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Abstract --In this paper, a low-order linear time-
invariant (LTI) state-space model that describes the
nitrate concentrations in both anoxic and aerobic
zones of an activated sludge wastewater treatment
plant (WWTP), for biological treatment of municipal
sewage, is identified around a given operating point
(a model with lumped parameters). Several subspace
identification methods, such as CCA, N4SID,
MOESP and DSR are applied and their performance
are compared, based on performance quality crite-
ria, in order to select the best-reduced model. The
selected model is validated with a data set not used in
the identification procedure and it describes well the
complex dynamics of the process. This model is as-
ymptotically stable and it can be used for control,
optimization, prediction and monitoring purposes.
In this work the ASWWTP-USP benchmark is used
as a data generator. This benchmark simulates the
biological, chemical and physical interactions that
occur in a complex activated sludge plant.

Keywords --subspace identification methods, re-
duced order models, state-space models, activated
sludge process, wastewater treatment.

I. INTRODUCTION

Advanced engineering applications require suitable
mathematical models. System identification deals with
the problem of obtaining “approximate” models of dy-
namic systems from measured input-output data. This
issue is of interest in a variety of applications, ranging
from chemical process simulation and control to identi-
fication of vibrational modes in flexible structures. The
most traditional system identification techniques are the
prediction error method (PEM) and the instrumental
variable method (IVM). These methods are primarily
used with the so-called black-box model structures (Vi-
berg, 1995). However, several important problems re-
main to be solved. The PEM has excellent statistical
properties provided the “true” PEM estimate can be
found. Nevertheless, computing the PEM model can
sometimes be overwhelmingly difficult. In general, a
multi-dimensional non-linear optimization problem
must be solved. On the other hand, the IVM attempts to
deliver parameter estimates by only solving linear sys-
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tems of equations. However, the use of these models is
quite cumbersome in the general multivariable case, and
the numerical reliability may be unacceptably high for
complex cases involving large system orders and many
outputs (Viberg, 2002). The preferred model structure
for complex problems is therefore a state-space model.

Subspace methods have their origin in state-space
realization. Subspace identification method is a tech-
nique that has been developed since the late 80’s. It has
attracted much attention, owing to its computational
simplicity and effectiveness in identifying dynamic
state-space linear multivariable systems. These algo-
rithms are numerically robust and do not involve non-
linear optimization techniques, i.e., they are fast (non-
iterative) and accurate (since no problems with local
minima occur). The computational complexity is mod-
est compared to PEM, particularly when the number of
inputs and outputs is large. Because applications of
large dimensions are commonly found in the process
industry, subspace identification methods are very
promising in this field. As a result, a large number of
successful applications of subspace identification meth-
ods for simulated and real processes have been reported
in the literature. A general overview of the state-of-the-
art in subspace identification methods is presented in De
Moor et al. (1999) and Favoreel et al. (2000).

In this paper, a low-order LTI state-space
multivariable model that describes the nitrate concen-
trations in the anoxic and aerobic zones of an activated
sludge process is estimated around an operating point.
Several subspace identification methods are applied and
their performances are compared in order to select the
best-obtained model. It can be used to control the proc-
ess, e.g., as in Lindberg (1997), where a multivariable
control algorithm based on a subspace model is used to
regulate an activated sludge process. Previous perform-
ance comparisons of several subspace methods, applied
to other processes, can be found in Abdelghani et al.
(1998), Katayama et al. (1998) and Favoreel et al.
(1999).

In this work, the ASWWTP-USP (Activated Sludge
Wastewater Treatment Plant — University of Sdo Paulo)
benchmark (Sotomayor et al., 2001a) is used as a data
generator. This benchmark simulates the biological,
chemical and physical interactions that occur in a com-
plex activated sludge plant.
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II. SUBSPACE IDENTIFICATION METHODS

The subspace identification methods refer to a class of
algorithms whose main characteristic is the approxima-
tion of subspaces generated by the row spaces of block-
Hankel matrices of the input/output data, to calculate a
reliable discrete-time state-space model of the following
form:

X+l =Axk +Buk +Wk
(1)
Vi =ka +Dl/lk +Vk

with
w o S
e ole oy -

where X represents the model state vector, u# is the
manipulated input vector and y is the process output

vector. A is the system (state transition) matrix, B is
the input matrix, C is the output matrix and D is the
direct input to output matrix. w is called the process
noise and v is called the measurement noise. They are
assumed to be unmeasurable gaussian-distributed zero-
mean white noise vector sequences and uncorrelated
with the inputs # . The matrices (J, S and R are the

covariance matrices of the noise sequences w and v. E
denotes the expected value operator and O pg the Kro-

necker delta. The subscript index k& denotes a time dis-
crete (sampled) system. Related to Eq. (1), it is assumed
that the system is asymptotically stable, the pair (4,C) is
observable and the pair (4,B) is controllable.

It is common practice to distinguish among the three
possible situations regarding the inputs acting on the
system of the Eq. (1): (1) the purely deterministic case
(w=v=0), (2) the purely stochastic case (u=0),
and (3) the combined deterministic/stochastic case.
There are now many different versions of subspace al-
gorithms, and they have reached a certain level of ma-
turity. All subspace identification methods consist of
three main step: estimating the predictable subspace for
multiple future steps, then extracting state variables
from this subspace and finally fitting the estimated
states to a state-space model. See the main issues related
to subspace identification methods and one particular
technique (the “standard” N4SID) in Delgado et al.
(2001). Nevertheless, each subspace identification
method looks quite different from other in concept,
computation tools and interpretation. The major differ-
ences among these subspace identification methods lie
in the regression or projection methods used in the fist
step to remove the effect of the future inputs on the fu-
ture outputs and thereby estimate the predictable sub-
space, and in the latent variable methods used in the
second step to extract estimates of the states.

The major advantages of these algorithms are that
they only need input-output data and very little prior
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knowledge about the system. In addition, these algo-
rithms are based on system theory, geometry and nu-
merically stable non-iterative linear algebra operations,
such as QR (or LQ)-factorization, SVD (singular value
decomposition) and its generalizations, for which good
numerical tools are well-known (Golub and VanLoan,
1996). A drawback against subspace identification ap-
proach is that the physical insight of the process, in the
obtained model, is lost, which is a characteristic of
black-box models. Furthermore, a large amount of data
is required to obtain accurate models. Actually, gener-
ating and collecting data of some processes can be too
expensive.

The subspace identification algorithms considered in
this study are:

a. Unconstrained and constrained version of the Ca-
nonical Correlation Analysis (CCA) algorithm,
both in Peternell ef al. (1996).

b) Past Output (PO) variant of the Multivariable Out-
put-Error  State-sPace  model  identification
(MOESP) algorithm, in the SMI Toolbox by
Haverkamp and Verhaegen (1997).

¢) Numerical algorithm for Subspace State-Space Sys-
tem IDentification (N4SID): the “standard” version
in the MATLAB System Identification Toolbox
v.4.0.4 (Ljung, 1997), that implements the N4SID
algorithm from Van Overschee and De Moor
(1994), and the “robust” version from Van Over-
schee and De Moor (1996).

d) Deterministic and Stochastic subspace system identi-
fication and Realization (DSR) in the D-SR Tool-
box by Di Ruscio (1997).

As previously mentioned, the purpose of the present
paper is to compare the performance of these methods
and not to analyze their implementational differences.
As for the detailed algorithm, the difference between
these subspace identification methods seems so large
that it is hard to find the similarities between them.

III. THE WASTEWATER TREATMENT PLANT
SIMULATION

The ASWWTP-USP benchmark is a dynamic model,
developed to simulate the processes that occur in a bio-
logical WWTP. The benchmark represents a continu-
ous-flow predenitrifying activated sludge process, a
frequently applied system for removal of organic matter
and nitrogen from municipal sewage, predominantly
domestic, operating at a constant temperature of 15°C
and neutral pH. The layout of the process is formed by a
bioreactor, composed of an anoxic zone and two aerobic
zones, coupled with a secondary settler, as shown in
Fig. 1.

For a reliable simulation of an activated sludge
WWTP, the ASWWTP-USP benchmark is based on
models widely accepted by the international commu-
nity. Each bioreactor zone is modeled by the Activated
Sludge Model ASM1 (Henze et al., 1987) and the sec-
ondary settler is modeled by the double-exponential
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settling velocity model of Takécs et al. (1991). The
complete plant model includes 52 large, complex, cou-
pled non-linear differential equations, which were im-
plemented in MATLAB™/Simulink. The values of the
process parameters are here omitted, but they can be

excite the system, without deviating too much from the
normal operating point and, therefore, enabling the
identification of a suitable linear model. All data signals
are stored at a sampling rate of 0.16 hours to obtain
1400 samples.

found in Sotomayor et al. (2001a). For more realistic Ssin  Snhy, Qi
simulations, a white noise, with zero-mean and standard
deviation 0.05, was added to the outputs produced by ¢ ¢ ¢
the benchmark.
Q@Xl
Zona 1 Zona 2 Zona 3 Qim Sno,
Q,» Q ASWWTP-USP
T Quut > Benchmark » Sno,
Q'n t \ Qsl =QW T
Sno;,

Figure 1. Layout of the ASWWTP-USP benchmark

IV. IDENTIFICATION OF A SUBSPACE MODEL
OF THE PROCESS

A. Selection of Probing Signals, Generation and Pre-
Treatment of Data Set

It is not very easy to select either the input or the output
variables of the process. In this work, the nitrate con-

centrations in the anoxic zone Sno; (mg N/1) and in the
last aerobic zone Sno; (mg N/1) are selected as outputs.
The internal recirculation rate Oy, (m’/h) and the ex-

ternal carbon dosage (,,, (I/h) are considered as in-
puts. However, to improve the model influent flow rate
Oin (m’/h), influent readily biodegradable substrate

Ss;, (mg COD/]) and influent ammonium concentration

Snh

bances, while influent nitrate concentration Sno;, (mg

., (mg N/I) are assumed as measurable distur-

N/1) is assumed as an unmeasurable disturbance. The
signals used in the identification procedure are summa-
rized in Fig. 2.

Pseudo-random binary sequences (PRBS) are widely
used in the identification of linear systems. However,
since the PRBS consists of only two levels, the resulting
data may not provide sufficient information to excite
nonlinear dynamics. Additionally, a PRBS signal of a
too large magnitude may bias the estimation of the lin-
ear Kernel. Multi-level (m-level) sequences, in contrast,
allow the user to highlight nonlinear system behavior
while manipulating the harmonic content of the signal,
reducing the effect of nonlinearities in the resulting lin-
ear model (Godfrey, 1993). Moreover, the ill-
conditioning (insufficient excitation) of probing inputs
may lead to a substantial deterioration of performance
of the subspace algorithms (Chiuso and Picci, 2000). In
the present paper, the data signals correspond to m-level
uniformly distributed random sequences. Their ampli-
tudes and frequencies were chosen so as to adequately

Figure 2. Signals for subspace identification

For a better identification result, the raw data set is
pre-processed. As pointed out by Chui (1997), it is im-
portant to make sure that the scales of the input-output
data are of comparable sizes. Therefore, all data signals
are normalized aiming to be equally weighted. This op-
eration is common in system identification. After, the
data set is detrended in order to remove periodic com-
ponents of known periodic length. This step is usual in
signal processing (Bauer, 2000a). The pre-processed
signals are shown in Fig. 3.

The identification process was carried out off-line in
batch form by using the first 1000 points of the data set,
whereas the remaining 400 points were applied for
model validation. In the identification procedure is done
in open loop and the purely deterministic case is consid-
ered.

B. Order Estimation

There is an extensive literature for order estimation al-
gorithms for linear, dynamical, state-space systems.
Nevertheless, there exist only few references dealing
with the estimation of the order in the context of sub-
space identification methods (Bauer, 2001). In many
cases, the determination of the system order n is very
subtle. Normally, this information is obtained by de-
tecting a gap in the spectrum of the singular values of
the orthogonal (or oblique) projections of the row
spaces of data block-Hankel matrices. In the present
case, the gap is not easy to determine, as it is seen in
figure 4, and hence the application of this strategy be-
comes subjective and the decision regarding the order of
the model is an arbitrary one.

According to Bastogne et al. (1998), a more practi-
cal procedure is to choose the value 7 that minimizes
the estimation errors, as shown in figure 5, which was
generated using the “robust” N4SID algorithm. Com-
paring the relative estimation error indexes, it can be
noticed that the 3rd, 6th and 7th-order model have prac-
tically the same mean error index. Nevertheless, the
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choice of 6th or 7th-order does not bring enough im-
provement in comparison with a reduced order given by
the 3rd-order model, which is the selected order estima-

tion. For n =3 the relative square error was 34.60% for
the case of Sno, and 35.07% for the case of Sno;,
with a mean error of 34.84%.
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Figure 3. Data sequences of the process: (a) inputs; (b)
disturbances; (c) outputs.

138

33:135-140 (2003)

Singular values (dB)

107 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Order (n)

Figure 4. Singular value spectrum
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Figure 5. Estimation error spectrum

C. Performance Quality Criteria

In the present paper, two performance indicators are
proposed to measure identification/validation error, in
order to obtain the best 3rd-order state-space model.
The performance indicators are:

Mean relative square error (MRSE):
N
N oA a2
o |20 =3
%MRSE =¥ |=—
“~ 2
= 2 (yi (J ))
j=l
Mean variance-accounted-for (MVAF):
1 ¢ variance(y, — ;)

YoMVAF ==-Y | 1 -
= variance(y, )

x100  (3)

%100 (4)

being N the number of identification data points, / the
number of outputs, ¥, the i-th real output and ), the i-

th simulated output produced by the model. The MRSE
index is widely used in the literature, while the MVAF
index is specifically used by the SMI Toolbox.
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Analyzing the values in Table 1, the PO-MOESP
model seems to produce a better model in terms of
identification, while the DSR model seems to produce a
better model in terms of validation. Hence, in this work,
the 3rd-order DSR model was chosen to describe the
process.

Table 1. Performance of the subspace-based algorithms

served, the identified model for a given operating points
correctly reproduces the main dynamic characteristics of
the activated sludge process. In these graphics, either
the identification or the validation data were introduced
in the obtained model. In both cases the simulation
started at zero initial conditions.

Low-order state-space models sufficiently represen-
tative of the nominal system behavior are a prerequisite
to the systematic design of control systems. So, the
strictly proper model (5) has been successfully used to
develop an infinite-horizon optimal control (Sotomayor

Algorithm %MRSE %MV AF

Identific. Validation Identific. Validation

uCCA 40.4417 69.9404 83.5750 73.5628
cCCA 40.1652 69.2404 83.7998 73.9129
PO-MOESP 31.8091 57.5806 89.9037 79.3096
“standard” N4SID 44.4914 72.9242 80.0546 74.2431
“robust” N4SID  34.8394 57.7508 87.8739 81.2475
DSR 342450 50.9904 88.2237 84.4274

et al., 2001b) and a model predictive control (Soto-
mayor et al., 2001c).

Identification

D. Identification Results
The selected deterministic model (proper model) is de-
scribed by the following matrices:

0.9763  0.0194 03268
A=| 0.0061 0.8815 0.0893|,
~0.0023  0.0071 0.9763
0.0238 —0.0459 —0.1488 —0.0403 0.0002
B=|-0.1295 00299 00230 00185 —0.0052
0.0097 —0.0082 —0.0082 0.0004  0.0036
[0.2253 -0.4032 -0.1823
_{0.2668 0.2880 —0.4626]’
01292 —0.0193 —0.0651 —0.0312 0.0053
:[—0.0387 0.0086  0.0126  0.0105 —0.0026}

A strictly proper model (i.e, with D =0) is also identi-
fied, and it is described by:

0.9763 0.0199 0.3263
A=| 0.0062 0.8818 0.0907 |,
~0.0024 0.0072 0.9758
0.0368 —0.0434 —0.1537 —0.0431 —0.0045
B=|-0.1505 00234 00357 0.0283 —0.0044
0.0167 —0.0100 —0.0091 0.0003  0.0039
_[02259 —04026 018101
“|0.2664 02876 —0.4633

The poles (eigenvalues of A) of the proper and the
strictly proper model are closer to the unit circle and
they shown the slower dynamics of the process. In ad-
dition, the poles close to 1 show that the data set seems
to contain a phenomenon known as “co-integration” in
econometrics. Based on this observation, it is possible to
obtain models which produce a one-step-ahead predic-
tion error much smaller (Bauer, 2000b).

Figure 6 shows the outputs generated by the identi-
fied strictly proper model (dotted line). As it can be ob-
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1400

(b)
Figure 6. Output comparison (a) for Sno;, (b) for Sno;

V. CONCLUSIONS

The use of subspace identification methods has proved
to be a valuable tool in the estimation of LTI state-space
models for the activated sludge process. The perform-
ance of different identification algorithms (CCA,
MOESP, N4SID and DSR) was compared. Although the
used simulation benchmark consists of 52 differential
equations, the 3rd-order DSR model, a very reduced
order model, manages to describe sufficiently well the
process dynamics. It is well suited for model-based
control as well as for monitoring applications.
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