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Abstract−−−−−−−− In this paper a Nonlinear Model Pre-
dictive Control based on a Wiener Model with a
Piecewise Linear gain is presented. The major ad-
vantages of this algorithm is that it retains all the
interesting properties of the classical linear MPC
and the computations are easy to solve due to the
canonical structure of the nonlinear gain.  The pro-
posed control scheme is applied to a nonlinear CSTR
that presents multiple steady states.
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I. INTRODUCTION
Model predictive control (MPC) refers to a class of
computer control algorithms that control the future be-
havior of a plant through the use of an explicit process
model.  At each control interval the MPC algorithm
computes an open-loop sequence of manipulated vari-
able adjustments in order to optimize future plant be-
havior.  The first input in the optimal sequence is in-
jected into the plant, and the entire optimization is re-
peated at subsequent control intervals.  MPC technology
was originally developed for power plant and petroleum
refinery applications, but can now be found in a wide
variety of manufacturing environments including
chemicals, food processing, automotive, aerospace,
metallurgy and pulp and paper (Qin and Badgwell,
1997).

Though manufacturing processes are inherently
nonlinear, the vast majority of MPC applications to date
are based on linear dynamic models, the most common
being step and impulse response models derived from
the convolution integral.  There are several potential
reasons for this, for example, by using a linear model
and a quadratic objective, the nominal MPC algorithm
takes the form of a highly structured convex Quadratic
Programming problem (QP), for which reliable solution
algorithms and software can easily be found.  This is
important because the solution algorithm must converge
reliably to the optimum in no more than few tens of
seconds to be useful in manufacturing applications.

Nevertheless, there are cases where nonlinear effects
are significant enough to justify the use of Nonlinear
Model Predictive Control (NMPC).  With the introduc-
tion of a dynamic nonlinear models within the NMPC
algorithm, the complexity of the predictive control
problem increases significantly.  Review papers by
Henson (1998) and Bequette (1991) elaborate on the
various approaches to handling nonlinear systems via
MPC.  For example, many researches have used empiri-
cal models for NMPC (Norquay et al., 1998; Su and
McAvoy, 1997; Zhu and Seborg, 1994).

In particular, Wiener models have a special structure
that facilitates their application to NMPC.  Its applica-
tion has been proved both in academic (Norquay et al.,
1998) and practical aspects (Norquay et al., 1999).
These models represent a process with linear dynamic
but a nonlinear gain, and can represent many of the
memoryless nonlinear systems commonly encountered
in industrial processes.  Due to the static nature of the
nonlinearities, they can be removed from the control
problem.  However some computational difficulty is
potentially present and due to that an implicit inversion
of the nonlinear static gain is needed.  In this work the
application of a discrete time nonlinear predictive con-
trol of Wiener systems to the control of a CSTR with
multiple steady states is analyzed.  More specifically,
the Wiener structure consists of a linear dynamic ele-
ment followed in series by a Static nonlinear element.
The linear dynamic element uses a discrete state space
model and the nonlinear element uses the Piecewise
Linear approximation (Julian 1999).  The paper is or-
ganized as follows: In section II a description of the
proposed control scheme is included.  In section III the
case study is analyzed and finally, some conclusions are
discussed in section IV.

II. NONLINEAR WIENER MPC USING PWL
FUNCTIONS

Let us assume that the system to be controlled can be
described by the following discrete-time, nonlinear,
state-space model:
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Figure 1: The Wiener model for MPC

where the functions are twice continuously differenti-
able functions, x(k) is the vector of state variables, ∆u(k)
is the vector of control movements, d(k) is the vector of
additive disturbance variables and y(k) is the vector of
process output.

In this work, we will use a specific Wiener approxi-
mation to represent the process model. In general, a
Wiener model consists of a dynamic linear block in cas-
cade with a static non-linearity at the output.  In our
application, a discrete state space model is used to de-
scribe the linear dynamic element as shown in Fig. 1.
For the static nonlinear element, we propose the use of a
Continuous Piecewise Linear (PWL) function y=f(v).
The PWL functions have proved to be a very powerful
tool in the modeling and analysis of nonlinear systems.
In particular, any function f can be written as a linear
combination of the elements of a basis Λ as
f(v)=CTΛ(v).  This kind of function (Lusson Cervantes
et al., 2001) allows developing a systematic and accu-
rate treatment of approximating functions.  For details
of the definition and properties of PWL see Appendix
A.

In our application, the domain and the image of the
PWL function shares the same dimension.  Moreover, if
we assume that the function f of the system is bijective
(this is a reasonable assumption for a large set of proc-
ess models), it is possible to define the inverse function
as f -1, such that v=f -1(f(v)).  This function is also unique
and it is a PWL.

The control problem to be solved is to compute a se-
quence of inputs ∆u(k) {k=1,…,m} that will minimize
the following dynamic objective:
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where p is the prediction horizon, m is the control hori-
zon, r is the desired set point, and the relative impor-
tance of the objective function contributions is con-

trolled by setting the time dependent weight matrices Qj
and Rj.  Beyond the control horizon the control signal is
assumed to be constant (i.e. ∆u(k+j)=0, j=m,...,p).
Disturbances are typically handled by assuming that a
step disturbance has entered at the output and that it will
remain constant for all future time (d(k)=d(k+j),
j=1,..,m).  To accomplish this, a bias term that compares
the current predicted output to the current measured is
computed (i.e., d(k)=y(k)-ym(k)).

Once ∆u(k) is computed, following the receding ho-
rizon principle, only the first element of the optimal
control sequence is used as the current control value.
Then, the horizons shift one step forward in time and
the whole procedure is repeated.  If we assume to know
the state vector at the actual time and write the future
behavior of the variables for samples k+1 to k+m as
vectors v(k), ∆∆∆∆U(k), y(k) and r(k); then, the predicted
output for the linear model is

)()()(ˆ kxkk ξξξξ∆∆∆∆ββββ += Uv (4)
where )(ˆ kv  is an estimation for the output of the lineal
model and
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and the predicted output for the complete model is
$( ) ( $( )) ( ( )) ( ( ))y f v f v f vk k k k pT T T
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Let us define some points in relation with the MPC
structure,
• Since the PWL function f was assumed invertible, it

is possible to write the desired signal referred to the
output of the linear model as a transformation of the
set point r(k) as, r*(k)=f -1(r(k)).

• If yu and yl are the upper and lower bounds defined
in (3), then, we can translate this magnitudes to the
linear model as vu=f -1(yu) and vl=f -1(yl), respec-
tively.

Finally, the WMPC can be posed as
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Note that minimization of (5) is a classical LMPC, then
all properties about convergence to the global optimal
solution and stability of the loop can be guaranteed.

∆u(k) v(k)

x(k+1) =  A x(k)+  b ∆ u(k)
v(k) = cT x(k)+ d ∆ u(k)

v(k)
y(k)

f(v) = CT Λ (v)

dk
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Figure 2: Steady State Space

Table 1. Nominal CSTR parameter values.

Product concentration CA 0.1 mol / l
Reactor temperature T 438.54 K
Coolant flow rate Qc 103.41 l/min
Process flow rate Q 100 l/min
Feed concentration CA0 1 mol / l
Feed temperature T0 350 K
Inlet coolant temperature Tc0 350 K
CSTR volume V 100 l
Heat transfer term HA 7 x105 cal/min K
Reaction rate constant K0 7.2 x 1010 1/min
Activation energy term E/R 1 x 104 K
Heat of reaction ∆H -2 x 105 cal/mol
Liquid densities ρ, ρc 1 x 103 g/l
Specific heats Cp, Cpc 1 cal/g K

III. CASE STUDY: STIRRED-TANK REACTOR
(CSTR)

A. Process Description
The simulated continuous stirred-tank reactor (CSTR)
process (Morningred et al., 1992) consists of an irre-
versible, exothermic reaction, A→B, in a constant vol-
ume reactor cooled by a single coolant stream, which
can be modeled by the following equations (Giovanini,
2000).
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The measured concentration has a time delay
td=0.5min, then C t C t tA A dmeas

( ) ( )= − .  The objective is to
control the measured concentration of A, CA, by ma-
nipulating the coolant flow rate qc.  The nominal pa-
rameter values appear in Table 1. This reactor presents
two steady states: OR1=(0.10,438.51) and
OR2=(0.96,353.54).  This is represented in Fig. 2, where
both steady states are represented in the state space.
Our control objective will be to define two controllers,
one for each operating condition.

B. Process Identification.

To describe the reactor using a Wiener model, we
should obtain a linear description for the dynamic and a
nonlinear gain.  In our case, we will use a L-N ap-
proach.  In this way, first the linear block is identified
using a correlation technique; after that the intermediate
signal v is generated from the input signal and the static
non-linearity is estimated (Westwick and Verhaegen,
1996).  This approach is chosen because it is straight-
forward and ensures an accurate description of the static
nonlinearity.  To perform the dynamic identification a
Pseudo Random signal with a sample time of 0.1 minute
was applied to the process.  Then, using the input/output
data a model for each operating point was computed
using an ARX algorithm.  The models obtained are as
follows,
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Note that in this identified model the time delay is
zero because the process time delay of 0.5 min is small
compared to the pseudo-time constant of the system.
This model results from a identification process, then
the parameters were automatically adopted for the algo-
rithm to achieve the best data adjustment.

Once that the linear model is obtained, several
steady-state experiments were carry out and a PWL
model is obtained using the PWL Toolbox proposed by
Julian (1999), based on the Least Squares method.  Us-
ing the same tool, a PWL description of the inverse of
the gain is obtained.  The static gain and the comparison
from data and model output are shown in Fig. 3 and Fig.
4, respectively.
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Figure 3.  PWL static Gain.

In this particular application, the dimension of the
domain for the nonlinear gain is one.  In this case, the
PWL functions have the following particularities (see
Appendix): the domains for each operative region are
D1 = -0.095,0.23  and D2 =  0.96,0.97 .  These do-
mains are divided in 10 sectors defined as 10 segments
of equal length.  Let us call as βi (for i=1,..,10) the limits
of each segment.

Then, the basis Λ for each domain are defined as
Λ( )v v v v v= − − − − − −1 β β β β1 1 10 10!

and the vectors of parameters, computed using the PWL
Toolbox are

c1 = .958 2.5599 -.6078 -.3905 -.2787

-.2266 -.1342 -.1419 -.1042 -.0729 -.0643    

!

and
c2 = .0152 .1931 .0768 .1036 .1607

.2331 .6483 2.1016 -2.8079 .5079 .1171     

!

for operating regions 1 and 2, respectively.

C. Nonlinear Model Predictive Control
The control problem described in (5) was connected to
the simulation model of the reactor in both operative
regions.  The weighing matrices and the bounds on the
variables are described in Table 2.

Table 2:  Model Predictive Control Parameters

OR1 OR2

Q – R 100 I - 10 I 100 I- 0.001 I
P – M 200 – 10 200 – 10
yl – yu 0 – 0.2 0.9 – 0.968
ul – uu 60 – 120 50 – 200
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Figure 4. Performance of the Wiener model.

The values Q and R were evaluated through simula-
tion, trying to solve the trade off between smooth con-
trol action and fast response.  The constraints were de-
fined to guarantee that the operating region of the reac-
tor is always inside the identified regions.  The predic-
tion horizon p is chosen to capture the complete process
behavior (i.e., to allow the model reach the steady-
state).

Note that it is necessary to change the parameter R
when the reactor moves from one operating point to the
other.  This is necessary due to the large difference of
gain in each case.  The simulation results are depicted in
Fig. 5 and 6 for operating conditions 1 and 2, respec-
tively.  The response of the NMPC is compared to the
response of the linear controllers having the same set of
parameters.  This has been done because the lineariza-
tion effects of the NMPC controller are to be remarked.
Fig. 5 and 6 illustrate how the closed loop system with
NMPC controller achieves a similar time constant for
upper and lower step inputs. The LMPC step response
to a lower set point (at OP1) is considerably slower be-
cause the system is driven to a lower gain region (see
Fig. 3). On the other hand (at the same operating point),
the behavior of the LMPC is faster than the NMPC for
an upper step input because the system is driven to a
higher gain region.  From Fig. 5 and 6 it is clear that the
NMPC response with the same time constant in both
operating points and without overshoot.  This behavior
does not occur with the LMPC scheme.

IV. CONCLUSIONS
In this paper a Nonlinear Model Predictive Control
based on a Wiener Model with a Piecewise Lineal gain
is applied to control a CSTR with two steady states.
The performance of the controller to retain the process
in each operative region is tested by simulation.
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APPENDIX: PIECEWISE LINEAR FUNCTIONS
The Piecewise Linear (PWL) Functions are used since
1965 in the area of nonlinear circuit theory. In the 70's
they take special relevancy, from the works of Leon
Chua (1971) in which the treatment of systems in ℜ2 is
properly solved.  But only recently with the works of
Julian et al. (1999) on High Level (HL) PWL, it is pos-
sible to have an adequate expression to solve general
problems in ℜm.  This representation is able to uni-
formly approximate any Lipschitz continuous function
defined on a compact domain.  In general, a PWL func-
tion is defined as follows:
Definition 1 (PWL function): A function

mmDf ℜ→ℜ⊂: , where D is a compact set, is a PWL
function if and only if it satisfies,
1. The domain D is divided into a finite number of

polyhedral regions R(1), R(2), ...., R(q) (such that

&
q

i
iRD

1
)(

=
= ) by a finite set of boundaries,

{ }hiDHH i .,...,2,.1, =⊂= , such that each bound-
ary is either an (m-1)-dimensional hyperplane
characterized by

{ }0)(: =−=ℜ∈= i
T
ii

m
i xxxH βαπ , where

m
i ℜ∈α , ℜ∈iβ  for i=1:,2,...,h, or a subset of it,

and cannot be covered by any (m-2)-dimensional
hyperplane.
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2. f is expressed by an affine representation of the
form )()()( :)( iii wxJxf += , for any )(iRx∈ , where

mmiJ ×ℜ∈)(  is the Jacobian matrix of f in the region
R(i) and miw ℜ∈)( .

3. f is continuous on any boundary between two re-
gions, namely, )()()()( qqpp wxJwxJ +=+ , for any

)()( qp RRx ∩∈ , p≠q.
Julian (1999) formulates the canonical expression for
the family of PWL functions defined over of a sim-
plicial partition of the domain

( ) { }{ } m
iin mimxxxD ℜ⊂∈≤≤= ,...,1,0:,...,1 δ , where δ is the

grid size and mi is a positive integer.  This type of parti-
tion subdivides the domain D in a simplex set )(iS ,
i=1,…,q such that &

q

i
iSD

1
)(

=
= .  The corresponding set

of vertexes for these simplexes is called S(i).  Let us sup-
pose, for simplicity, that the domain D belongs to ℜ2

(see Fig. A1 for a description of the partition in ℜ2).  If
one function value is associated to each vertex (Fig.
A2), then, it is possible to define a PWL function with
the following characteristics:
1. The function values assigned to each vertex de-

fines a unique (and local) linear affine function for
each simplex;

2. The local lineal expressions define a PWL con-
tinuous function because they are continuous on
the boundaries of the partition.

The extension of this idea to an m dimensional domain
leads us to define simplexes of m+1 vertices. Then, if
we associate one function value to each vertex, it is pos-
sible to determine a unique linear affine (local) function
for each simplex. In this way, a continuous PWL func-
tion is determined by the collection of all the local
functions.  From this procedure, it is clear that any arbi-
trary PWL function 1: ℜ→Df  defined over the sim-
plicial boundary configuration introduced is uniquely
determined by its values on the vertices.

Without loss of generality, in the following, it is as-
sumed that the dimension of the image set is one (a
PWL map from mm ℜ→ℜ  is equivalent to m independ-
ent PWL maps f1, …, fm from 1ℜ→ℜm  with the same
boundary configuration).
Definition 2: Consider a compact domain mD ℜ→  and
a set of hiperplanes H.  Then, PWLH[D] is defined as the
set of all the PWL continuos mappings taking values on

the domain D partitioned with the boundary configura-
tion H.

Julian (1999) proved that a proper definition of ad-
dition and multiplication by a scalar over the set
PWLH[D] leads to a linear vector space (LVS).  Moreo-
ver, a set of HL CPWL functions which are a basis of
PWLH[D] was found as a function of k nesting absolute
values.

In addition, the elements of this base can be ex-
pressed in vector form as [ ] ,,....., 10

TTmTT
ΛΛΛ=Λ  or-

dered according to its nesting level (n.l.), where iΛ  is
the vector containing the n.l.=i functions.  Accordingly,
the main result in Julian (1999) said that any function
f∈PWLH[D] can be written as

)()( xcxf T Λ=

where [ ]TT
m

TT cccc ,....., 10=  and every vector ci is a pa-
rameter vector associated to the n.l.=i vector function

iΛ .

x1

x2

hypercubes
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vertexes

Figure A.1.: Simplicial Partition in ℜ2

Figure A2.  Constructive Approach in ℜ2
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