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Abstract−− The desired operating point in Model 
Predictive Control is determined by a local steady-
state optimization, which may be based on an eco-
nomic objective.  In this paper we proposes the solu-
tion of a linear dynamic back-off problem to obtain a 
hierarchical scheme that ensures feasible operation 
in despite of disturbances.  This is performed by 
computing the critical disturbances and expanding 
the optimization problem to ensure the existence of a 
control action that ensures the rejection of each per-
turbation. 

Keywords−− Model Predictive Control, Process 
Optimization. 

I. INTRODUCTION 
Model Predictive Control (MPC) refers to a class of 
computer implemented mathematical algorithms that 
control the future behavior of a plant through the use of 
an explicit process model.  At each control interval the 
MPC algorithm computes in an open-loop mode a se-
quence of adjustments on manipulated variables, in or-
der to optimize the future plant behavior under process 
constraints.  The first input in the optimal sequence is 
injected into the plant, and the entire optimization is 
repeated at subsequent control intervals.  In the modern 
processing plants the MPC controller is part of a multi-
level hierarchy of control functions (Qin and Badgwell, 
1997), as it is illustrated in Fig. 1. Several other authors 
(Richalet et al., 1978; Prett and Garcia, 1988) have de-
scribed similar hierarchical structures.   

The second stage of this hierarchy (the unit opti-
mizer) computes an optimal steady-state point and 
passes it to the dynamic constraint control for its im-
plementation.  This desired operating point is usually 
determined by a local steady-state optimization, which 
may be based on an economic objective and a linear 
model.  Typically, the resulting point lies at the bound-
ary of the operative region (i.e., it is at the intersection 
of several active constraints, as many as the number of 
optimization variables).  The underlying idea is that the 
controller provides perfect control, so that the plant re-
mains at, or at least close to, its nominal operating point 
in spite of disturbances, parameter variations and un-
certainty in the plant characteristics.  This is a clearly 
unrealistic scenario, given that in a practical situation a 

plant cannot be operated at its nominal optimum. A pos-
sible solution to overcome this practical limitation is to 
take a safety margin by strengthening the constraints 
(i.e., by reducing the feasibility region), and moving the 
desired operating point away from the actual plant con-
straints.  In absence of information about how distur-
bances affect the steady-state point, this over design is 
hard to justify on economical grounds.   

In this paper we present an alternative procedure to 
compute the operating point that guarantee feasible op-
eration in spite of process disturbances. The main idea is 
to move the operating point away from the boundary of 
the feasibility region by considering the effect that the 
expected disturbances will have on the plant operation. 
This movement is referred in the literature as back-off.  
It was originally motivated by the desire of evaluating 
and comparing control strategies and process designs on 
the basis of their economic impact (Bandoni et al., 
1994, Perkins and Walsh, 1994; Figueroa et al., 1994).   

In general terms, the back-off problem consists in 
the optimization of a steady state objective function 
subject to dynamic constraints in the presence of proc-
ess disturbances. Through this procedure, we ensure that 
the process operates at the optimal level of the defined 
performance objective function, with no constraint vio-
lations at the control level.  In practice, the back-off 
problem is usually solved by finding an operative point 
that guarantee plant operation for the “worst case” of 
the disturbances, in the sense they produce the largest 
constraint violation. 
 
 
 

Global Steady-State Op-
timization (every day)

Level 1: Plant-Wide Optimization 

 
 
 
 
 
 
 
 
 
Fig. 1. Hierarchy of Control System. 
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A strategy to compute the nonlinear steady-state 
back-off was developed by Bandoni et al. (1994) by 
writing the optimization problem as one of semi-infinite 
programming.  This algorithm was extended to the dy-
namic case by Figueroa et al. (1996).  Due to the large 
computational effort necessary to solve the nonlinear 
optimization problem some algorithms were proposed 
by Figueroa and Desages (1998) and Raspanti and Fi-
gueroa (2001) by approximating the model using 
Piecewise lineal models.  Loeblein and Perkins (1999) 
proposed a methodology to evaluate the back off under 
unconstrained MPC regulatory control for a stochastic 
description of disturbances, to perform this analysis it is 
necessary to assumed the disturbance as Gaussian noise 
with known statistics.   

The paper is organized as follows, in Section 2 the 
model predictive control formulation is described.  The 
optimization structure of Level 2 is presented in Section 
3.  An application example is developed in Section 4 
and the paper ends with some conclusions in Section 5.  
 

II. MODEL PREDICTIVE CONTROL 
FORMULATION 

In this paper, we will assume that the underlying system 
is the following discrete linear system, 
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where x is the state vector, y is the measured output 
vector, us is the vector of optimization variables that 
determines the operating condition (computed in level 
2), uc is the vector of manipulate variables and d is the 
vector representing the disturbances.  The domains of 
the signals are assumed as follow,  
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Using this model structure, the control problem to be 
solved is to compute a sequence of inputs {uc[k+l], 
l=1,…,M), that will take the process from its current 
status x[k] to a desired steady-state xs.  The MPC pro-
blem is written as,  
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where P is the output horizon, M is the control horizon, 
zc is a set of nc inequality constraints, xs is the desired 
value for the state, ∆uc[k] (uc[k]-uc[k-1]) is the move-
ment in the manipulate variable and w[k] is a bias term 
that compares the current predicted state x[k] to the cur-

rent measured state xm[k] (i.e., ).  
for l=1,2,…,P).   

w x xm[ ] [ ] [ ]k l k k+ = −

At each iteration, the measure of the actual process 
state is feedback when w[k+l] is computed to be used at 
the next sample time.  In the solution of this problem it 
is usual consider no disturbances along the control hori-
zon (i.e. d[k+j]=0, j=1,M).  It is possible to include in 
the vector zc some constraints that ensures closed loop 
stability for the control law (de Olivera and Morari, 
2000).   
 

II. DYNAMIC OPTIMIZATION FOR LEVEL 2. 

Usually, as it is mentioned above, the desired operating 
point is determined by a local steady-state optimization 
for the undisturbed system (i.e, d[k]=0) with not control 
action applied (i.e, ∆uc[k]=0).  This optimization may be 
based on an economic objective.  Mathematically, this 
problem is written as,  
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Typically, the resulting point lies in the boundary of 
the operating region (i.e., it is at the intersection as 
many active constraints as the dimension of the optimi-
zation variables).  The underlying idea is that the con-
troller provides perfect control, so that the plant remains 
at its nominal operating point in spite of disturbance.  

In this paper we suggest an alternative to compute 
the operating point.  The main idea is to move the oper-
ating point away from the boundary of the feasibility 
region by considering the effect that the expected dis-
turbances will have in the operation of the plant.  This is 
called back-off and it is motivated by the desire of 
evaluating and comparing control strategies and process 
designs on the basis of their economic impact (Figueroa, 
et al., 1994).   

In general the Back-off problem is defined as the op-
timization of a steady state objective function subject to 
dynamic constraints when disturbances are present.  In 
this paper context, this is mathematically written as,  
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where  means the vector x at the steady-state (for 
the undisturbed system and without control action) and 
cont(x[k]) is an expression for a general controller.  
Note that in this problem there is a usual assumption 
that the control algorithm is implicit in the dynamic 
model.  The objective function has an economic mean-
ing and it is computed at steady state.  In our case, it is 
quadratic, because in this way it is possible to represent 
the economic cost for process operation with lower 
mathematical complexity.  The set of possible distur-
bances is constrained to be of bounded amplitude.  Fi-
nally, the initial condition for disturbances and control 
action are considered equal to zero (i.e, d[k]=0 and 
∆u

x[ ]0

c[k]=0)..  

The objective function is evaluated at the initial 
time, considering that the plant is in steady state and 
free of disturbances ( x x[ ] [k k]+ =1 , d[ ]k = 0  and 

).  Let us consider that (I-A)uc [ ]k = 0 -1 exists (condition 
that is true for non-integrating process).  Under these 
assumptions the steady-state vector is 

.  This implies that the objective 
function could be written as,  
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Now, assuming the use of the MPC control structure 
defined in previous section, let us analyze the dynamic 
constraints. Starting from the valor of x[k] it is possible 
to solve recursively the dynamic model for an horizon 
of P future samples as,  
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Using this notation for the constraints, we obtain,  
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and 
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In the solution of the back-off problem it is a usual 
practice to define the control algorithm and compute 
“the worst” disturbance in the sense of producing the 
largest violation of the constraints.  In our case, since 
that we use a MPC scheme, we should consider “the 
worst” movement from the steady state due to distur-
bance effect when “the best” control is applied.  Then, 
we are interested in solving [ ]jD

minmax ]0[ζ
cU∈D

, where an 

optimization should be solved for each row (j) of the 
matrix ζ[ ]0 j

.  The domain of maximization corre-

sponding to the disturbances moves between -1 and +1.  
Now, if we consider that this is a set of linear problems 
(one for each row of ζ[ ]0 ) and that the optimization 
variables (D,Uc) are not related, this is equivalent to 
solve for each row .  

j
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The solution of the first term could be found independ-
ently computing for each row, considering that the large 
value of each row will be obtain for the values of D[0] 
that produces the largest contribution on Ξd j

D 0 .  

This coincides with the values of D[0]=±1 correspond-
ing with the sign of Ξd, i.e., 
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Obviously, this vector defines “the worst case” at each 
instant and in each constraint.  Now, in the present prob-
lem of compute back-off under MPC structure, we are 
interested in obtaining a value of us and the corre-
sponding values of the control action Uc[k] in order to 
obtain the maximum of the steady-state objective func-
tion without constraint violations.  This is equivalent to 
solve  
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In this problem, the constraints should be satisfied for 
all disturbances.  This implies that at the operating point 
should exist “a control” that rejects “each disturbance”.  
We can write this in mathematical terms as,  
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where x[0] has been replace for their steady-state value.  
In the constraints in expression (11) it is implicit the 
presence of the "worst disturbances" in the sense of pro-
duce the largest violation of the constraints at any time.  
Now, in operation, each of these disturbances will re-
quire a particular control action to reject it.  Let us de-
fined the rows of ζ[ ]0  associated with the jth constraint 
as, ( )( )[ ]jccs ξ+Ξ+Ξ+Ξ+−Ξ − ]0[1

css UuBAI , with j=1, 

.., Pnc.1  Then, in the following we proposed to consider 
a particular control action (U ) to compensate each 
row.  This is, we can write the problem of control exis-
tence as,  
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The first set of inequalities is included to force the proc-
ess to verify the steady state equations.  This problem 
could be solved as a standard Quadratic Problem as  
                                                           
1 This implies add a row for each sample time and for each 
constraint. 
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where we obtain a particular control, , for each 
“worst case” disturbance.  In next section, we will use 
this optimization formulation in the MPC formulation 
for an illustrative example.  

Uc
j[ ]0

 

IV. EXAMPLE  

The case study considered in this section consists of two 
continuous stirred tank reactors (CSTR) in series, with 
an intermediate mixer introducing a second feed (de 
Hennin and Perkins, 1993; de Hennin, et al., 1994; Fi-
gueroa, 2000), as shown in Fig. 2. A single irreversible, 
exothermic, first order reaction A  takes place in 
both reactors.  The dynamic model of these reactions is   
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CSTR #1 Mixer

111 ,, FFF CTQ
222 ,, QCT

T C1 1,

T C2 2,

111 ,, cocicw TTF
CSTR #2

222 ,, cocicw TTF
 

Fig. 2.  Flowsheet Example 
Table 1: Parameters and Variables 
Parameter/ Variable Nominal 

Value 
Lower 
Bound 

Upper 
Bound 
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C mol mF
1 3/  20 19.75 20.5 

C mol m2
3/  20 19.75 20.5 

T KF
1 o  300 297.5 305 

T K2
o  300 297.5 305 

T Kci
1 o  250   

T Kci
2 o  250   

F mcw
1 3 / sec  0.35   

F mcw
2 3 / sec  0.8   

V V m1 2 3,  5.0   

c J Kg Kp
o/  1.0   

E
R Ko  6000   

D Km molh
o 3 /  5.0   

ko sec−1  2.7 108   

U W Ca
o/  0.35   

 

The process parameters and variables are defined in 
Table 1.  Also in this Table are present the bounds for 
some variables.  The state variables are the concentra-
tion and temperatures in both reactors 
( x = C T C T

T1 1 2 2 ), the optimization variables 

are the first and second feed flowrates and cooling tem-
perature for both reactors ( us = Q Q T TF M ci ci

T1 1 2 ), 

the manipulated variables are the cooling temperature 
for both reactors uc = T Tci ci

T1 2  and the disturbances 

are the composition and the temperature in both feeds 
d = C T C TF F

T1 1
2 2

.  The objective function for the 

optimization of the level 2 is to maximize the operation 
profit, expressed as,  

zo
T

T

= +0 0.003 0 0.2512

-1969 -1969 -0.003 -0.2512

x

us

....

....
 

There are the following constraints in this process:  
Security constraint:  

T1≤350   T2≤350;  

Production limitations:  
QF

1+QM≤0.8  QF
1≥0.05  QM≥0.05  

Process limitations:  
200≤T1

ci≤300   200≤T2
ci≤300 

200≤T1
co≤310   200≤T2

co≤310  
F1

cw≤2     F2
cw≤2 

Product specifications: C2≤0.3. 

The initial values for optimization and output vari-
ables are the ones became from the global optimization 
of Level 1:  

us=[0.2062  0.3352  250  250]T 

x=[0.1455  350  0.2105  332.1]T. 

It is important to remark that the operation for these 
values is nominally (i.e. with not disturbances) feasible.  
When perturbation are presented this operating point 
becomes not feasible due to violation some constraints 
(T1

co>310 and T2
co>310).   

Using the linearized model, the solution of problem 
(13) modifies this operative point to make its perma-
nently feasible optimum for the set of possible distur-
bances,  

us=[0.53  0.27  252.13  294.27] 

x=[0.356  342.32  0.197  336.83]. 

Figures 3-6 show the dynamic response of the proc-
ess with the MPC control algorithm when step distur-
bances in booth feed temperatures are applied.  The 
showed plot represents the behavior of the Temperature 
in first and second reactor (Fig. 3 and 4, respectively) 
and for the input temperature in the cooler flow for both 
reactors (Fig. 5 and 6).  In all cases the process variables 
do not exhibit constraint violation, so we can say that 
we have optimized and controlled the process success-
fully. 
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Fig. 3. Temperature in first reactor 
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Fig. 4. Temperature in second reactor 
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Fig. 5. Cooler temperature in first reactor 
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Fig. 6. Cooler temperature in second reactor 

V. CONCLUSIONS 
In this paper the problem of determining the optimal 
operating point of a process under MPC control is pre-
sented.  In particular, the presence of the disturbance 
was considered to ensure not constraints violation in 
presence of perturbation. To obtain it, the local optimi-
zation approach for level 2 in MPC is replaced by a 
back-off algorithm.  This algorithm was modified in 
order to allow the incorporation of a MPC scheme by 
including in the optimization problem as many control 
sequences as the number of critical perturbations.  The 
resulting scheme is applied to a flowsheet example.   
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