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Abstract— This paper deals with the D-
stability test of a polytope of polynomials when
the boundary 0D of a given simple connected
domain D in the complex plan is described by
a polynomial equation, a problem that covers
two special but important cases: Hurwitz sta-
bility and Schur stability of a polytope of poly-
nomials. Based on the “Edge Theorem” and
the method of Dixon’s resultant elimination, a
new test approach is presented. By using the
presented method, the stability test can be car-
ried out by computing Dixon’s resultants and
solving linear matrix equations. Two examples
are given to demonstrate the approach.

Keywords— polytope, polynomials, robust
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I. INTRODUCTION

The robust stability of dynamic systems has drawn
great attention over the past decades since various un-
certainties and errors always exist in the system mod-
eling and parameter estimation. As is well-known,
the stability analysis can be carried out by studying
the root locations of the characteristic polynomials.
Two important results for robust stability are due to
Kharitonov (1979) who established a theory for the
stability of interval families of polynomials, and to
Bartlett et al. (1988) who developed the “Edge Theo-
rem” for polytopic family of polynomials. Afterwards,
different approaches, mainly based on the “Edge The-
orem” or the “Zero-Exclusion Principle”, for checking
the robust stability of a given polytope of polynomi-
als were developed. A comprehensive description of
robust stability analysis under parametric uncertainty
was given in (Bhattacharyya et al., 1995).

The aim of this study is to present a new approach to
test the D-stability of a given polytopic family 2 when
the boundary 9D of D is described by a polynomial
equation. Here, a family Q of polynomials is called D-
stable if every polynomial in  is D-stable, namely, all
the zeros of each member of Q stay in D. The classi-
cal Hurwitz stability and Schur stability fall into this
category. Result that is most closely related to this
paper is (Zeheb, 1989). Zeheb’s method is simple, but
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it cannot be applied to our case in general. Based on
the “Edge Theorem”, the idea of the Dixon’s resultant
for multivariate polynomials as in (Yang et al., 1996)
is applied in this paper to carry out the D-stability
test. With this method, we need only to compute sev-
eral Dixon’s resultants and to solve some linear matrix
equations. So the testing procedure is very simple.

II. PROBLEM FORMULATION

The polynomials under study are in the form
p(A) =apA" +a A" 4 dap A ta, (1)

where the real coefficients a;, ¢ = 0,1,---,n, depend
linearly on some parameters that vary in given inter-
vals respectively. Then, the family of polynomials is a
polytope, generated by a finite number of polynomials
p1(A), p2(A), -+, pr(A) , as following

Q = conv{p1(A), p2(A), ---, pr(A)} (2)

where p;(A), (¢ =1,2,---,7) are in the form of Eq.(1)
and are called vertex polynomials. Let D be a sim-
ple connected domain in the complex plane with the
boundary dD. The “Edge Theorem” states that the
family Q of polynomials is D-stable if and only if all
the “exposed” one-dimensional edge polynomials are
D-stable. Here, each edge polynomial generated by
two vertex polynomials p;(\) and p;()) is a sub-family
Pij (A, ) with a parameter p

pii(A ) = (L= pwpi(A) + pp;(X), pe[0,1]  (3)

In this paper, we assume that OD is described by
a polynomial equation b(z,y) = 0. This covers two
special but important cases. For the Schur stability
of discrete-time systems, D is the open unit disk in
the complex plane and b(z,y) = 22 + y2 — 1. For the
Hurwitz stability of continuous-time systems, D is the
open left half complex plane and b(z,y) = z. Since
pij (A, 1) is analytic with respect to A and pu, a root
A = A(u) of pi;(A, p) is continuous and cannot sud-
denly appear or disappear, or change its multiplicity
at a finite point in the complex plane. With a vari-
ation of p, thus, the sum of multiplicity of all roots
of p;j(A, ) = 0 in D¢, the complement of set D, can
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change only if a root appears on or crosses the bound-
ary 0D.

Let A = x+iy, we see that the edge polynomial
is marginal stable if and only if (z,y,u) is a real
common root of three polynomials Re[p;;(z-+iy, u)],
Im[p;;(z+iy, n)], and b(z,y). Thus, p;;(z+iy, u) # 0,
subject to u € [0,1] and b(z,y) = 0, holds true if and
only if Re[p;;(z+iy, p)] = 0, Im[p;;(z+iy, u)] = 0 and
b(z,y) = 0 have no real common roots for all x € [0, 1].
This leads to the following

Theorem 1 The polytopic family Q of polynomials is
D-stable if and only if (a): at least one of vertex poly-
nomials has all roots in D; (b): for each “exposed” edge
polynomial, Re[p;;(x+iy, u)] = 0, Im[p;;(z+iy, u)] =0
and b(z,y) = 0 have no real common real roots (z,y)
for all p € [0,1], where p;;(X, p)is defined in Eq.(3).

We are interested in determining all the possible
values of p € [0,1] for which the three polynomials
Re[pij(z+iy, p)], Im[p;;(z+iy, )] and b(z, y) have real
common roots, since the corresponding polynomials
consist of the test set of polynomials. These values of
1 can be determined by using the theories of polyno-
mials such as Sylvester resultant (Yang et al., 1996),
the method of Grébner basis (Adams and Loustaunau,
1994). In this paper, we use the idea of the Dixon’s
resultant to complete the D-stability analysis. The
D-stability can be carried out by simply determining
whether the linear matrix equations for the edge poly-
nomials have real solutions subject to some very simple
conditions.

ITITI. STABILITY TEST

For each “exposed” edge, we denote by fi(z,y),
f2(z, y) the real and imaginary parts of p;; (z+iy, u) re-
spectively, and f3(z,y) = b(z,y), the boundary poly-
nomial. The peculiarity of our method is to consider
these three polynomials in three unknowns z,y, and u
as to three polynomials in two unknowns z and y, with
1 as a parameter. Namely, we study the following set
of polynomial equations

f2(z,y) =0, f3(z,y) =0 (4)

The main procedures used here are as follows. First,
a set of polynomial equations is constructed from PS
and the new polynomial equations are considered as to
linear equations with respect to the different powers of
= and y. Then, solving PS is studied on the basis of
theory of linear algebraic equations.

A. The Method of Dixon’s Resultant

Let us first consider two n-th order real polynomials
f(z) and g(z), the expression

a) = f(z)g(e) — f(a)g(x) (5)

T —«
can be easily verified to be a polynomial with respect
to x, . We assume that different terms have different

PS: fi(z,y) =0,

§(=,
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powers with respect to a, as well as with respect to
z. For any common root zg of f(z) and g(z), we have
0(zo,) = 0 for all @. Thus the coefficients of § with
respect to the powers o™, a""1,--- a,a’(= 1) must
vanish. In terms of the powers z", z"~! ... z,2%(=
1), the vanishing coefficients can be expressed as to a
linear matrix equation. The coefficient matrix of the
linear matrix equation is called Bezout matrix, and its
determinant is called the Bezout resultant, which is the
same as the Sylvester resultant but the Bezout matrix
has lower oder than the corresponding Sylvester ma-
trix. It is well-known that f(z) and g(z) has a com-
mon nonconstant factor if (and only if) the Bezout
resultant is zero (Yang et al., 1996). If deg(f) =n >
m =deg(g), then the above process can be performed
by writing g(z) = 0-2"+0-2" "' +.--+0-2™ 1 4 g(z).

As for PS, let «, 8 be two new variables, and define
a 3rd order determinant for PS.

fl(xay) f2($7y) f3($vy)

A(xay;ang) = fl(a)y) f2(aay) f3(a7y)
fl(aaﬂ) fZ(aaﬂ) f3(a’/8) ( )
6

Since A(a,y;a,8) = 0 and A(z, B;a,8) = 0, there is

a factor (z — a)(y — B8) in A(z,y; o, ), thus
N 7 TS
devieh) = - p) ™

is a polynomial with respect to z,y,a and (3, and is
called the Dixon’s reduced polynomial of PS.
If we expand the three polynomials in PSS to be

=SS ey,

=0 j=0

(k=1,2,3) (8)

(here, we remember that y is considered to be a pa-
rameter), then we can rewrite § as to

2m—1n—1m-—12n—1

Z Z Z Z d'L]kl$ Yy akﬂl (9)

k=0 [=0 i=0 j35=0

é(z,y;0,8) =

As in the above simple case, each real common root
(zo,yo0) of PS satisfies also the following equations:

m—12n—1 ]
Z Z dijrizoyp = 0 (10)
i=0 j=0

forall k=0,1,2,---,2m—1and [ =0,1,2,---,n— 1.

These equations are called the Dixon’s reduced poly-
nomial equations, and can be rewritten in the form of
linear matrix equation

2m—1yn—1 y T 1 ]T (11)
with M € R?™n*2mn_ The determinant J(u) = |M] is
called the Dixon’s resultant. If fi(z,y), fo(z,y) and
f3(z,y) have a real common root, the above linear
matrix equation must have a non-zero solution since
z # 0, hence J(u) = 0.

Generally, the following two cases are possible:

Mz = 0, z:[w
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e The order of M may be smaller than 2mn, since
it is not necessary that all the powers 2*y® up
to z™y"™ appear in (8).

M may not be square. If we add some formal
7zero” coeflicients to the equations, the deter-
minant |M]| vanish, then the resultant does not
give any information for determining the possi-
ble values p.

In (Kapur et al., 1994), it has been shown that there
exists a nonzero necessary condition J(x) = 0 for the
existence of a common root of a generally given set of
polynomial equations, and an algorithm is provided for
computing such a nonzero necessary condition, which
has successfully been implemented in MAPLE, a well-
known computer algebra.

For our purpose, however, the linear matrix equa-
tion (11) for PS is usually enough. What is impor-
tant is that one can transform the coefficient matrix
M into another matrix of triangular form, then the lin-
ear matrix equation can be solved recursively. Usually,
one can solve two of the simplified linear equations for
(z,y) and then substitute it into a third equation, or
the boundary condition, to obtain a necessary condi-
tion J(u) = 0, where J(u) is a polynomial. For sim-
plicity, J(u) is also called Dixon’s resultant. At each
root u € [0,1] of Ji;(u) or Jij (1), one can solve easily
the corresponding linear equation (11). We call the
above procedure to be the Dixon’s resultant method.

B. D-stability Test

From the above analysis, we see that the D-stability of
pi;j (A, p) can be changed only if 4 € [0, 1] reaches the
zeros of Ji;(u) or Ji;(p) with a variation of u from 0 to
1. Once a non-zero Dixon’s resultant J;; (1) or Ji; ()
is obtained, the test set of polynomials that govern
the D-stability of the whole family can be achieved.
In fact, let A;; = {p € [0,1] : J;;(n) =0, or Jij(p) =
0}7 ]-IL] = {plj()‘nu’) DpE Aij’ H = 0,1}7 and T =
U;,; Tij» then, it is obvious that the polytopic family
is D-stable if and only if T is D-stable. Since the
number of exposed edges and all the numbers of zeros
of J;;(p) or J;j(u) are finite, the number of testing
polynomials is finite.

In practice, we need not to test the D-stability of
each member of T, but to solve some linear matrix
equations only. To see this, we note that PS has no
real common solution if and only if for each edge poly-
nomial, one of the following three cases occurs:

(C1) Ji;(w) or Jij(p) has no real zeros in p € [0,1];
or at each p € A,
(C2) Eq. (11) has no real solution z; or

(C3) Eq. (11) has a solution z¢ which gives a pair val-
ues of x = z¢ and y = yp but it is not compatible
to the powers in z = zq.
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It concludes to the following theorem.

Theorem 2 The polytopic family 2, defined in (2),
of polynomials is D-stable if and only if (a): at least
one of the vertex polynomials is D-stable; (b): for each
“exposed” edge, one of the conditions, (C1), (C2) or
(C8), holds true.

This theorem yields a simple algorithm as below to
test the D-stability of Q when 0D can be described by
b(z,y) = 0.

Algorithm 1 D-Stability Test of 2

e Step 1: Select one of the vertex polynomials,
say, p1(N), and test whether all of its zeros lie in
D. If it has a Toot in D¢, then 2 is not D-stable.
Otherwise, go to the next step.

Step 2: For an exposed edge polynomial gener-
ated by p1(\) and another vertex polynomial, say
p2(A), compute the corresponding Dizon’s resul-
tant Ji2(p) or Jia(p). If there exists a real root
w € [0, 1] of Ji2(p) or Jia(u) such that the cor-
responding equation (11) has a real solution for
which the PS has a real common root, then )
is not D-stable. Otherwise, the edge polynomial
p12(A) is D-stable, and go to the next step.

Step 3: Repeat step 2 for each exposed edge poly-
nomial. If there is a edge polynomial that is not
D-stable, then Q is not D-stable, otherwise Q is
D-stable.

C. Illustrative Examples

Now, two simple examples are given to demonstrate
the new approach. Since the testing set for the robust
Hurwitz stability can be obtained easily by using the
Sylvester resultant, the following two examples are all
about robust Schur stability. The boundary polyno-
mial is now b(z,y) = 2 +y* — 1. For other discussion
on Schur stability, it is referred to see (Ackermann and
Barmish, 1988) and (Kraus et al., 1992).

Example 1 Consider first a simple polynomial
p(A) A2 + a;\ + ap. It is Schur stable when
a1 = —21/20, az = 27/100. If a; is assumed to have
+20% variation, we have two Schur stable polynomials
p1(A) = A2— 83X+ 2L and pa(A) = A2— 2N+ 2% the
two real zeros of p; () are 0.9862 and 0.2738, and the
absolute of the two conjugate zeros of pa(A) is 0.5196.

We study the robust Schur stability of

Q={p2(\p) = (L —p)pr +pup2: pe[0,1]} (12)

and need only to check whether the family pia(A, i)
has no roots on 9D for all y € [0, 1]. Straightforward
computation gives the Dixon’s resultant of the real and
imaginary parts R(Jf, Y, :U')? S(‘Ta Y, /J') of pi2 ($+iya :u’)
and b(z,y), with respect to z,y, as follows

J(u) = (42u + 1)(42p — 253) (13)
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which is determined except for a non-zero factor. Since
J(u) has no real roots in g € [0, 1], all the roots
of pi2(A, i) stay in the open unit disk D. Thus, the
polytope Q is robust Schur stable.

Example 2 We consider the robust Schur stability
of Qin (12) with p1(A) = A*— 22 (1+7)A2+1x— L and
p2(A) = A3 =28 (1—r)A%+ Ix— L, where r = 20%. It
is also easy to know that the two vertex polynomials
are Schur stable. What follows is to check whether all
the zeros of p12(A, w) fall into D for all p € [0,1].

A direct computation shows that é(z,y;a, 8) con-
tains 11 terms with respect to the powers of o and
B, with two terms proportional to b(z,y). In addi-
tion, a common factor y exists in some Dixon’s re-
duced polynomials. So, the case y = 0, z = £1 must
be considered. If there exists some p € [0,1] such
that R(].,O,,LL) = 0’ S(].,O,,U/) = 0’ or R(—l,O,,u) = 0’
S(=1,0,u) = 0, then the polytope is not robust Schur
stable. It is easy to know that this is not the case.
We eliminate the apparent redundant equation and
the common factor y, and rewrite the Dixon’s reduced
polynomial equations as follows

N

Mz=0,z=[y? z%? zy2 4 22 z y

1]
(14)
By using the method of Gauss elimination, M i

changed into the following form

EEEE * i
0 *x * *x x x % *
0 0 % x =x % x *
0 0 0 x *x % =% *
U= 0 0000 -1 0 24
0 000 0 0 0 —14677+94u
00000 0 O 0
00000 0 O 0
00000 0 O 0
| 00000 0 O 0 ]
(15)
then, Eq.(15) and Eq.(14) give two equations
—14677+ 94y =0, —x+24=0 (16)

which has no solutions p € [0,1] and = € [-1,1]. So
p12(z+iy, u) # 0 holds true for all 4 € [0,1]. As a
result, {2 is robust Schur stable.

IV. DISCUSSIONS

The Dixon’s resultant method is used in this paper not
only for determining the possible values of p € [0,1]
that render the edge polynomials marginal stable, but
also in checking the D-stability by simply solving some
linear matrix equations. This is the main advantage
of the present approach.

There are some other choices for determining the
possible values of y € [0, 1] that render the edge poly-
nomials marginal stable, if we are interested in only the
test set of polynomials. For example, let Res(f,g, z)
denote the resultant of f and g with respect to
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z, we define ul(yv,u’) = Res(fb f2ax)7 u2(y7“) =
Res(f1,b,2) and J(u) = Res(ui,uz,y). Every p €
[0,1] for which PS has real common roots must be a
root of J(u). Hence, the possible values of u € [0,1]
that may destroy the stability of the edge families can
only be the roots of J;(u). Using of Sylvester resultant,
however, does not lead to an effective testing procedure
as done above by using the Dixon’s resultant method.
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