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Abstract 

Motivation. It is important to determine whether a candidate molecule is capable of penetrating the blood–brain 
barrier in drug discovery and development. The aim of this paper is to develop a predictive model for blood–
brain barrier penetration only using two simple descriptors, molecular volume (V) and polar surface area (PSA,
defined as the sum of the van der Waals surface areas of oxygen atoms, nitrogen atoms, and attached hydrogen 
atoms in a molecule). 
Method. A data set of 100 compounds, which was studied by other research groups, is divided into a training set 
of 61 compounds and two test sets (14 and 25 compounds). Molecular volumes and polar surface areas are 
obtained from the molecular conformations optimized using the semiempirical self–consistent field molecular 
orbital calculation AM1 method. The model to predict blood–brain barrier penetration from molecular volume 
and polar surface area is derived on the training set using the stepwise multiple regression analysis and then 
cross–validated using leave–one–out procedure and tested on the external prediction. 
Results. A logBB model is developed using the training set of 61 compounds (4 compounds are excluded as 
outliers): logBB = –16.79 (±3.28) V2 + 11.24 (±2.06) V – 2.249 (±0.161) PSA – 0.6583 (±0.2326) (n = 57, r2 = 
0.832, q2 = 0.804, s = 0.329, F = 87.2), where logBB is the logarithm of the ratio of the steady–state 
concentration of a compound in the brain to in the blood, n is the number of compounds, r is the correlation 
coefficient, q is the cross validation coefficient, s is the standard deviation, F is the Fisher F–statistic. The model 
is validated through two external test sets (14 compounds and 25 compounds). The root mean squared errors 
(RMSE) are 0.599 for test set 1 of 14 compounds and 0.551 for test set 2 of 25 compounds. The simple model 
performs as well as other logBB models developed using the same data set but different descriptors. 
Conclusions. The model derived in this paper for the prediction of BBB penetration shows a good predictive 
power. It shows that the hydrogen–bonding potential, lipophilicity, and molecular size are important factors to 
affect BBB penetration. The model is one of the simplest logBB models and suitable for the rapid prediction of 
the BBB penetration for a wide range of drug candidates. 
Keywords. Blood–brain barrier; predictive model; molecular volume; polar surface area. 

Abbreviations and notations 
BBB, blood–brain barrier BB, brain/blood concentration ratio 
CNS, central nervous system V, molecular volume 
PSA, polar surface area RMSE, root mean square error 
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1 INTRODUCTION 

It is important to determine whether a candidate molecule is capable of penetrating the blood–

brain barrier (BBB) in drug discovery and development. Drugs that act in the central nervous 

system (CNS) need to cross the BBB to reach their molecular target. By contrast, for drugs with a 

peripheral target, little or no BBB penetration might be required in order to avoid or minimize CNS 

side effects. A common measure of the degree of BBB penetration is the ratio of the steady–state 

concentration of the drug molecule in the brain to in the blood, usually expressed as log(Cbrain/blood)

or logBB. The experimental determination of logBB is a time–consuming, expensive, and difficult 

technique, requiring animal experiments and the synthesis of the test compounds, usually in 

radiolabeled form [1–4]. It is of considerable value to predict logBB values of compounds from 

their physicochemical parameters or, ideally, from their molecular structures. 

Young et al. [2] showed that logBB values of 20 H2 receptor histamine antagonists were 

correlated with logP (octanol–cyclohexane): 

logBB = –0.485 (±0.160) logP + 0.889 (±0.500) 
n = 20 r = 0.831 s = 0.439 F = 40.23 (1)

where n is the number of compounds, r is the correlation coefficient, s is the standard deviation, F is 

the Fisher F–statistic. The quantities in parentheses are the standard deviations of the coefficients. 

Van de Waterbeemd and Kansy [5] examined the same series of 20 compounds and found a 

significant correlation between logBB and the cyclohexane–water partition coefficient (logPcyc)

when the molecular volume was included in the parameterization. They also found that logBB was 

correlated with polar surface area (PSA, defined as the sum of the van der Waals surface areas of 

oxygen atoms, nitrogen atoms, and attached hydrogen atoms in a molecule): 

logBB = 0.338 logPcyc – 0.00618 VM + 1.359 
n = 20 r = 0.934 s = 0.29 F = 58 (2)

logBB = –0.021 (±0.003) PSA + 0.003 (±0.001) VM + 1.643 (±0.465) 
n = 20 r = 0.835 s = 0.448 F =19.5 (3)

where VM is a calculated solute molar volume. The great advantage of Eq. (3) is that it only uses the 

calculated parameters. However, the model showed it to be poorly predictive when tested with 

compounds outside its training set [6], suggesting that the structural diversity of the 20 H2 receptor 

histamine antagonists might be insufficient to develop a generally applicable model for predicting 

logBB. Thus Abraham et al. [7] constructed a larger training set of 65 compounds and derived a 

correlation between logBB and solvato–chromatic parameters for 57 compounds (8 compounds 

were excluded as outliers): 
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logBB = –0.038 (±0.064) + 0.198 (±0.100) R2 – 0.687 (±0.125) H
2  – 0.715 (±0.334) H

2  –
0.698 (±0.107) H

2  + 0.995 (±0.096) Vx

n = 57 r = 0.952 s = 0.197 F = 99.2 
(4)

where R2 is an excess molar refraction, H
2  is a dipolarity/polarizability parameter, H

2  and 
H

2  are the solute hydrogen–bond acidity and basicity, and Vx is the characteristic volume of 

McGowan. From the data set above (57 compounds, of which some compounds were excluded as 
outliers), Lombardo [8], and Clark [9] utilized calculated parameters (free energy of solvation in 
water, Gw

0 , PSA, and calculated octanol–water partition coefficient, ClogP or MlogP ) to develop 
logBB models, respectively. 

logBB = 0.054 (±0.0005) WG 0  + 0.43 (±0.07) 
n = 55 r = 0.82 s = 0.41 F = 108.3 

(5)

logBB = –0.0148 (±0.001) PSA + 0.152 (±0.036) ClogP + 0.139 (±0.073) 
n = 55 r = 0.887 s = 0.354 F = 95.8 (6)

logBB = –0.0145 (±0.001) PSA + 0.172 (±0.022) MlogP + 0.131 (±0.033) 
n = 55 r = 0.876 s = 0.369 F =86.0 (7)

Luco [10] constructed a data set of 100 compounds which were divided into a training set (61 
compounds) and two test sets (14 and 25 compounds) and developed a three–component model 
using the partial least–squares procedure (PLS) with 18 topological and constitutional descriptors. 
Both Feher [11] and Subramanian [12] examined the same data set and proposed the logBB models 
as Eq. (8) and (9): 

logBB = –0.0017 Apol + 0.1092 ClogP – 0.3873 nacc,solv + 0.4275 
n = 61 r2 = 0.730 q2 = 0.688 s = 0.424 F = 51 (8)

where Apol is the polar surface area estimated from the solvent–exposed area of the compound 
assuming a spherical solvent molecule with a radius of 1.4 Å and considering only those parts of the 
surface with the absolute value of the partial charge greater than 0.2, nacc,solv is the number of 
hydrogen–bond acceptors in an aqueous medium, q is the cross validation coefficient. 

logBB = 0.122 S_sssN – 0.114 Rotlbonds + 0.0359 Jurs–WNSA–3 –0.0615 S_dsN + 0.313 
AlogP –0.0959 S_sssCH + 0.108 Rog – 0.0204 

n = 58 r2 = 0.845 q2 = 0.811 s = 0.314 F = 97.9 
(9)

where S_sssN is the summation of the electrotopological indices for all N atoms connected by three 

single bonds, Rotlbonds is the number of rotatable bonds, Jurs–WNSA–3 is the surface weighted 

charged partial surface area, S_dsN is the summation of the electrotopological indices for all N 

atoms connected by a double and single bond, AlogP is Ghose and Crippen logP, S_sssCH is the 

summation of the electrotopological indices for all CH groups connected by three single bonds, and 

Rog is the radius of gyration. 
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In summary, the BBB penetration of a compound is thought to be dependent on its hydrogen–

bonding potential, lipophilicity and size. Weak hydrogen–bonding potential, high lipophilicity, and 

small size are favorable to BBB penetration. In this paper, we derive a predictive model for BBB 

penetration only using two simple descriptors, molecular volume (V) and polar surface area. 
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Figure 1. Compounds 1–31 and 62–75.
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2 MATERIALS AND METHODS 

The data set of 100 compounds and their corresponding logBB values is taken from the literature 
[10]. The division of compounds into a training set (61 compounds) and two test sets (14 and 25 
compounds) is taken from the same source [10]. Molecular volumes and polar surface areas are 
selected as the structural descriptors to develop predictive model for BBB penetration. These 
structural descriptors are obtained from the molecular conformations optimized using the 
semiempirical self–consistent field molecular orbital calculation AM1 method [13] and the atomic 
radii used by Clark [9]. The model to predict blood–brain barrier penetration is derived on the 
training set using the stepwise multiple regression analysis and then cross–validated using leave–
one–out procedure [14] in which one compound is left out from the training set and predicted from 
the model based on the remaining data and tested on the external prediction. 
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Table 1. Experimental and calculated logBB values for the training set compounds and their computed descriptors 
logBBNo Compound V (nm3) PSA (nm2) Exp.a Calc.b Res.c

1  0.3097 0.9784 –1.42 –0.99 0.43 
2  0.1735 0.7807 –0.04 –0.97 –0.93 
3  0.5088 0.8774 –1.06 –1.26 –0.20 
4  0.3812 0.3011 0.49 0.51 0.02 
5  0.3828 0.0540 0.83 1.06 0.23 
6  0.3488 1.4402 –0.82 –2.02 –1.20 
7  0.3424 0.8425 –0.67 –0.67 –0.00 
8  0.3169 0.8517 –0.66 –0.70 –0.04 
9  0.4313 0.8171 –0.12 –0.77 –0.65 

10  0.2418 0.7636 –0.18 –0.64 –0.46 
11  0.2516 1.0403 –1.15 –1.23 –0.08 
12  0.3016 1.0698 –1.57 –1.20 0.37 
13  0.3420 1.3859 –1.54 –1.89 –0.35 
14  0.3902 0.9170 –0.27 –0.89 –0.62 
15  0.3897 0.9412 –0.28 –0.94 –0.66 
16  0.3941 0.4831 –0.46 0.08 0.54 
17  0.4633 0.4442 –0.24 –0.05 0.19 
18  0.3383 0.3815 –0.02 0.36 0.38 
19  0.4327 0.3664 0.69 0.24 –0.45 
20  0.4219 0.3753 0.44 0.25 –0.19 
21  0.4773 0.3608 0.14 0.07 –0.07 
22  0.4654 0.5428 0.22 –0.28 –0.50 
23  0.4736 0.9747 –2.00 –1.29 0.71 
24  0.5482 0.7260 –1.30 –1.17 0.13 
25  0.2404 0.4206 0.11 0.13 0.02 
26  0.3875 0.8629 –1.12 –0.76 0.36 
27  0.5010 0.8539 –0.73 –1.16 –0.43 
28  0.2415 0.9040 –1.17 –0.96 0.21 
29  0.3882 0.8955 –1.23 –0.84 0.39 
30  0.3562 0.7315 –2.15 –0.43 1.72 
31  0.4863 0.8364 –1.88 –1.04 0.84 
32 butanone 0.1164 0.1998 –0.08 –0.03 0.05 
33 benzene 0.1147 0.0000 0.37 0.41 0.04 
34 3–methylpentane 0.1597 0.0000 1.01 0.71 –0.30 
35 3–methylhexane 0.1828 0.0000 0.90 0.84 –0.06 
36 2–propanol 0.0989 0.2311 –0.15 –0.23 –0.08 
37 2–methylpropanol 0.1223 0.2201 –0.17 –0.03 0.14 
38 2–methylpentane 0.1608 0.0000 0.97 0.71 –0.26 
39 2,2–dimethylbutane 0.1587 0.0000 1.04 0.70 –0.34 
40 1,1,1–trifluoro–2–chloroethane 0.1009 0.0000 0.08 0.31 0.23 
41 1,1,1–trichloroethane 0.1237 0.0000 0.40 0.48 0.08 
42 diethyl ether 0.1272 0.1052 0.00 0.26 0.26 
43 enflurane 0.1446 0.0918 0.24 0.41 0.17 
44 ethanol 0.0760 0.2421 –0.16 –0.45 –0.29 
45 fluroxene 0.1311 0.1104 0.13 0.28 0.15 
46 halothane 0.1273 0.0000 0.35 0.50 0.15 
47 heptane 0.1857 0.0000 0.81 0.85 0.04 
48 hexane 0.1630 0.0000 0.80 0.73 –0.07 
49 isoflurane 0.1444 0.1003 0.42 0.39 –0.03 
50 methylcyclopentane 0.1460 0.0000 0.93 0.63 –0.30 
51 pentane 0.1388 0.0000 0.76 0.58 –0.18 
52 propanol 0.0995 0.2417 –0.16 –0.25 –0.09 
53 propanone 0.0932 0.2201 –0.15 –0.25 –0.10 
54 teflurane 0.1141 0.0000 0.27 0.41 0.14 
55 toluene 0.1389 0.0000 0.37 0.58 0.21 
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Table 1. (Continued) 
logBBNo Compound V (nm3) PSA (nm2) Exp.a Calc.b Res.c

56 trichloroethene 0.1130 0.0000 0.34 0.40 0.06 
57 acetylsalicylic acid 0.2048 0.6940 –0.50 –0.62 –0.12 
58 valproic acid 0.2155 0.4233 –0.22 0.03 0.25 
59 salicylic acid 0.1522 0.6312 –1.10 –0.76 0.34 
60 p–acetamidophenol 0.1817 0.5959 –0.31 –0.51 –0.20 
61 chlorambucil 0.3575 0.4884 –1.70 0.12 1.82 

a From reference [10]; b Calculated from Eq. (10); c Residuals 

3 RESULTS AND DISCUSSION 

3.1 The Predictive Model of BBB Penetration only Including V and PSA
The 61 compounds of training set are illustrated in Figure 1 and listed in Table 1 along with their 

experimental logBB values. 

Using PSA and V as regression variables, the following regression equation is obtained from the 
stepwise multiple regression analysis (including quadratic terms) for the training set of 61 
compounds, 

logBB = –16.79 (±3.28) V2 + 11.24 (±2.06) V – 2.249 (±0.161) PSA – 0.6583 (±0.2326) 
n = 57 r2 = 0.832 q2 = 0.804 s = 0.329 F = 87.2 (10)
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Figure 2. Relationship between experimental and calculated logBB values for the training set. 

Compounds 2, 6, 30, and 61 are found to have great residuals and removed from above equation 

as outliers. There appears to be no common structural similarity among the outliers that is 

significantly different from the rest of the training set. The outlier status of these compounds may 



A Predictive Model for Blood–Brain Barrier Penetration 
Internet Electronic Journal of Molecular Design 2005, 4, 737–750 

746 
BioChem Press http://www.biochempress.com

be due to inaccuracies in the measurement of the logBB value or may result from the influence of 

metabolic factors or active transport systems. The calculated logBB values for the training set are 

presented in Table 1 and the experimental and calculated logBB values are plotted in Figure 2. 

Eq. (10) displays good statistical significance. As shown in Table 1 and Figure 2, the calculated 

logBB values are in good agreement with respective experimental ones. Because the polar surface 

area is a descriptor of hydrogen–bonding potential [15], Eq. (10) indicates that the logBB of a 

compound is inversely correlated with its hydrogen–bonding capacity. Eq. (10) shows the parabolic 

relation between logBB and molecular volume. The explicit descriptor for lipophilicity is absent 

from Eq. (10) and the molecular volume terms in the equation represent a combination of the 

impacts of molecular size and lipophilicity on BBB penetration. Increasing molecular volume 

decreases molecular diffusion through a lipid membrane and therefore decreases logBB value. On 

the other hand, bigger molecular volume also means higher lipophilicity which facilitates BBB 

penetration.

3.2 Model Validation Using the Leave–One–Out Procedure
Eq. (10) is validated using leave–one–out procedure. Its cross validation coefficient (q2 = 0.804) 

is very close to its correlation coefficient (r2 = 0.832). 
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Figure 3. Relationship between experimental and predicted logBB values for the test sets. Test set 1 data are 
represented with , while test set 2 data are represented with .
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3.3 Model Validation Using Test Set outside the Training Set 
In order to assess the predictive power of Eq. (10) further, two test sets of logBB values are 

predicted. The experimental and predicted logBB values are listed in Table 2 and plotted in Figure 
3, while compounds 62–75 of test set 1 are illustrated in Figure 1. 

Table 2. Experimental and predicted logBB values for the test set compounds and their computed descriptors. 
logBBNo Compound V (nm3) PSA (nm2) Exp.a Pred.b Pred.c Pred.d Pred.e

Test set 1 
62  0.2477 0.4004 –1.30 0.20 –0.036 –0.20 0.067 
63  0.2051 0.4765 –1.40 –0.13 –0.292 –0.50 –0.159 
64  0.3696 0.6736 –0.43 –0.31 –0.263 –0.28 –0.617 
65  0.3624 0.4342 0.25 0.23 0.170 0.22 0.054 
66  0.1936 0.2813 –0.30 0.26 –0.139 –0.07 –0.032 
67  0.2164 0.1880 –0.06 0.56 0.016 0.01 0.350 
68  0.1560 0.4216 –0.42 –0.26 –0.510 –0.44 –0.319 
69  0.3755 0.4031 –0.16 0.29 –0.285 –0.39 0.342 
70  0.2763 0.4667 0.00 0.12 –0.005 0.18 0.568 
71  0.2858 0.6592 –0.34 –0.30 0.005 –0.46 0.064 
72  0.3981 0.7959 –0.30 –0.63 –0.447 –1.63 0.204 
73  0.4053 1.0088 –1.34 –1.13 –0.931 –2.19 –0.443 
74  0.4124 1.2201 –1.82 –1.62 –1.308 –2.74 –1.289 
75  0.3774 0.0560 0.89 1.07 0.966 1.00 1.414 

Test set 2 
76 theophylline 0.1993 0.7688 –0.29 –0.81 –0.512 –1.43 0.011 
77 caffeine 0.2253 0.6075 –0.06 –0.34 –0.219 –1.03 0.141 
78 antipyrine 0.2357 0.2728 –0.10 0.44 0.474 –0.03 0.287 
79 ibuprofen 0.2816 0.4133 –0.18 0.25 –0.555 –0.09 0.108 
80 codeine 0.3596 0.4836 0.55 0.12 0.271 –0.75 –0.012 
81 pentobarbital 0.2822 0.8646 0.12 –0.77 –0.191 –0.77 –0.545 
82 alprazolam 0.3467 0.4675 0.04 0.17 0.332 –0.58 0.400 
83 indomethacin 0.3988 0.7630 –1.26 –0.56 –1.032 –1.07 –1.633 
84 oxazepam 0.3072 0.6951 0.61 –0.35 –0.476 –0.70 –0.743 
85 hydroxyzine 0.4674 0.4264 0.39 –0.03 0.128 –0.20 –0.440 
86 desipramine 0.3769 0.0932 1.20 0.98 0.426 0.77 0.943 
87 midazolam 0.3677 0.3206 0.36 0.48 0.400 –0.02 –0.139 
88 verapamil 0.5994 0.6787 –0.70 –1.48 –1.111 –1.32 –0.714 
89 promazine 0.3607 0.0834 1.23 1.02 0.832 0.78 0.838 
90 chlorpromazine 0.3788 0.0831 1.06 1.00 0.710 0.86 0.735 
91 trifluoroperazine 0.3944 0.0948 1.44 0.95 0.459 0.70 0.311 
92 thioridazine 0.4579 0.0698 0.24 0.81 1.062 0.89 0.708 
93 BCNU 0.2258 0.6703 –0.52 –0.48 –0.570 –0.56 –0.877 
94 phenserine 0.4191 0.4825 1.00 0.02 0.230 –0.23 1.000 
95 physostigmine 0.3514 0.5167 0.08 0.06 0.007 –0.50 0.614 
96 terbutylchlorambucil 0.4528 0.2624 1.00 0.40 –0.227 0.28 –0.939 
97 didanosine 0.2625 1.0139 –1.30 –1.15 –0.816 –1.95 –1.115 
98 zidovudine 0.2941 1.3735 –0.72 –1.89 –1.024 –2.37 –1.227 
99 nevirapine 0.3132 0.5732 0.00 –0.07 –0.285 –0.95 –0.076 

100 SB–222200 0.4817 0.4306 0.30 –0.11 0.426 0.19 0.723 
a From reference [10]; b Predicted from Eq. (10); c Predicted from the model developed by Luco [10]; d Predicted from 
Eq. (8) [11]; e Predicted from Eq. (9) [12] 
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As may be seen from Table 2 and Figure 3, the predicted logBB values from Eq. (10) are in good 

agreement with the respective experimental ones for the test set 1 compounds except compounds 62

and 63. The logBB values for the two compounds are strongly overestimated by the model. It can be 

seen that the logBB values of the two compounds are also overestimated by other models [10–12] 

and can be considered as outliers. For the remaining 12 non–outlier compounds, the root mean 

squared error (RMSE) is 0.314. 

For test set 2 of 25 compounds, the predicted logBB values from Eq. (10) also agree well with 

the respective experimental ones and only three compounds (84, 94, and 98) are predicted above or 

near three standard deviations. The RMSE value calculated on the 25 validation compounds is 

0.551, while the RMSE value for the reduced data set (excluding compounds 84, 94, and 98) is 

0.443. Considering the experimental difficulties and the varied experimental conditions under 

which the logBB values have been obtained, the predictive model for BBB penetration containing 

only molecular volume and polar molecular surface area performs reasonably well. 

3.4 Comparison with Other Predictive Models

Luco [10], Feher [11], Subramanian [12] and their co–workers have analyzed the same data set. 

They developed logBB models from the same training data set of 61 compounds (excluding several 

outliers), then validated the models using leave–one–out procedure and external test sets. The 

model developed by Luco is a three–component model including 18 topological and constitutional 

descriptors [10]. Eq. (8) was developed by Feher et al. [11] and Eq. (9) was the best QSAR model 

derived by Subramanian et al. using constitutional, topological, and physicochemical descriptors 

[12]. The predicted logBB values for test sets from the models are listed in Table 2 and the 

properties of the models along with our model are presented in Table 3. 

Table 3. Properties of four logBB models 
 This work Luco [10] Feher et al. [11] Subramanian et al. [12] 
Training set n = 57 n = 58 a n = 61 n = 58b

r2 0.832 0.850 0.730 0.845 
s 0.329 0.318 0.428 0.314 
q2 0.804 0.752 0.688 0.811 
Test set 1     
RMSE 0.599 0.499 0.628 0.659c

Test set 2     
RMSE 0.551 0.541 0.789 0.652c

a Compounds 2, 6, and 30 are excluded as outliers; b Compounds 6, 28 and 30 are excluded as outliers; c RMSE for the 
reference [12] was calculated using the predicted and experimental values given there. 

As shown in Table 2 and Table 3, our model performs as well as three–component PLS model 

[10] and seven–descriptor model, Eq. (9). They have similar outliers such as compounds 6 and 30 in 
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the training set, compounds 62 and 63 in test set 1, and compound 84 in test set 2. They also have 

similar correlation coefficient and standard deviation for the training set and similar RMSE values 

for both test set 1 and test set 2. However, our model is simpler than the other two models, so more 

suitable for the rapid prediction of the BBB penetration for a wide range of drug candidates. 

Compared with Eq. (8) developed by Feher et al. [11], our model seems to perform better than 

Eq. (8), especially for the test sets. The predicted logBB values from Eq. (8) strongly deviate from 

the respective experimental ones for compounds 72 and 74 of test set 1 and compounds 76, 77, 80,

and 99 of test set 2 in addition to compounds 62, 63, 84, 94, and 98.

4 CONCLUSIONS 

The model derived in this paper for the prediction of BBB penetration shows a good predictive 

power. It contains only two descriptors, namely molecular volume and polar surface area which can 

be easy to interpret and compute. The model shows that the hydrogen–bonding potential, 

lipophilicity, and molecular size are important factors to affect BBB penetration. The model is one 

of the simplest logBB models and suitable for the rapid prediction of the BBB penetration for a 

wide range of drug candidates. However, it must be noted that our model is only valid for passive 

diffusion processes across the BBB. There are non–passive transport systems such as P–

glycoprotein efflux in the brain and compounds which are affected by these are not likely to be 

well–predicted.
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