 e 1.4097 0.0023 
49 Ph_40 tetraethyl diphosphate 1.4170 e 1.4182 0.0012 
50 Ph_40 tetraethyl diphosphate 1.4222 a 1.4194 –0.0028 
51 Ph_41 1,1–diisopropyl 2,2–dimethyl diphosphate 1.4165 e 1.4170 0.0005 
52 Ph_42 1,1–dimethyl 2,2–dipropyl diphosphate 1.4199 e 1.4167 –0.0032 
53 Ph_43 methylethanediyl phenyl  1.5068 a 1.5046 –0.0022 
54 Ph_44 dimethyl m–tolyl 1.4910 a 1.4865 –0.0045 
55 Ph_45 dimethyl p–tolyl 1.4898 a 1.4858 –0.0040 
56 Ph_46 triallyl 1.4435 e 1.4401 –0.0034 
57 Ph_46 triallyl 1.4500 a 1.4420 –0.0080 
58 Ph_47 triisopropyl 1.4069 a 1.4101 0.0032 
59 Ph_48 tripropyl 1.4136 e 1.4113 –0.0023 
60 Ph_48 tripropyl 1.4165 a 1.4131 –0.0034 
61 Ph_49 diethyl pentyl 1.4152 e 1.4156 0.0004 
62 Ph_50 butane–1,3–diyl phenyl 1.5163 e 1.5085 –0.0078 
63 Ph_51 diethyl phenyl 1.4773 e 1.4825 0.0052 
64 Ph_51 diethyl phenyl 1.4761 a 1.4844 0.0083 
65 Ph_52 3,5–dimethyl–phenyl dimethyl 1.4946 a 1.4875 –0.0071 
66 Ph_53 ethyl bis(2–methylallyl) 1.4390 1.4379 –0.0011 
67 Ph_54 bis(3–methylbutyl) 1.4375 a 1.4319 –0.0056 
68 Ph_55 ethyl dibutyl 1.4168 e 1.4181 0.0013 
69 Ph_56 dipentyl 1.4395 a 1.4349 –0.0046 
70 Ph_57 dimethyl octyl 1.4236 1.4135 –0.0101 
71 Ph_58 1,1–diethyl 2,2–dipropyl diphosphate 1.4212 e 1.4203 –0.0009 
72 Ph_58 1,1–diethyl 2,2–dipropyl diphosphate 1.4219 a 1.4222 0.0003 
73 Ph_59 1,1–diethyl 2,2–diisopropyl diphosphate 1.4175 e 1.4218 0.0043 
74 Ph_60 ethyl isopropenyl phenyl 1.4845 a 1.4896 0.0051 
75 Ph_61 diethyl m–tolyl 1.4814 a 1.4837 0.0023 
76 Ph_62 diethyl o–tolyl 1.4812 a 1.4837 0.0025 
77 Ph_63 dibutyl isopropenyl 1.4268 a 1.4359 0.0091 
78 Ph_64 diisobutyl isopropenyl 1.4245 a 1.4267 0.0022 
79 Ph_65 diallyl phenyl 1.4965 e 1.4874 –0.0091 
80 Ph_66 diisopropyl phenyl 1.4684 e 1.4790 0.0106 
81 Ph_67 diethyl 1–phenylethyl 1.4870 a 1.4835 –0.0035 
82 Ph_68 tris(2–methylallyl) 1.4454 e 1.4444 –0.0010 
83 Ph_69 tributyl 1.4220 e 1.4208 –0.0012 
84 Ph_69 tributyl 1.4249 a 1.4217 –0.0032 
85 Ph_70 triisobutyl 1.4173 e 1.4166 –0.0007 
86 Ph_70 triisobutyl 1.4190 a 1.4175 –0.0015 
87 Ph_71 diethyl octyl 1.4210 e 1.4247 0.0037 
88 Ph_72 tetraisopropyl diphosphate 1.4170 e 1.4230 0.0060 
89 Ph_72 tetraisopropyl diphosphate 1.4200 a 1.4248 0.0048 
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Table 4. (Continued) 
No Comp Id Phosphates Exp n Calc n n
90 Ph_73 1,1–diethyl 2,2–dibutyl diphosphate 1.4245 e 1.4231 –0.0014 
91 Ph_74 1,1–diisopropyl 2,2–dipropyl diphosphate 1.4210 e 1.4228 0.0018 
92 Ph_75 tetrapropyl diphosphate 1.4248 e 1.4242 –0.0006 
93 Ph_76 methyl diphenyl 1.5373 e 1.5303 –0.0070 
94 Ph_76 methyl diphenyl 1.5320 b 1.5325 0.0005 
95 Ph_77 butyl isopropenyl phenyl 1.4825 a 1.4873 0.0048 
96 Ph_78 dipropyl m–tolyl 1.4779 a 1.4787 0.0008 
97 Ph_79 diethyl 4–isopropylphenyl 1.4770 a 1.4809 0.0039 
98 Ph_80 2–ethyl–4–methylpentyl 2,2–dimethylpropanediyl 1.4485 a 1.4496 0.0011 
99 Ph_81 ethyl diphenyl 1.5318 e 1.5261 –0.0057 
100 Ph_82 2–ethylhexane–1,3–diyl phenyl 1.5017 e 1.5114 0.0097 
101 Ph_83 dibutyl phenyl 1.4689 e 1.4769 0.0080 
102 Ph_83 dibutyl phenyl 1.4736 a 1.4777 0.0041 
103 Ph_84 diethyl 3–tert–butylphenyl 1.4770 e 1.4790 0.0020 
104 Ph_85 dibutyl hexyl 1.4263 e 1.4282 0.0019 
105 Ph_86 diethyl decyl 1.4266 e 1.4297 0.0031 
106 Ph_87 1,1–dibutyl 2,2–diisopropyl diphosphate 1.4235 e 1.4260 0.0025 
107 Ph_88 isopropenyl diphenyl 1.5483 a 1.5385 –0.0098 
108 Ph_89 allyl diphenyl 1.5214 e 1.5314 0.0100 
109 Ph_90 diphenyl propyl 1.5249 e 1.5226 –0.0023 
110 Ph_90 diphenyl propyl 1.5246 a 1.5255 0.0009 
111 Ph_91 dibenzyl methyl 1.5308 e 1.5273 –0.0035 
112 Ph_92 2–ethylhexyl methyl phenyl 1.4802 e 1.4785 –0.0017 
113 Ph_93 4–(1,1–dimethylpropyl)phenyl diethyl 1.4838 a 1.4791 –0.0047 
114 Ph_94 tripentyl 1.4320 a 1.4289 –0.0031 
115 Ph_95 2–methylallyl diphenyl 1.5240 a 1.5331 0.0091 
116 Ph_96 butyl diphenyl 1.5190 e 1.5190 0 
117 Ph_97 isobutyl diphenyl 1.5188 e 1.5225 0.0037 
118 Ph_98 dibenzyl ethyl 1.5285 e 1.5264 –0.0021 
119 Ph_99 dipentyl phenyl 1.4715 c 1.4746 0.0031 
120 Ph_100 dibutyl 1–phenylethyl 1.4756 a 1.4826 0.0070 
121 Ph_101 dimethyl 4–(1,1,3,3–tetramethylbutyl) phenyl 1.4912 a 1.4819 –0.0093 
122 Ph_102 bis(2–ethylhexyl) 1.4448 a 1.4384 –0.0064 
123 Ph_102 bis(2–ethylhexyl) 1.4430 e 1.4373 –0.0057 
124 Ph_103 dibutyl octyl 1.4296 e 1.4327 0.0031 
125 Ph_104 tetrabutyl diphosphate 1.4296 e 1.4302 0.0006 
126 Ph_105 pentyl diphenyl 1.5192 e 1.5157 –0.0035 
127 Ph_106 2–methylbutyl diphenyl 1.5197 e 1.5176 –0.0021 
128 Ph_107 3–methylbutyl diphenyl 1.5164 e 1.5189 0.0025 
129 Ph_108 2,2–dimethylpropyl diphenyl 1.5132 e 1.5208 0.0076 
130 Ph_109 diethyl 4–(1,1–dimethylpentyl)–phenyl 1.4812 a 1.4778 –0.0034 
131 Ph_110 diethyl 4–heptylphenyl 1.4761 a 1.4778 0.0017 
132 Ph_111 methyl dioctyl 1.4362 e 1.4369 0.0007 
133 Ph_112 hexyl diphenyl 1.5131 e 1.5134 0.0003 
134 Ph_113 2–methylpentyl diphenyl 1.5130 e 1.5147 0.0017 
135 Ph_114 2–ethylbutyl diphenyl 1.5152 e 1.5165 0.0013 
136 Ph_115 2,2–dimethylbutyl diphenyl 1.5118 e 1.5162 0.0044 
137 Ph_116 dibenzyl butyl 1.5233 e 1.5203 –0.0030 
138 Ph_117 butyl di–m–tolyl 1.5170 a 1.5188 0.0018 
139 Ph_118 butyl octyl phenyl 1.4691 e 1.4726 0.0035 
140 Ph_119 2–ethylhexyl butyl phenyl 1.4698 e 1.4727 0.0029 
141 Ph_120 2–ethylhexyl 1–methylpropyl phenyl 1.4783 e 1.4710 –0.0073 
142 Ph_121 2–ethylhexyl 2–methylpropyl phenyl 1.4720 e 1.4707 –0.0013 
143 Ph_122 dibutyl decyl 1.4329 e 1.4361 0.0032 
144 Ph_123 trihexyl 1.4340 e 1.4341 0.0001 
145 Ph_124 heptyl diphenyl 1.5086 e 1.5098 0.0012 
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Table 4. (Continued) 
No Comp Id Phosphates Exp n Calc n n
146 Ph_125 3–methylbutyl di–m–tolyl 1.5140 a 1.5176 0.0036 
147 Ph_126 diethyl 4–nonylphenyl 1.4765 a 1.4770 0.0005 
148 Ph_127 bis(2–methylallyl) 2–biphenyl 1.5331 e 1.5326 –0.0005 
149 Ph_128 octyl diphenyl 1.5070 e 1.5083 0.0013 
150 Ph_128 octyl diphenyl 1.5072 a 1.5098 0.0026 
151 Ph_129 6–methylheptyl diphenyl 1.5076 e 1.5084 0.0008 
152 Ph_130 2–ethylhexyl diphenyl 1.5080 e 1.5097 0.0017 
153 Ph_131 2–ethylbutyl di–m–tolyl 1.5170 a 1.5147 –0.0023 
154 Ph_132 butyl bis(3,5–dimethylphenyl) 1.5160 a 1.5147 –0.0013 
155 Ph_133 1,1–diethyl 2,2–bis(2–ethylhexyl) diphosphate 1.4390 e 1.4345 –0.0045 
156 Ph_134 2–allylphenyl diphenyl 1.5640 e 1.5616 –0.0024 
157 Ph_135 tri–o–tolyl 1.5587 e 1.5572 –0.0015 
158 Ph_135 tri–o–tolyl 1.5575 a 1.5595 0.0020 
159 Ph_136 tri–m–tolyl 1.5553 e 1.5572 0.0019 
160 Ph_137 nonyl diphenyl 1.5050 e 1.5049 –0.0001 
161 Ph_138 diphenyl 3,5,5–trimethylhexyl 1.5057 e 1.5088 0.0031 
162 Ph_139 2–ethylhexyl phenyl p–tolyl 1.5082 e 1.5080 –0.0002 
163 Ph_140 bis(3,5–dimethylphenyl 3–methylbutyl 1.5140 a 1.5137 –0.0003 
164 Ph_141 4–tert–butylphenyl diphenyl 1.5522 e 1.5523 0.0001 
165 Ph_142 decyl diphenyl 1.5022 e 1.5019 –0.0003 
166 Ph_143 2–butylhexyl diphenyl 1.5069 e 1.5061 –0.0008 
167 Ph_144 octyl di–m–tolyl 1.5120 a 1.5044 –0.0076 
168 Ph_145 2–ethylhexyl 1–methylheptyl phenyl 1.4687 e 1.4688 0.0001 
169 Ph_146 bis(2–ethylhexyl) phenyl 1.4682 e 1.4690 0.0008 
170 Ph_146 bis(2–ethylhexyl) phenyl 1.4750 a 1.4705 –0.0045 
171 Ph_147 diethyl 4–dodecylphenyl 1.4750 a 1.4739 –0.0011 
172 Ph_148 2,6–diallylphenyl diphenyl 1.5637 e 1.5588 –0.0049 
173 Ph_149 bis(2–allylphenyl) phenyl 1.5422 a 1.5619 0.0197 
174 Ph_150 tris[(R)–1–phenylethyl] 1.5498 d 1.5454 –0.0044 
175 Ph_151 triphenetyl 1.5669 e 1.5592 –0.0077 
176 Ph_152 dodecyl diphenyl 1.4987 e 1.4966 –0.0021 
177 Ph_152 dodecyl diphenyl 1.5030 a 1.4985 –0.0045 
178 Ph_153 2–butyloctyl diphenyl 1.4996 e 1.5002 0.0006 
179 Ph_154 bis(3,5–dimethylphenyl) octyl 1.5110 a 1.5010 –0.0100 
180 Ph_155 4–ethyl–1–isobutyloctyl butyl phenyl 1.4588 e 1.4682 0.0094 
181 Ph_156 trioctyl 1.4403 e 1.4430 0.0027 
182 Ph_157 tris(2–ethylhexyl) 1.4414 a 1.4403 –0.0011 
183 Ph_158 tris(2,4,4–trimethylpentyl) 1.4395 a 1.4381 –0.0014 
184 Ph_159 hexadecyl isopropyl phenyl 1.4633 e 1.4657 0.0024 
185 Ph_160 bis[2–(2–methylallyl)–phenyl] phenyl 1.5647 e 1.5557 –0.0090 
186 Ph_161 tris(3–phenylpropyl) 1.5404 d 1.5599 0.0195 
187 Ph_162 trinonyl 1.4485 e 1.4433 –0.0052 
188 Ph_163 tris(3,5,5–trimethylhexyl) 1.4420 e 1.4400 –0.0020 
189 Ph_164 hexadecyl diphenyl 1.4934 e 1.4854 –0.008 
190 Ph_165 2–allylphenyl bis(4–tert–butylphenyl) 1.5421 e 1.5488 0.0067 
191 Ph_166 bis(2–allylphenyl) 2–biphenyl 1.5872 e 1.5792 –0.0080 
192 Ph_167 tridecyl 1.4452 e 1.4488 0.0036 
193 Ph_168 2–ethylhexyl 2–ethylhexane–1,3–diyl 1.4490 e 1.4512 0.0022 
194 Ph_169 2–ethyl–2–butylpropanediyl phenyl 1.4998 e 1.5030 0.0032 
195 Ph_170 isopropyl 2–methyl–2–propylpropanediyl 1.4447 e 1.4433 –0.0014 
196 Ph_171 diethyl p–tolyl 1.4780 a 1.4837 0.0057 
197 Ph_172 diethyl 3,5–dimethyl–phenyl 1.4830 a 1.4827 –0.0003 
198 Ph_173 diethyl dodecyl 1.4335 e 1.4340 0.0005 
199 Ph_174 ethyl 2–methyl–2–propylpropanediyl 1.4457 e 1.4429 –0.0028 
200 Ph_175 2–ethylhexyl propane–1,2–diyl 1.4400 e 1.4384 –0.0016 
201 Ph_176 1,1–diethyl diphosphate 1.4370 e 1.4257 –0.0113 
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Table 4. (Continued) 
No Comp Id Phosphates Exp n Calc n n
202 Ph_177 1,2–diisopropyl diphosphate 1.4330 e 1.4261 –0.0069 
203 Ph_178 1,2–dimethyl diphosphate 1.4250 e 1.4353 0.0103 
204 Ph_179 1,2–dibutyl diphosphate 1.4310 e 1.4387 0.0077 
205 Ph_180 phenyl diundecyl 1.4671 a 1.4626 –0.0045 
a, b, c, d, e Temperatures of RI measurement: a 20, b 21, c 22, d 24, e 25 ºC. 

The linear plot of predicted versus observed refractive indexes for the phosphates cross–
validation examples is given in Figure 3. The distribution of points along the regression line is quite 
good and no extreme outliers are seen. The obtained predictions fit well to the experimental data 
with the high correlation coefficient of Rcv = 0.9944. The calculated parameters for the regression 
equations (Figure 3) shows a slope equal to 0.993 and an intersect of 0.01. The distribution for the 
prediction errors (PER) for phosphates and diphosphates (specified in Table 4) is presented in 
Figure 4. The error for each tested compound was calculated as PER = RIpr – RIexp where RIpr is the 
estimated refractive index and RIexp is the experimental value. 

y = 0.9932x + 0.0099
R2 = 0.9889
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Figure 3. Predicted refractive indexes of phosphates versus experimental data. 

The examination of the prediction error plot (beginning from compound number 1) indicates that 
refractive indexes values for compounds with lower molecular weight (aliphatic phosphates 
containing 1–8 carbon atoms) are often overestimated, although the observed prediction errors are 
relatively small. The next range spans examples numbers 40 until 100 and characterize compounds 
with 9 to 16 carbon atoms, most of diphospates and phosphates with mixed types of substituents: 
aliphatic, alicyclic and aromatic. The prediction errors for this group of compounds are distinctly 
higher and extending between –0.01 and 0.01. The following range of the error plot shows the 
second region of higher prediction accuracy. These predictions were obtained for examples 
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numbered 112–145 and representing compounds containing 18–22 carbon atoms, generally 
containing the phenyl and phenyl substituted phosphates. The last part of the plot represents 
prediction errors obtained for phosphates with 24–30 carbon atoms and various types of the 
substituents: aromatic (benzyl, phenyl with side aliphatic chains), aliphatic (long and/or highly 
branched chains, etc.). This part of plot indicates the broader span of prediction errors. 
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Figure 4. Distribution of the prediction error (PER) for the refractive indexes of 180 phosphates. 

For the majority of investigated compounds the prediction of the refractive index of phosphates 
gives the error between 0.012 with the mean error value of 0.00357 although two outliers can be 
observed. The greatest overestimation of refractive index is obtained for the compounds (see Table 
4) 149 phenyl–bis(2–allylphenyl) phosphate and 161 tris(3–phenylpropyl) phosphate. Both 
compounds were predicted with considerable errors (in the range of 0.0169–0.0197 for phosphate 
149 and 0.0095–0.0195 for 161) by the remaining ANN models. These compounds contain three 
phenyl groups with side chains or connected with phosphate group via three–membered aliphatic 
chain, that is, different than the large majority of investigated esters possessing phenylic groups in 
the molecule structure. In the case of compound 161 one can suggest the molecule symmetry as a 
possible cause of the prediction error, suggesting that compounds with symmetrically located 
substituents connected via oxygen with the phosphorus atom placed in the central part of a molecule 
need a more elaborated parameterization. The largest outlier is predicted with an error of 1.28%. 

A wider examination of the prediction results for each of the tested networks has shown that 
some of substantial errors associated with investigated compounds occurred only for the above–
discussed model. Others appeared among the test results, which had been obtained using the rest of 
the multilayer ANN models characterized in Table 3. This observation suggest that phosphates and 
diphosphates with symmetrically located constituents in relation to the center of molecule as well as 
the branched in neighborhood of functional group need more elaborated descriptors. Irrespective of 
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these outliers and the observed dispersion of prediction errors most of predictions (64%) are 
estimated with the inaccuracy less than the mean error value of 0.0036. The performance of the 
model is satisfactory, with an average prediction error of 0.24%. 

The next of models characterized in Table 3 and developed on the base of the network with 19 
inputs presents slightly lower predictive ability then the model utilizing 20 variables described 
above. Adequate statistical characteristics both for the training and cross–validation phase (AAE
0.0033, R2 0.9906 and AAEcv 0.0037, R2

cv 0.9882, respectively) show the greater inaccuracy of the 
obtained refractive index estimations. 

The final network architecture (18:2:1) used for estimation of the refractive indexes values has 
the lowest predictive ability: AAE 0.0033, R2 0.9894 and AAEcv 0.0038, R2

cv 0.987. It should be 
noticed that the predictions were obtained with more than twice reduced number of structural 
descriptors in comparison with the linear model. Although the number of adjustable parameters 
(weights of connections between neurons) is comparable with number of coefficients in the linear 
network, the obtained statistics show that the predictive power of nonlinear model remains better. 

4 CONCLUSIONS

The main focus of this paper was to provide the evidence that the tested structural descriptors are 
useful and effective for QSPR modeling. They are representing particular structural descriptors that 
can be related to the refractive index of phosphorus compounds. The refractive index values of 
diverse phosphates and diphosphates, comprising various types of structures (aliphatic: normal and 
branched, cyclic: alicyclic and aromatic) for different temperatures in the range of 20–25 ºC have 
been successfully predicted using artificial neural networks. The prediction was possible solely on 
the basis of the molecular structure. The predicted values have an average error of 0.24% when 
compared with experimental values. The obtained model may be used with a high degree of 
confidence for practical prediction of the refractive index of organic phosphates. 

Despite the demonstrated usefulness of elaborated descriptors, it should be emphasized that 
further investigations are necessary for selection of the most informative structural descriptors that 
enable a neural network to model structure–physical property relations for a wide group of 
compounds. The coding method requires a wide range of experiments in order to determine how the 
structural code behaves in modeling the physical properties of chemicals. The results of this work 
proved that a feed–forward, multilayer neural network can be easily trained to model the structure–
properties relationship for the investigated group of organic compounds. These non–linear models 
can predict the refractive indexes of phosphates and diphosphates more accurately than the linear 
model.
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Supplementary Material
The molecular files containing the structure geometry for all phosphates and diphosphates used in investigated 

QSPR models are deposited as an archive in the Phosphate.zip. Also numerical representations (vectors of indices 
values) obtained in the coding phase of this work, are collected in file: Phosphate_D.txt attached as a supplement to this 
article.
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