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Abstract— In this paper we propose a
Wiener-like approximation scheme that uses
Rational Wavelets for the linear dynamical
structure and Orthonormal High Level Canon-
ical Piecewise Linear functions for approxi-
mating the nonlinear static part. This struc-
ture allows to approximate any nonlinear, time-
invariant, causal dynamic systems with fading
memory and has the following advantages: ca-
pability of time-frequency location, design of
the linear dynamic part taking into account
the a priori knowledge of the system, and min-
imum number of parameters of Orthonormal
High Level Canonical Piecewise Linear func-
tions determined straightforwardly.

Keywords: Nonlinear identification, Wiener mod-
eling, wavelets, ONPWL Functions.

I. INTRODUCTION

Wiener structure consists of two different blocks in cas-
cade: a linear single-input multiple-output dynamic
system and a multiple-input single-output memory-
less nonlinear mapping. In its original work, Wiener
(1956) used Laguerre filters and Hermite polynomials
for the linear and nonlinear part, respectively. But
its numerical complexity (see Billings (1980)) has re-
stricted the use of discrete versions of Wiener series
to few applications, as shown in Korenberg (1982). In
order to improve the original Wiener’s structure, dif-
ferent schemes have been proposed (Söderstrom and
Stoika (1989), Korenberg and Paarmann (1991), de
Figueiredo and Chen (1993), Sentoni et al. (1996) and
Castro et al. (1999, 2002)).

In this article we propose to use rational wavelet sys-
tem transfer functions (as defined in Pati, (1992)) for
approximating the linear dynamic part. The selection
of the linear filters is based on results developed in the
theory of wavelets in signal processing and allows to
build up a constructive modeling strategy. This pro-
cedure also leads to a tailored identification structure
of the linear part that has two important features: the
capability of time-frequency location and the design

of the linear dynamic part taking into account the a
priori knowledge of the system.

For modeling the static nonlinearity we have cho-
sen Orthonormal High Level Canonical Piecewise Lin-
ear (ONPWL from now on) functions (see Lin et al.
(1994), Kang and Chua (1978), Julián et al. (1999,
2000)) similarly as in Castro et al. (1999). In par-
ticular, the class of all continuous PWL functions de-
fined over a compact domain in Rm, partitioned with a
simplicial boundary configuration (see Chien and Kuh
(1977)), is considered. This choice has been motivated
by several facts: this class of functions uniformly ap-
proximate any continuous nonlinear function defined
over a compact domain in Rn (see Chien and Kuh
(1977), Julián et al. (1999, 2000)) and the canoni-
cal expression introduced in Julián et al. (1999) uses
the minimum and exact number of parameters. As
a consequence of this, an efficient characterization is
obtained from the viewpoint of memory storage and
numerical evaluation. Another relevant aspect is that
the parameters of the ONPWL functions associated to
the approximation of the nonlinear function can be ob-
tained efficiently via the resolution of a linear system
characterized by a lower triangular full rank matrix
(Julián et al. (1999, 2000)).

With the proposed structure it is possible to obtain
a compact approximation of nonlinear discrete, time-
invariant, causal systems with fading memory using a
finite number of rational wavelet system transfer func-
tions and an ONPWL function with a certain number
of parameters which can be determined straightfor-
wardly.

The paper is organized as follows. In Section II we
present some definitions and well known results that
will be used throughout the article. We also define the
rational wavelet system function and describe its lo-
calization properties and give a brief description of the
ONPWL functions as well. In Section III we present
the approximation structure proposed and state the
approximation theorem. In Section IV we give a con-
structive example and in Section V conclusions are
drawn.



II. GENERAL BACKGROUND

In this section we give the fundamentals on Wiener
modeling, rational wavelet systems and canonical ON-
PWL functions. For details on Wiener approximation
scheme, the reader is referred to Wiener (1956) and
Schetzen (1980); for details on Hardy spaces see Duren
(1970), Garnett (1981) or Hoffman (1988). Also, read-
ers not familiar with wavelet theory can consult, for ex-
ample, Chui (1992), Daubechies (1992), Kaiser (1994),
Strang and Nguyen (1996), Mallat (1998). Details on
PWL functions can be found in Chien and Kuh (1977),
Kang and Chua (1978), Lin et al. (1994) and Julián
et al. (1999, 2000).

A. Wiener modeling

A bounded-input bounded-output (BIBO) stable non-
linear system can be represented by the model pro-
posed in Wiener (1956) and Schetzen (1980)

y (k + 1) = f (v0[k], v1[k], . . . ) , (1)

where f : l∞ → R is a nonlinear static mapping and
vi[k] is the output of the ith component of the linear
system chosen. This approach allows the identification
of the system to be reduced to two simpler steps: the i-
dentification of a linear system and the interpolation of
a nonlinear static function using some adequate struc-
ture. In its original formulation, Wiener proposed to
represent the linear dynamical system and the nonlin-
ear static mapping using Laguerre filters and Hermite
polynomials, respectively.

One problem related to the use of Laguerre filters is
its pole location. This is not a trivial problem since
the system is nonlinear and, in consequence, the opti-
mum value of the pole depends, in general, not only
on the amplitude and nature of the signal but also on
the selected order. Wiener’s original formulation does
not depend, however, on the specific value of the pole,
but adequate choice of this parameter can reduce sig-
nificantly the number of elements of the basis needed
and, in consequence, the number of parameters. The
second step involves the approximation of the nonlin-
ear functional f in Eqn. (1). This requires the choice
of an efficient representation, from the point of view
of number of parameters, which must be able to uni-
formly approximate any continuous function.

Other models that leave Laguerre filters as in the
original formulation and use piecewise linear functions
to approximate the static nonlinear function have also
been proposed by Billings (1980), Sontag (1995) and
Castro et al. (1999).

B. Rational Wavelet Systems

In this section we define the so called wavelet system
transfer functions that will be used in Section III to
approximate the linear dynamic part of the model.

Frames1 of rational wavelets were first defined by
1For details on frames see, for example, Duffin and Schaeffer

(1952), Daubechies (1992), Mallat (1998).

Pati (1992) and Pati and Krishnaprasad (1994), and
later generalized by Ward and Partington (1997).

We note with Π+ = {s = x+ iy : x > 0} the right
half complex plane and H2 (Π+) the Hardy space of an-
alytic functions on Π+. The elements of H2 (Π+) may
be identified with transfer functions of causal input-
output stable, linear time-invariant systems.

Through the remainder of the article we will
note with H2

R (Π+) the space of functions which are
Laplace transform of functions in L2 ([0,+∞)) and
by RH2 (Π+) the space of real rational functions in
H2 (Π+), i.e. rational functions in H2 (Π+) with real
coefficients.

Let Ψ ∈ RH2 (Π+) be an admissible analyzing
wavelet on the imaginary axis; so the discrete wavelets
with mother wavelet Ψ may be defined by (for details
see Pati (1992))

Ψm,n (ω) = am/2Ψ (amω − inb0) , (2)

being a > 0,Ψ (ω) = Ψ (iω).
Then exist a > 0 and b0 such that

{{Ψm,n}(m,n)∈Z2 , a, b0} forms a frame for H2 (Π+)
(see Daubechies (1992)). Thus, any F ∈ H2 (Π+), can
be represented as

F (ω) =
∑
m,n

〈F, S−1Ψm,n〉Ψm,n (ω) , (3)

being S the frame operator associated with the frame
{Ψm,n}(m,n)∈Z2 . If F ∈ H2

R (Π+), the idea is to con-
sider (3) as a decomposition of H2 (Π+) using functions
of RH2 (Π+). Now, if Ψ ∈ RH2 (Π+) is an analyzing
wavelet, truncation of the series (3) will not, in gen-
eral, result in real-rational functions. For solving this
problem, the so called wavelet system (WS) transfer
function is defined.

Definition II..1 Given Ψ ∈ RH2 (Π+), a wavelet sys-
tem transfer function is defined as follows,

Gm,n (s) = αm,nΨm,n (s) + αm,nΨm,−n (s) ,
(4)

m ∈ Z, n ∈ N, αm,n ∈ C. For m ∈ Z, n = 0, define
Gm,0 = αm,0Ψm,0, where αm,0 is real for all m.

From Eqn. (4), Gm,n ∈ RH2 (Π+) and it is possible to
re-write Eqn. (3) as a decomposition of H2 (Π+) via
real-rational functions.

Theorem II..2 Let Ψ ∈ RH2 (Π+); then any F ∈
H2

R (Π+) can be represented as

F =
∑
m∈Z

+∞∑
n=0

Fm,n, (5)

where Fm,n is a wavelet system transfer function de-
fined by Eqn. 4, being

αm,n = 〈F, S−1Ψm,n〉,m ∈ Z, n ∈ N

αm,0 = 〈F, S−1Ψm,0〉,m ∈ Z.



Eqn. (5) is the so called wavelet system decomposition
(WSD) of F ∈ H2

R (Π+).

Proof: See Pati (1992).
A rational admissible analyzing wavelet in H2

R (Π+)
is the function

Ψ (s) =
1

(s+ γ)2 + ξ2
, γ, ξ > 0, (6)

whose inverse Laplace transform is

ψ (t) =
{
ξ−1e−γt sin ξt, for t ≥ 0
0, for t < 0. (7)

B.1. Time-Frequency Localization of Wavelet
Systems

Time-frequency localization is perhaps the most use-
ful property of WS decomposition and it arises from
translations and dilations of the analyzing wavelet Ψ.
Time and frequency localization are precisely defined,
for example, in Mallat (1998) and they are related to
the time and frequency concentration of a function, i.e.
intervals exist in the time or frequency domains that
contain ‘most’ of the energy of the function. Denoting
Ω (Ψ) = [ω0 (Ψ) , ω1 (Ψ)] the interval of frequency con-
centration of Ψ and R (Ψ) = [t0 (Ψ) , t1 (Ψ)] the inter-
val of time concentration of Ψ, the energy concentra-
tion of Ψ in the time-frequency plane is the rectangle
or Heisenberg’s box Q = Ω (Ψ)× R (Ψ). Then the en-
ergy of each WS transfer function is concentrated on
the following rectangles

Qm,n = [a−m (ω0 (Ψ) + nb0) , a−m (ω1 (Ψ) + nb0)]
×[amt0 (Ψ) , amt1 (Ψ)]. (8)

Due to symmetry about ω = 0, only positive fre-
quencies are to be considered. It is worth to remark
two important features of the time-frequency localiza-
tion. Near t = 0 the time localization of each wavelet
system is good but the frequency localization is poor,
giving the advantage that relatively few terms are re-
quired near the time-origin to capture a broad range
of frequency components. For t� 0, time localization
is poor while frequency localization is very good, so it
is possible to ‘zoom in’ on narrow frequency bands.

C. Orthonormal Canonical Piecewise Linear
Functions

In this section we give a brief description of the canon-
ical ONPWL functions that will be used for approx-
imating the nonlinear static part of the proposed
model. The canonical representation of PWL func-
tions was originally introduced by Chua and Kang
(1977), Kang and Chua (1978) in the context of nonlin-
ear circuit theory. Later on, the existence of a canon-
ical representation for a PWL function in Rm was
proved by Lin (1994). However, the first PWL ex-
pression able to represent PWL mappings defined on
domains of arbitrary dimension was the representation

proposed in Julián et al. (1999). In this paper, we use
the orthonormal definition of the PWL functions given
afterwards in Julián et al. (2000) to represent the non-
linear static mapping.

Definition II..3 A function f : D ⊂ Rn → Rm

where D is a compact set, is a PWL function if and
only if it satisfies

i) The domain D can be partitioned into a finite
number of polyhedral regions R(i), i = 1, . . . , N (such
that D = ∪N

i=1R
(i)

) by a finite set of boundaries
H = {Hi ⊂ D, i = 1, . . . , k} such that each boundary
is either an (n− 1)-dimensional hyperplane character-
ized by

Hi = {x ∈ Rn : πi (x) = αT
i x ∗ βi = 0},

where αi ∈ Rn, βi ∈ R1 for i = 1, 2, . . . , k or a sub-
set of that hyperplane and cannot be covered2 by any
(n− 2)-dimensional hyperplane.

ii) f can be written as an affine representation of the
form f (i) (x) = J (i)x + w(i) for any x ∈ R(i), where
J (i) ∈ Rm×n is the Jacobian matrix of the region R(i)

and w(i) ∈ Rm.
iii) f is continuous on any boundary between two

adjacent regions, namely,

J (p)x + w(p) = J (q)x + w(q),

for any x ∈ R
(p) ∩R(q)

.

The representation proposed in Julián et al. (1999)
requires of the definition of a rectangular compact do-
main of the form

S = {x ∈ Rm : 0 ≤ xi ≤ niδ, i = 1, 2, . . . ,m} ,
(9)

where δ is the grid size and ni ∈ Z+, being Z+ the set
of positive integers. This domain is then subdivided
in simplices using a simplicial boundary configuration3

H , being a simplex defined as follows:

Definition II..4 : Let x0, x1, . . . ,xn be n+ 1 points
in Rn. A simplex (or polytope) ∆

(
x0, . . . ,xn

)
is de-

fined by

∆
(
x0, . . . ,xn

)
=

{
x : x =

∑n

i=0
µixn

}
,

(10)

where 0 ≤ µi ≤ 1, i ∈ {1, . . . , n} and
∑n

i=0 µi = 1.
A simplex is said to be proper if and only if it is not
contained in an (n− 1) dimensional hyperplane.

2A boundary B is said to be covered by hyperplane H if and
only if B ⊂ H.

3A simplicial boundary configuration is characterized by the
property that it produces a division of the domain into proper
simplices.



Finally, the space PWLH [S] of all continuous PWL
mappings defined over the domain S partitioned with a
simplicial boundary configuration H , is a linear vector
space. A basis for this space (see Julián et al. (1999)),
can be expressed in vector form as

Λ =
[
Λ0T

,Λ1T

, . . . ,ΛmT
]T

, (11)

where Λi is the vector containing the basis generating
functions. To construct an orthonormal basis it is nec-
essary to define an inner product in PWLH [S]. If VS

is the set of vertices of S and f , g belong to PWLH [S],
then 〈f, g〉 =

∑
vi∈S f (vi) g (vi) defines an inner prod-

uct and the space PWLH [S] becomes a Hilbert space.
The elements of the new basis are linear combination
of (11), that is Υ (x) = TΛ (x), and the matrix T may
be obtained using, for example, the Gram-Schmidt
procedure. Then, the PWL functions of this class
can uniformly approximate any continuous function
g : S 
→ R1. In order to find the approximation, a
vector of parameters c is found. This vector is the
solution of the least square problem minx ‖Ax− b‖2,
being A = ΥT (X), X the input matrix and b the
output to be approximated, in sparse format. Then
the PWL approximation of the nonlinear function g
is defined as the function fp ∈ PWLH [S] satisfying
fp = Ac. For details on the construction of the or-
thonormal basis see Julián et al. (2000).

III. APPROXIMATION SCHEME

The linear dynamic part of the structure must be
represented using a finite number of wavelet system
transfer functions while the static nonlinearity is im-
plemented using Canonical High Level ONPWL func-
tions. The algorithms that use the orthonormal basis
allow a large number of inputs due to the ability of
handling sparse matrices. So, the number of inputs to
the nonlinear block is not a restriction as was in Castro
et al. (1999). Also, the use of Canonical High Level
ONPWL has other advantages: computing the coef-
ficients is straightforward and it is possible to detect
the simplices that contribute to the approximation.

In what follows, the analyzing wavelet considered
is the one given by Eqn. (6). This choice was based
on the fact that it is the oscillatory wavelet of least
order. It is possible to define the DWS transfer func-
tions Gm,n

d by discretizing the inverse Laplace trans-
form of the WS transfer functions given in Eqn. (4).
In this context, it is possible to define Gm,n

d u =∑
k g

m,n (k)u (−k), the coefficients gm,n (k) given by

gm,n (k) =
[2a−m/2

ξ
e−a−mγk sin

(
a−mξk

) ]
∗

[
Real (αm,n) cos

(
a−mnb0k

)
+

Im (αm,n) sin
(
a−mnb0k

)]
, (12)

gm,0 (k) =
a−m/2αm,0a

−m

ξ
e−a−mγk sin

(
a−mξk

)
.

From Eqn. (12) follows that gm,n (0) = 0 ∀m,n.
Then the proposed model is formally given by

ỹ (k + 1) = CH (z0[u (k)], z1[u (k)], . . . , zN [u (k)]) ,
(13)

where zi[u (k)], i = 0, . . . , N are the outputs of the
discrete wavelet system (DWS) transfer functions and
CH represents Canonical High Level ONPWL func-
tions.

Theorem III..1 Let K = {u ∈ l∞ : ‖u‖∞ ≤ r, r >
0} and the DWS determined by the analyzing wavelet
given by Eqn. (6). Also, let f : K → l∞ a causal,
time invariant nonlinear operator with fading memory
on K (see Boyd and Chua (1985)). Then for a given
ε > 0 there exist a finite set {Gm,n

d }(m,n)∈Γ, Γ ⊂ Z2,
and a set of High Level ONPWL functions such that
for any u ∈ K

‖y − ỹ‖∞ ≤ ε (14)

being y the system output and ỹ the output of the model
defined by Eqn. (13).

Proof: The proof is analogous to the one given
in Castro et al. (1999) taking into account the results
proved in Castro et al. (2002).

A. WS Transfer Function Selection

In our identification scheme, the criteria for selecting
a finite number of WS transfer functions rely on the
time-frequency localization properties of the rational
wavelets Ψm,n. Let u be as in Theorem III..1, f ∈
L2 (R) the function we want to identify and consider
the set Ξ of input-output samples

Ξ = {(uk, yk) : yk = f (uk) , uk, yk ∈ R, k = 1, . . . ,m}
(15)

where the index k represents the kth sampling time.
Let us denote by

Ω (f) = [ωmin, ωmax] (16)

the frequency concentration of f . Also, let us assume
that we wish to approximate f on the time interval

R (f) = [tmin, tmax]. (17)

The first step is to perform a frequency analysis of the
given data. In order to do this, it is necessary to obtain
an estimate Ω̃ (f) = [ω̃min, ω̃max] of Ω (f), based on the
data Ξ. There is a significant drawback when perform-
ing this bandwidth estimate using Fourier techniques
since a generalized rectangle in time-frequency space
is generated. Then, if we use this rectangle to choose
the elements of the frame needed to approximate the



dynamical part of the signal, we would be using more
frame elements than those really needed. So, the ad-
vantage of using time-frequency localized wavelets is
not fully exploited. In order to overcome this problem,
it is possible to divide the time interval [tmin, tmax] into
subintervals and perform the frequency analysis of the
data in each of these subintervals. Finally, the an-
alyzed time-frequency rectangles of the output signal
and the time-frequency windows of the frame elements
are overlapped. Then we select those frame elements
whose windows cover the time-frequency rectangles of
the sytem output.

IV. EXAMPLE

In order to show the approximation capabilities of
the proposed methodology, let us consider the model
shown in Fig. 1, implemented in Matlab:

Figure 1: Nonlinear system to be identified.

The identification process was done following the
steps described in Section III and are summarized be-
low.

Step 1. In order to identify the analyzing wavelet,
the system was first excited using a step function uesc

obtaining an output signal yesc. The value ξ = 0.9 was
taken to be as the frequency value where the FFT of
yesc attains its maximum. The parameter γ = 0.2 was
chosen so that yesc and G0,0

d uesc had a similar damping
in the time domain. In Fig. 2 it is possible to see the
graph of both |Ψ (s) | and ψ (t).

Step 2. Once the identification of the analyzing
wavelets was done, the system was excited with a uni-
form random signal u, obtaining as result the output
y. In order to choose the discrete transfer functions
Gm,n

d , we plotted the Heisenberg’s box corresponding
to the system output and to the wavelets Ψm,n that
covered it. In Fig. 3 (a), (b) and (c) we show, sepa-
rately, the time-frequency boxes. As it can be seen, the
time-frequency analysis gives as result that 32 DWS
transfer functions were necessary.

Step 3. Since we wanted to show the approxima-
tion surface obtained with the ONPWL functions, we
needed to restrict the number of transfer functions to
two. One of them had to be the mother wavelet since
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Figure 2: Analyzing wavelet used for the linear part
of the identification structure.

it carries the information of the frequency content of
the system that has the main contribution. So the
problem was to determine the other one. The criteria
for doing this were the following.

• First, the dilation parameter was taken to be
m = 3 since the boxes corresponding to this
value were the ones that covered the major part
of the time interval of the output that the box
of the mother wavelet didn’t.

• Next we had to find the appropriate value of
the translation step n. In first place, we dis-
carded the indices n whose Heisenberg’s boxes
had nonempty intersection with the Heisenberg’s
box of the analyzing wavelet. Then, only n =
2, 3, 4 had to be considered. From these values,
we chose n = 4 since we obtained the best lin-
ear least square approximation taking G0,0

d and
G3,4

d . This approximation and the corresponding
error can be seen in Fig. 4.

We must remark that it is always necessary to
make the above considerations for selecting the trans-
fer functions since the wavelets do not form an or-
thonormal basis but a frame. Then it is not natural to
choose those transfer functions such that their coeffi-
cients corresponding to the linear approximation have
greatest absolute magnitude.

We took α0,0 = 1 and α3,4 = 1+ i as the coefficients
in Eqn. 12. It is worth to note that these are only
initial values for the algorithm and can be selected
differently, not affecting the final results. This is due
to the fact that the frame elements already selected
nor the frame properties change when different values
of the coefficients αm,n are chosen.

Step 4. Once the parameters of the dynamic lin-
ear part of the system were found, we had to compute
the parameters of the ONPWL functions correspond-
ing to the approximation of the nonlinear static part.
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Figure 3: Boxes corresponding to: (a) In-
dices (0, 0) , (1, n) , n = 0, . . . , 3, (b) In-
dices (0, 0) , (3, n) , n = 2, . . . , 19, (c) Indices
(0, 0) , (3, n) , n = 2, . . . , 19.
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Figure 4: Least square linear approximation usingG0,0
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d .

First of all, we needed an algorithm that selected the
output data of the linear model that guaranteed the
identification of the simplices involved in the nonlinear
approximation mapping. This algorithm can be writ-
ten mathematically as follows. If z1, z2, . . . , zp ∈ S
are the outputs of the linear identified system, de-
fine the matrix A = [z1, z2, . . . , zp]

T and the vector
A (k) = [z1 (k) , z2 (k) , . . . , zp (k)]T . We choose only
those samples that verify

|A (k) −A (k′) | > ε, ∀k, k′. (18)

The constant ε is a given real number related to the
size of the grid used for defining the simplex of the
region S. As a rule of thumb, we took ε < 0.3δ, δ as
defined in Section III.C.

In Fig. 5 (a) and (b) is plotted the first output of
the linear system G0,0

d u = z1 vs. the second one,
G3,4

d u = z2 and it is possible to see the distribution of
the samples before and after applying the algorithm,
respectively.

From Fig. 5 (b) the region S is taken to be S =
[−2, 2] × [−4, 4] with δ = 6. Finally, we found the
parameters of the ONPWL functions using the toolbox
CPWL implemented in Matlab by Julián (2000).

Step 5. For validating the model, we excited the
system using a uniform random signal with different
seed and amplitude than the one used for the identifi-
cation process. In Fig. 6 (a) and (b) it is possible to
see both the model validation and the validation error,
respectively.

Finally, in Fig. 7 we can appreciate the nonlinear
surface identified using the ONPWL functions.

V. CONCLUSIONS

In this paper, a Wiener-like identification technique
has been presented based on transfer functions con-
structed from rational wavelets and High Level ON-
PWL functions. It has also been proved that this
structure allows to approximate the dynamical evo-
lution of any causal, time invariant, non-linear system



(a)

(b)

Figure 5: Distribution of the linear output samples:
(a) Complete set of data, (b) Data used for the iden-
tification.

with fading memory. Although the number of param-
eters is large, the proposed approach exhibits desired
location capabilities not only for the linear part due
to the wavelet approximation but also for the non-
linear block, due to the simplicial partition used in
the approximation with canonical ONPWL functions.
This important property is very attractive in nonlin-
ear analysis and dynamical pattern recognition. Also,
a constructive procedure to select the wavelet compo-
nents of the linear dynamical part is discussed. Finally,
an example showing the potentials of the present ap-
proach has been fully developed.

REFERENCES

Billings, S. A., “Identification of nonlinear systems - a
survey”, IEEE Proc. Pt. D., 6, 272-284, (1980).

Boyd, S. and L. Chua, “Fading memory and the
problem of approximating nonlinear operators with

0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 Model validation

Number of samples

Output
Approximation

(a)

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of samples

 Validation error

(b)

Figure 6: (a) Model validation, (b) Validation error.

Volterra series”, IEEE Trans. on Cir. and Syst.,
CAS-32, 1150-1161, (1985).

Castro, L., O. Agamennoni and C. D’Attellis, “Ra-
tional wavelets in Wiener-like modelling”, Mathl.
Comput. Modelling, 35, 991-1006, (2002).

Castro, L., P. Julián, O. Agamennoni and A. Desages,
“Wiener modelling using canonical piecewise linear
functions”, Latin Amer. Appl. Research, 29, 265-
272, (1999).

Chien, M. and E. Kuh, “Solving nonlinear resistive
networks using piecewise-linear analysis and sim-
plicial subdivision”, IEEE Trans. on Circ. and
Syst., CAS-24, 305-317, (1977).

Chua, L. O. and S. M. Kang, “Section-wise piecewise-
linear functions: canonical representation, proper-
ties and applications”, Proc. IEEE, 65, 915-929,
(1977).

Chui, C., An Introduction to Wavelets, In series
Wavelets Analysis and its Applications, C. K. Chui
Ed., Academic Press, (1992).

Daubechies, I., Ten Lectures on Wavelets, SIAM,
Philadelphia, Pennsylvania, (1992).



−2
−1

0
1

2

−4

−2

0

2

4
−2

−1

0

1

2

 ONPWL approximation

Figure 7: Nonlinear surface identified using ONPWL
functions.

Duffin R. J. and A. C. Schaeffer, “A class of nonhar-
monic Fourier series”, Trans. Amer. Math. Soci-
ety, 72, 341-366, (1952).

Duren P. L., Theory of Hp Spaces, Academic Press,
New York, (1970).

De Figueiredo, R. J. and G. Chen, Nonlinear Feedback
Control Systems: an Operator Theory Approach,
Academic Press, USA, (1993).

Garnett, J. B., Bounded Analytic Functions, Academic
Press, New York, (1981).

Hoffman, K., Banach Spaces of Analytic Functions,
Dover Publications, New York, (1988).

Julián P., “A toolbox for the piecewise linear ap-
proximation of multidimensional functions”,
http://www.lcr.uns.edu.ar/personales/pjulian/
cpwl.htm.

Julián P., A. Desages and O. Agamennoni, “High level
canonical piecewise linear representation using a
simplicial partition”, IEEE Trans. on Circ. and
Syst.-I, 44, 463-480, (1999).

Julián P., A. Desages and B. D’Amico, “Orthonormal
high level canonical PWL functions with applica-
tions to model reduction”, IEEE Trans. on Circ.
and Syst.-I, 47, 702-712, (2000).

Kaiser, G., A Friendly Guide to Wavelets, Birkhäuser,
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