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Abstract −−−−−−−− The dynamic modeling of batch dis-
tillation columns frequently leads to a mixed system
of differential and algebraic equations (DAEs) with
differential index greater than one, and this par-
ticular feature has many implications on the resolu-
tion strategy adopted. As the number of stages and
components can be arbitrarily high, those mathe-
matical models can be large scale systems, and the
analysis of the system prior to numerical resolution
can be cumbersome. Additionally, the consistent
initialization step can pose a nontrivial numerical
task. For the numerical resolution of this model it is
employed the computational code under develop-
ment at PEQ/COPPE/UFRJ and DEQUI/UFRGS.
This code employs Automatic Differentiation (AD)
tools to perform index reduction and consistent ini-
tialization with minimum interference of the user.
The resulting consistency system is solved and the
numerical integration of the final index-one DAE is
accomplished by means of the integration code
DASSLC.

Keywords −−−−−−−− Batch distillation, Index reduction,
Differential-algebraic equations (DAEs), Automatic
differentiation.

I. INTRODUCTION
Distillation processes are among the most important
technologies for the separation of multicomponent
mixtures. Distillation can be done either in a continuous
operation regime (where the mixture is continuously
supplied and the products are continuously led off) or in
a discontinuous regime – the so-called batch distillation
process – where the apparatus is loaded with the mix-
ture at start-up time and the different fractions are taken
out one by one.

Batch operation is advantageous if: (i) the required
operating capacity of a proposed facility is too small to
permit continuous operation at a practical rate - pumps,
boilers, piping, instrumentation and other auxiliary
equipment generally have a minimum industrial oper-
ating capacity; (ii) the operating requirements of a facil-
ity fluctuates widely in characteristics of feed material
as well as processing rate - batch equipment usually has
considerably more operating flexibility than continuous

equipment. This is the reason for the predominance of
batch equipment for multiple purpose solvent recovery
or pilot plant applications (Henley and Seader, 1981).

The description of a typical batch-distillation col-
umn is conveniently divided into two parts: (1) the start-
up period and (2) the production period. The production
period is that part of the process during which a product
is withdrawn from the column. Necessary adjustments
to bring the column to an operating condition that pro-
duces a distillate with a desired purity are made in the
start-up period (Holland and Liapis, 1983).

The modeling of a batch distillation process gives
rise to systems of coupled differential and algebraic
equations, mostly presenting high index. In this contri-
bution, the numerical resolution of such mathematical
models is addressed. In section §2, the mathematical
model of the start-up phase of a batch distillation col-
umn is presented. In §3 and §4, aspects related to its
numerical resolution are discussed, and the computa-
tional code under development at PEQ/COPPE, in col-
laboration with DEQUI/UFRGS, is briefly described. In
§5, numerical results are presented to prove the ade-
quacy of the proposed approach.

II . MATHEMATICAL MODELING
In this contribution, it is simulated a batch distillation
column with np stages and nc components. A simplified
scheme of the equipment is shown in Fig. 1, where the
stage number 0 represents the condenser and the stage
np+1, the reboiler.

The main assumptions of the model are: (i) the liq-
uid and the vapour leaving a stage are in thermody-
namic equilibrium; (ii) the vapour hold-up is negligible;
(iii) there is no heat loss throughout the column; (iv) the
liquid and vapour phases behave as ideal mixtures; (v)
the pressure on the column is constant.

Mass and energy balances for each stage are repre-
sented by the Eqn. 1 and 2. The Eqn. 3 and 4 represent
the total number of moles of stage i and the chemical
equilibrium relation. Equations 5 and 6 follow from the
assumption of ideal behavior of liquid and vapour
phases. The constraint on the molar fraction summation
is enforced via Eqn. 7, and Eqn. 8 comes from the as-
sumption of constant number of moles at each stage.



Latin American Applied Research  33:155-160 (2003)

156

Condenser - N0

Stage i - Ni

Stage np - Nnp

Reboiler - Nnp+1

Stage 1 - N1

L0 V1

Lnp Vnp+1

L1 V2

Li-1 Vi

Lnp-1 Vnp

Vi+1Li

����������������
����������������

���������������
���������������

���������������

���������������

����������������
����������������Q0

Q1

Qi

Qnp

Qnp+1

Figure 1. Scheme of the batch distillation column.
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In the previous equations, j= 1, ..., nc and
i= 0, ..., np+1 except for Eqn. 8, for which i= 0, ..., np.
Additionally, i represents stage, j represents component,
yi,j represents molar fraction in vapour phase, hi and Hi
are enthalpies in liquid and vapour phases, Vi and Li are

the vapour and liquid fluxes leaving the ith stage, ni,j is
the amount of the jth component in the ith stage, Ti is
temperature and Qi is the heat removed from the ith

stage. In the simulated column, all heat duties Qi are
known except for the condenser heat duty, Q0. Hence,
the state vector is [Li Vi Ni ni,,j yi,,j Ti Hi hi Q0]T.

The equilibrium constant and the enthalpies of each
component, needed at Eqn. 4 to 6, are function of T
according to the following relations:
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Numerical values for the constants employed in Eqn.
9 to 11 can be found in Holland and Liapis (1983, pp.
211-212), and are reproduced in Table 1. Additional
constants needed for simulation of the model are the
heat duty of  the reboiler Qnp+1 = - 3.5 106 BTU/h and the
heat removed from each stage, Qi = 0  (i= 1, ..., np).

III. CHARACTERIZATION OF THE
MATHEMATICAL MODEL

The mathematical model of the start-up of a batch dis-
tillation column is typically a high-index DAE system
with nonlinear state equations and equilibrium con-
straints. The differential equations generally come from
energy and mass balances in the equilibrium stages, and
the algebraic equations are flux constraints and equilib-
rium relationships. Additionally, the resulting DAEs can
easily become a large-scale system as the number of
stages and components get high.

Experience has proved that working directly with the
differential-algebraic equations (DAEs) is advantageous
for many reasons: (i) the systems are simpler and the
variables have a physical significance; (ii) time con-
suming manipulations are avoided and fundamental
information, that could be lost through differentiation, is
preserved; (iii) constitutive relations, such as phase
equilibrium relations, kinetic equations and equilibrium
isotherms, are easily included and/or changed whenever
necessary (Vieira and Biscaia Jr., 2001).

Table 1. Constants employed to compute equilibrium conditions.
C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12

aj,0 x 102 -14.512474 -18.967651 -14.181715 -7.548840 -7.543539

aj,1 x 105 53.638924 61.239667 36.866353 3.2623631 2.0584231

aj,2 x 108 -5.3051604 -17.891649 16.521412 58.507340 59.138344

aj,3 x 1012 -173.58329 -90.855512 -248.23843 -414.92323 -413.12409

cj,0 -14.500060 -16.553405 -20.298110 -23.356460 -24.37154

cj,1 1.9802223 2.1618650 2.3005743 2.5017453 2.56362

cj,2 x 105 -2.9048837 -3.1476209 -3.8663417 -4.3917897 -4.6499694

ej,0 81.79591 147.65414 152.66798 130.96679 128.90152

ej,1 x 104 389.81919 -1185.2942 -1153.4842 -197.98604 -2.0509603

ej,2 x 106 36.4709 152.87778 146.64125 82.549947 64.501496
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When solving DAEs one must be concerned about
the index of the system and about the consistency of the
initial conditions. The index of a DAE system is the
number of times that all or part of the system must be
differentiated with respect to time in order to convert it
into an explicit set of first order ODEs. Index-1 systems
may be solved with modified ODE methods, while
high-index systems (systems with index 2 or greater)
require specific methods. Generally, high-index systems
are rewritten in an index-1 formulation and solved with
standard integration codes like DASSL (Petzold, 1989)
or DASSLC (Secchi, 1992), written in FORTRAN and
C, respectively.

During the index reduction, some extra algebraic
equations are obtained, which generally correspond to
derivatives of the original algebraic equations. Those
hidden algebraic equations along with the original
DAEs compose the extended system. Consistent initial
values must satisfy not only the DAE system but also
the underlying extended system (Brenan et al., 1989).

Several rigorous methods for initialization have been
proposed in the literature, and they all depend to some
extent on the characterization of the DAE system. In
other words, in order to perform the numerical integra-
tion of a DAE system with standard integration codes, it
is necessary to: (i) perform the characterization of the
DAE system, in order to determine its index and, if
required, the set of equations to be differentiated;
(ii) perform the differentiation; (iii) check for feasibility
of the initial states arbitrarily set; (iv) solve the consis-
tency system for a consistent initial state.

The mathematical modeling of the batch distillation
column gives rise to a differential algebraic (DAE)
system: Eqn. 1 and 2 are differential equations, while
the remaining equations are algebraic. The differential
variables of this system are ni,j and hi and the algebraic
variables are Ni, yi,j, Hi, Ti, Vi, Q0 and Li. Hence, the
dimension of the system is (np+2)(2nc+6)-1. It can be
noticed that the algebraic variable Q0 does not appear in
any algebraic equation. Additionally, the 2(np+1) alge-
braic variables Vi e Li only appear at (np+1) equations
(represented as Eqn. 8). Hence, the DAE system pres-
ents high index.

Consistent initialization and index reduction tech-
niques are to be considered prior to numerical resolution
of the batch distillation model with standard integration
tools, as DASSL or DASSLC. In the Appendix, a pro-
cedure for index reduction is presented, which requires
several steps of differentiation and algebraic manipula-
tion. The main purpose of the developed code is to aid
the researchers, so that they could avoid performing
such cumbersome, tedious and error prone algebraic
manipulations.

It should be pointed out that the procedure in the
Appendix is not the one actually implemented on the
code, but instead, the one that a researcher could carry
out when dealing with this high-index DAE model. The
main difference between the approaches is that a person
can substitute an equation into another during the index

reduction procedure. The code, on the other hand, in-
cludes all the generated equations and variables on the
extended system, increasing its dimension.

IV. NUMERICAL RESOLUTION
In the present contribution the characteriza-
tion/initialization module described by Costa Jr. et al.
(2001) is used. Based on Pantelides' algorithm (Pan-
telides, 1988), it uses a graph-theoretical approach to
identify the minimum set of equations to be differenti-
ated in order to generate an index-one formulation of
the original DAEs. Through AD code ADOL-C
(Griewank et al., 1996), the differentiation is performed
automatically at an affordable computational cost, and,
most important of all, the differentiation technique em-
ployed does not incur truncation error. The required
structural pattern of the jacobian matrix is computed via
numerical perturbation of the original equations and of
the exact extended system.

The user must supply the DAE system F(z,z')=0 ac-
cording to DASSLC standards. Then, the code applies
Pantelides' algorithm, constructs the extended system
and informs the number r of degrees of freedom of the
system. The user is prompted to give r arbitrary initial
conditions, on which the code will perform a structural
check for feasibility. It must be stressed that structural
feasibility is a necessary but not sufficient condition for
feasibility. That comes from the fact that structural
computation cannot determine if a structurally regular
matrix is not in fact a singular matrix.

In the present code, when an initial arbitrary set is
found to be structurally feasible, the code will carry out
the resolution of the extended system by a Newton-type
method. The consistency system was constructed via
automatic differentiation, and hence it is exact. The
initial conditions obtained from its resolution can be
provided directly to the DASSLC numerical integration
code. If the initial conditions are unfeasible, the user is
warned and prompted to supply another arbitrary set.

V. SIMULATION RESULTS
Using the present code, it is possible to integrate high-
index DAE systems directly using DASSLC code. All
index reductions and manipulation, needed in order to
achieve consistent initialization, are performed auto-
matically. The user must only give the original DAEs
according to DASSLC standards, determine which are
the arbitrarily set initial variables (based on the calcu-
lated number of degrees of freedom) and provide initial
values for those variables.

Characterization results for an example with 5 com-
ponents and 12 stages are shown in Table 2. The feasi-
ble arbitrary initial set used in this example corresponds
to all the variables ni,j ( i= 0, ..., 13 and j= 1, ..., 5), per-
forming 70 state variables. Table 3 presents the numeri-
cal values actually set for ni,j , and Table 4 presents the
initial conditions calculated by the code for the remain-
ing variables.
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Table 2. Characterization results.
Nc=5, np=12
Index 2
Eqn. 3, 4 ,5 and 7 must be differentiated once
Degrees of freedom: 70 [ nc (np+2) ]

After the differentiation of the equations indicated in
Table 2, the extended system presents 335 equations
and 405 variables, 70 of which must be assigned arbi-
trarily. It should be pointed out that the original system
has 223 equations and 307 unknowns, among state vari-
ables (223) and some of their derivatives (84). The
405-307=98 new variables represent derivatives of
former algebraic variables ( iN! , i,jy!  and iT! ). In a more
general case,  they could also comprise some higher
order derivatives of differential variables.

Table3. Initial conditions arbitrarily set.
Component n0,j

j= 1, ..., nc
ni,j

i= 1, ..., np
j= 1, ..., nc

nnp+1,j
j= 1, ..., nc

C3H8 0.2 0.05 1.7
i-C4H10 0.6 0.15 5.1
n-C4H10 1 0.25 8.5
i-C5H12 0.8 0.2 6.8
n-C5H12 1.4 0.35 11.9

Table 4. Computed initial conditions.
Ti = 729.1416 R

Q0 = 3.5 106 Btu/h
Hi = 22304.66 Btu/mol
hi,j = 17331.76 Btu/mol
Li = 47.69237 moles/h
Vi = 47.69237 moles/h

Ni = 1 mol  (i= 1, ..., 12)

N0 = 4 moles
N13 = 34 moles
yi,0 = 0.124241
yi,1 = 0.221436
yi,2 = 0.304075
yi,3 = 0.139399
yi,4 = 0.210850

It should be emphasized that other sets could be de-
termined arbitrarily. There are 70405C  (approximately
1080) possible sets to be assigned, and only some of
them are feasible. It is for this reason that the code asks
the user to inform the desired initial set to be tested for
feasibility. In order to illustrate this idea, some sets
other than the one used in this contribution have been
verified for structural feasibility. The results of this
analysis are presented in Table 5.

Table 5. Some sets verified for structural feasibility.
Variables Set Structural Feasibility

All ni,j Feasible
(set used for simulation)

All yi,j Unfeasible
(eliminates Eqn.7)

All y4,j hi, Hi, Ti, Li and Q0 Feasible

All hi, Hi, Ti, Li, Ni and Q0 Feasible

The simulation results are shown in the next figures.
Figures 2 to 4 show the mole fraction of the components
in the condenser, in plate 6 and in the reboiler. These
results can be compared with the ones presented by
Holland and Liapis (1983) for the same model, and it
can be noticed that reported results have been repro-
duced. The direct resolution of the DAE model arising
from the mathematical modeling of the process elimi-
nates the algebraic manipulation step to the researcher.
With the present code, even higher index problems can
be solved with minor intervention of the user.
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In Fig. 5, it is  shown the liquid flowrate leaving the
condenser (L0). It follows from the constant mole num-
ber per stage assumption that all Li variables have equal
values.
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Figure 5. Liquid flowrate leaving the condenser L0.

In Fig. 6, it is presented the heat duty of the con-
denser. It can be seen that the steady state value of Q0 is
equal to the heat duty of the reboiler, which is coherent
with the consideration of negligible heat loss throughout
the column. Figures 7 and 8 show the behavior of the
temperature and of the enthalpy of liquid and vapour
phases in the condenser, in the reboiler and in the sixth
stage of the column.
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VI. CONCLUSIONS
The optimized operation and the control of a transient
distillation process require the numerical resolution of
the mathematical model representative of the process, a
DAE system. On the presented formulation, the model
presents high index. Characterization of the system,
index reduction and consistent initialization are issues to
be dealt with prior to the numerical resolution of the
model. The drawbacks of this formulation may be over-
come using the developed characterization/initialization
module. This module has been coupled with the
DASSLC code for numerical integration of index 1
DAEs. As a consequence, high-index DAE systems can
be simulated with minor intervention of the user.

In this contribution, the start-up of a batch distilla-
tion process has been analyzed. Numerical results agree
with reported profiles for concentration in the reboiler
and in the condenser.

The user must supply the DAE system according to
DASSLC standards, choose r variables to be assigned
arbitrarily at t=0 and provide numerical values for those
variables. The code automatically checks for feasibility
of the chosen set, computes a complete initial set of
initial conditions and allows the numerical integration
of the resulting DAE system by existing numerical
codes. The automatic differentiation tool ADOL-C has
been utilized to perform all the required differentiation.

It should be pointed out that the direct resolution of
high-index systems makes it feasible to perform the
numerical resolution of DAE models of arbitrary index
and dimension. Consequently, it encourages the devel-
opment of more detailed mathematical models.
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APPENDIX - Reducing the Index of the DAE Model
In order to reduce the index of the DAE system com-
prised of Eqn. 1 to 8, the following procedure could be
used. Equation 4 can be rewritten as:

i

iji
ji N

TKn
y

)(,
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Replacing yi,j by the right hand side of this expres-
sion at Eqn. 7, it follows that:
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Differentiating Eqn. 12, 5 and 3 for the first time, the
following expressions are obtained, respectively.
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Substituting Eqn. 13 into 14, it is obtained:
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Substituting Eqn.15 into 16, it is obtained:
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Substituting Eqn.1 into 17, it is obtained:
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Substituting Eqn.18 into 2, it is obtained:
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Substituting Eqn.8 into 19, it is obtained:
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i= 0, ..., np+1

The algebraic variable Q0 and the np+1 molar fluxes
Li are present at these np+2 equations (represented as
Eqn. 20). In the above equations, variables with index i-
1 and i+1 do not exist when i = 0 and i = np+1, respec-
tively. Via this procedure, it has been built an index 1
system, composed of Eqn. 1-6 coupled with Eqn. 8 and
20. This system can be integrated with a standard code
as DASSL or DASSLC. As only one differentiation of
each equation has been necessary to build an index 1
system, the original system presents index 2.
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