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Abstract — This paper is based on a previous work
(Carelli et al., 1999). In this paper, mobile robot control
laws, including obstacle avoidance based on distance
sensorial information are developed. The mobile robot is
assumed to evolve in a semi-structured environment. The
control systems are based on the use of the extended
impedance concept, in which the relationship between
fictitious forces and motion error is regulated. The
fictitious forces are generated with the information
provided by sensors on the distance from the obstacle to
the robot. The control algorithms also avoid the potential
problem of control command saturation. The paper
includes the stability analysis of the developed control
systems, using positive definite potential functions.

Keywords —mobile robots; robot control; obstacle
avoidance; stability analysis.

I. INTRODUCTION

Mobile robots are mechanical devices capable of moving
in an environment with a certain degree of autonomy. The
environment can be classified as structured when it is well
known and the motion can be planned in advance, or as
partially structured when there are uncertainties which imply
some on-line planning of the motions.

During the movement in partially structured
environments, an obstacle can suddenly appear on the robot
trajectory. Then, a sensorial system should detect the obstacle,
measure its distance and orientation to calculate a control
action to change the robot trajectory, thus avoiding the
obstacle.

In this article, the concept of generalized impedance is
used which relates fictitious forces to vehicle motion.
Fictitious forces are calculated as a function of the measured
distances. A similar concept for a generalized spring effect in
robot manipulators is presented in (Sagués et al., 1990). An
application of the impedance concept to avoid obstacles with
robot manipulators has been presented in (Mut et al., 1992).

The control architecture here presented combines two
feedback loops: a motion control loop (Secchi, 1998) and a
second external impedance control loop (Hogan, 1985). This
last loop provides a modification on target position when an
obstacle appears on the trajectory of the mobile robot (Secchi
etal., 1994).

Most works in this area consider the motion control of
the mobile robot avoiding obstacles (Khatib, 1985), (Newman
and Hogan, 1987), (Borenstein, 1989), (Koren and Borenstein,
1991) and (Borenstein and Koren, 1991), but few of them
(Aicardi et al., 1995) study the stability of the control system
problem. Main contributions of this paper are the design of
stable motion control laws that include the actuators saturation
problem; the design of a motion control structure for obstacle
avoidance and its corresponding stability analysis; and the

performance test of control algorithms through experiences on
a mobile robot.

The paper is organized as follows. After this introductory
section, Section 2 describes the kinematic equations of an
experimental robot; Section 3 presents the control problem
formulation; Section 4 defines the fictitious force for distance
feedback; Section 5 presents the proposed control algorithms
including their stability analysis; Section 6 is a brief survey of
the mechanical characteristics and sensor capabilities of the
experimental robot used; Section 7 describes the experimental
results; and finally, Section 8 contains the main conclusions of
the work.

I1. KINEMATICS EQUATIONS

Consider the unicycle-like robot positioned at a non-zero
distance from a goal frame <g>. Its motion towards <g> is
governed by the combined action of both the angular velocity
@ and the linear velocity vector u, which is always on the
same direction as one of the axes of the frame <a> attached to
the robot, as depicted in Fig. 1.
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Figure 1. Position and orientation of the vehicle.

Then, the usual set of kinematic equations, which
involves the Cartesian position (X,y) of the vehicle and its

orientation angle ¢, is

X=Uu-cosQ

N (1)
y=u-sing

p=0

where u is the magnitude of u, and x, y and ¢ are measured
with respect to the origin of target frame <g> and to the
orientation of the x-axis.

Now, by representing the vehicle position in polar
coordinates, and by considering the error vector e with


mailto:hsecchi@ieee.org
mailto:hsecchi@inaut.unsj.edu.ar

orientation @ respecting the x-axis of frame <g>, as well as by
letting @ = 0- @ be the angle measured between the main
vehicle axis and the distance vector e, the above kinematic
equations can be re-written (Aicardi et al., 1995) as

e=—u-cosa
N sina 2
a=—-w+u-
e
M sina
O=u-
e

III. PROBLEM FORMULATION

Let us consider the kinematic model of the mobile robot
given as Eqn. (2). The main characteristics of the control
problem are:

1. The objective to be reached by the mobile robot (the
target frame <g>). The problem of reaching the target frame
can be formulated in two different ways: the first one in terms
of a desired motion trajectory and the second one is terms of
the target position (in this second situation, we can
additionally consider a desired final orientation 6=0).

2. The dynamic relationship (mechanical impedance)
between the position error and the interaction force F(?) acting
on the mobile robot. In this paper, F(?) is a fictitious force
generated from the distance information coming from the
exteroceptive sensors (ultrasonic sensors).

Then, the problem of motion control corresponds to the
design of a controller that drives the mobile robot (the
unicycle-like vehicle) to the point of coordinates e=0 and «
=( (and additionally considering & =0) starting from any non
zero distance from the target frame <g>. In addition the
problem of impedance control corresponds to the design of a
controller that, after detecting obstacles in the working
environment of the robot, it momentarily modifies the target
position in order to avoid these obstacles.

IV. SENSORIAL DISTANCE FEEDBACK

The regulation of the mechanical impedance needs some
feedback of the interaction force between the robot and the
environment. Interaction forces imply a physical contact with
the environment, which, in the case of mobile robots,
generally represents a collision. In order to avoid obstacles, it
is necessary to interact with the obstacles without causing any
collision. Thus, the interaction force F(?) is represented by a
fictitious force generated as a function of the robot - obstacle
distance, as shown in Fig. 2.

The trajectory change associated to the obstacle
avoidance is performed by using the impedance concept, for
which the mechanical interaction has been substituted by a
distance and a non-contact interaction by taking into account
the distance from the robot to the detected obstacle (Mut et
al., 1992).

The magnitude of force F(z) is computed as (Borenstein
and Koren, 1991)

F(t)=a—b-(d(t)—dmin)' 3)
where
a, b are positive constants, such that
a—b-(dmax — dmin )4 =0;
dmax  is the maximum robot-obstacle distance measured
by the sensorial system;
dmin  is the minimum robot-obstacle distance measured by

the sensorial system; and
dw) is the robot-obstacle distance (dmin < d(t) < dmax).
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Figure 2. Action of the fictitious force F(t) on the mobile
robot.

Figure 3 represents the block diagram of the proposed
control system, where, in Cartesian coordinates,

X4 is the desired (x4,yq,¢4) position vector ;
w is the rotation angle;

X is the position error xg-X; and

¥ is the modified position error.

V. CONTROL ALGORITHMS

One typical problem when implementing a controller is
that of the practical range of control actions. If it is not
considered in the theoretical design, possible saturation of
actuators will occur and, in such a case, the design
performance of the control system can not be guaranteed to be

Reference
Rotation
Function

Cartesian
to Polar

XC

Cartesian
Model

Motion
Controller

Impedance ¥ Fictitious Force d
Controller Generator

Environment

Figure 3. The block diagram of the proposed control system.




attained. In this section controller saturation is taken into
account without much computing effort. Out of the three
variables e, @ and 6, the former is considered critical in terms
of saturation because it directly affects the linear velocity u.
Thus, in the theoretical development of the controllers, u will
be guaranteed to be bounded within prescribed limits.

A. Motion Control I: Positioning without prescribing
orientation

Let the unicycle-like vehicle be initially positioned at
any non-zero distance from the target frame <g> and let the

state variables be e and & , assumed as directly measurable for
any e>0. Let consider the Lyapunov candidate function

Vie,a)=V,+V, =%v/17e2 +%va2 with 2>0
@
Its time-derivative J along the trajectory described in
(2) is given by

V=»A4eetaa

. ; 5
V:l-e-(—u-cosa)+a-[—w+u-sma) &
e

V=V+V
The first term in (5), corresponding to V-1 , can be non-

positive by letting the linear velocity u have the smooth form
u=y-tanhe-cosa with >0 (6)

It is clear that y = ‘Mmax ‘ According to the velocity « in

(6), 7, in (5) becomes

Va =a-[—a)+y~mnhe-sina-cosaj ™)
e

which can also be made non-positive, by letting the angular

velocity @ have the smooth form
wzk-a+y-w-sina-cosa ®)
e
=k-m+y-0,5, thus leading to the

max

with £ > 0 and ‘w

following expression for the time derivative of the original
Lyapunov function V'

V=-A-y-e-tanhe-cos’a—k-a’ <0

° {e(t)

Vie,a)=0= — 0 when —
alt)

which results in a negative definite function. This mean that

state variables asymptotically converge to zero, thus verifying

the control objective.

An important point is to analyze € in order to know
about the orientation of the mobile robot while reaching the
target position.

Remark 1: Considering ¢ in Eqn. (2) and Eqns. (6)
and (8) we have

a+k-a=0
The solution is
a=a, exp—k-t) ©)
which is bounded for all ¢ and tends to zero as ¢ tends to
infinite. Now, by referring to Eqn. (8), it becomes clear that
@(t)— 0 when t —> .
Remark 2: From (2) and (6)

tanh e

e
As a(t)—)O when t—c then @(r)—> 0 when
t—>o0.

0=y sina cosa (10)

Remark 3: Considering that tanheSI’

e

the time
integrative of (10) is bounded by

0(1)-0(0)= [0()-dr < ]gsm(z.ao explk-1))-dr

8-a; 'exp(—3k-t)+
18

N R

,(z.ao.exp(_k.t)_

an

32-a5-exp(-5k-1) Y
600

0

The integrative is bounded for all ¢. This implies that &z)
is bounded.

From remark 2 and remark 3 it can be noted that 8(z) —
constant when t—>00. Then, the final value of the robot
orientation when approaching the target position is constant,
which means that the robot does not keep rotating about its
own center.

Remark 4: Since =6 - ¢ and a and @ are bounded as
shown in remarks 1 and 3, then ¢ is also bounded.

B. Motion Control II : Positioning with prescribed
orientation
Let again the unicycle-like vehicle be initially positioned
at any non-zero distance from the target frame <g> and let the
state variables be e, and «, which are directly measurable for
any e>0. Let us consider the Lyapunov candidate function
Ve, 0,a)=V,+V,
1 1 1 (12)
V(e,@,a): —Ael+—at+—«k-0°
2 2 2
with 4, x> 0. Its time derivative v along the trajectory
described in (2) is given as

I}z/l-e-;+a-(;z+/c-9-é

a (13)

sina sina
+a-[—w+u-j+x-9-(u-)
e e

The first term in (13), corresponding to V', can be non-
positive by letting the linear velocity u have the smooth form
u=y-tanhe-cosae. with y>0 (14)

. According to velocity u in (14), V,in

where } = U, ..

(13) becomes

. tanhe .
Vo=a-|-o+y -sina-cosa

(15)

tanhe .
+x-y-0- -sina-cosa

which can also be made non-positive by letting the angular
velocity w have the smooth form



6’ tanhe , sina
o=k-|a+r—|+x-y- -6- -cosa
a e a (16)

tanhe .
+y- -sina-cosa
e
with &, > 0.
Where ‘a)max‘:k~(7r+r-7r)+1c-;/-7r+]/-0,5; and

thus leading to the following expression for the time
derivative of the original global Lyapunov function

V:—/1-]/-e-tanhe-cosza—k-(a2+r-92)<0

Ve, a,0)< 0= e(t),a(t), 0(t)—> 0 when ¢t —> o

which results in a negative definite form. This means that the
state variables asymptotically converge to zero when
accomplishing of the control objective.
The control action of Eqn. (16) cannot be implemented
for =0 . To avoid this problem, we propose the use of a
lower bound for this variable in the first term of (16). Now, it
is necessary to verify that the stability conditions are kept.
2
By adding and subtracting the term ( k-7 e_j , Where
2

a,=0- sign(a), o > 0, Eqn. (16) can be rewritten as

0=, +k-r-0{a°_a}
a,-a
where o, is the Eqn. (16) with o in the first term, and
a,0+k.,,.9.{a0_a}
a,-a
@, if ‘a‘ <8

if ‘a‘z S (17)

From Eqn. (17), three cases can be analyzed:
CaseI: ‘a‘ > S : Here g is equal to «, then

Vo :—ﬂ-}/-tanhe-e-cosza—k-[az+r-6’2 -aj:V
aO

which leads to the situation already analyzed.

Case Il :|of < Sand a # 0: Function V¢ becomes

Vo =—/l-j/-e-tanhe-cosza—k-(az+r-62-aj
)

In this case 0<a/a,<1, thus implying that Vo is
negative definite and asymptotic convergence of control

errors to zero is again verified.

Case III : Evolution of &(¢) when =0 and =0 . In this
case

a

kor-0*>-—=0

a,
thus, it is not evident the convergence to zero of signal 6(2).
We can now recall the Theorem of LaSalle for autonomous
systems (Vidyasagar, 1993) by noting that:

1. The system is autonomous.

2. There exists a set S(e, 0,0{)/ I}o =0.

3. If Vo =0, it means that r(¢) =0 and e(¢) = 0.
From Eqn. (2) in closed loop

. tanh e

O=y

sina-cosa
e

when a(z): 0, é(t)zo which means (1) =constant.
Now constant value of €7) in the set S can be obtained.
From Eqn. (2) in closed loop, when a(¢) =0 and e(7) =0

and consequently a(t): 0

=const
—
2 =const .
. =~ tanhe sina
a=—-a—-k—-x-y- 0 -—— ~cosa =0
- ——
3 a, e a >

=1 =1
It is immediately concluded that @ can be zero or
(— Ay K-y /k) in S. If the constants are chosen correctly, the

second equilibrium is outside the natural work interval [-m;7].

According to La Salle theorem, this means that control
error signals converge asymptotically to zero.

As a general conclusion and, since for the three cases the
error signals converge asymptotically to zero, the control
objective is guaranteed for the controller with bounded ®
control action.

C. Impedance Control
In order to make the robot avoid obstacles, we use the
concept of generalized impedance (Mut et al., 1992). The
impedance function is defined by the relationship
x,=Z"F (18)
where x, is an error term that will define the orientation
correction and F is the magnitude of the fictitious force F.
The desired impedance function is considered as
Z=Bs+K
where B, K are positive constants. Constant B represents a
damping effect and K a spring effect in the interaction
between the mobile robot and the obstacle.
By referring to Fig. 3, it is considered
v =x, -sign(Fr)
where Fr is the component of F (fictitious force), which
perpendicular to the direction of robot movement. Then, the
transformation
cosy seny 0

Xr:

—seny cosy 0|x,
0 0 1

is applied, where the position error is ¥ = X, — X, and the
new position error is in =X, - X, with x, as the new desired
position, and xc’=[xc V. @.] the vector of Cartesian coordinates
of the robot. When the fictitious force is zero, x,=xg4, and the
objective of the motion control loop is achieved, meaning that
X—0 as k—>owand the position error is calculated
asx = xr — Xc .

The Cartesian-to-polar coordinate transformation is
performed through

ez\/(xd —Xc)z +(yd _yc)2
n=a tan3[(yd =Y. ),(Xd — X )]
0=n-9,

a=n-9,

where atan3 is the arc tangent function that covers a 27 range
angle in positive and negative directions.




For some object configurations, methods like the one
described, which are based on repulsion forces, can drive the
robot to a local minimum, thus confining it into an area far
from the target position. A possible solution is to combine the
controller with a Global Path Planning, which is beyond the
aims of the present work.

VI. PIONEER 2 MOBILE ROBOT

The proposed controllers were tested on the Pioneer 2
mobile robot (see Fig. 4). Its main features are:

1. Dimensions are L: 0.44m x W: 0.33m x H: 0.22m

2. It supports both, front and rear sonar arrays, each with
eight transducers for object detection and range
information for feature recognition, as well as navigation
around obstacles. The sonar positions are fixed in both
arrays: one on each side, and six facing outward at 20
degree intervals, thus providing all-around sensing when
using both arrays.

3. The drive system of Pioneer 2 uses high-speed, high
torque, reversible DC motors. This model is a
differential-drive mobile robot with a linear and
rotational speed maximum of 1.6m/sec and 5.2 rad/sec,
respectively.

Figure 4. Mobile robot Pioneer 2.

VII. EXPERIENCES
In the following examples, the values wup,,,=0.3m/sec

and @p,,,=2.0rad/sec have been chosen in order to select

design parameters and to avoid saturation of control actions.
The parameters were set at: y=0.3, £=0.4, =107, k=0.6. The
parameters value of the impedance controller are K=10 Nt/rad
and B=1.2 Nt.sec/rad. The tests were made in a partially
structured environment, where the obstacles (columns and
walls) have definite geometric forms but their positions are
assumed to be unknown. The controllers guide the mobile
robot from an initial position to a target position while
avoiding the obstacles on its way. The obstacles are detected
by the ultrasonic sensor system.

Figures 5 and 7 show the trajectory described by the
mobile robot, for a case in which an obstacle arises on its free
trajectory towards the target. In these figures, the dashed line
describes the free space trajectory of the mobile robot. For
these examples, the impedance control loop is active when the
mobile robot finds an obstacle at less than 1m (point A).

Figures 6 and 8 show the linear and angular velocities of
the mobile robot when avoiding obstacles.

A. Motion Control I : Positioning without prescribed
orientation (xd=4.8, yd=2.5)

In this case, the motion control objective does not
include the final orientation of the mobile robot. This can be
seen in Fig. 5, where the mobile robot reaches the target
position with different final orientation (free space and
obstacle avoidance path).

Fig. 6 shows the corresponding linear and angular
velocities along the trajectory and the action of the controller
that avoids saturation of the actuators. The same figure shows
the velocities when the mobile robot is avoiding obstacles.

9) . . . . . ; .
8l
7t
6l
ylm] sl
41
3l
2
1 . . . . . .
1 2 3 4 5 6 7 8 9

x[m]
Figure 5. Trajectory described by the mobile robot to avoid an
obstacle on its path.
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Figure 6. Linear and angular velocities of the mobile robot
when avoiding obstacles.

B. Motion Control II : Positioning with prescribed
orientation (xd=4.8, yd=2.5, od=—pi/4 )

Contrary to Fig. 5, in this case the motion objective
includes the final orientation of mobile robot. This situation is
seen in the Fig. 7 where the mobile robot reaches the target
position with same final orientation (free space and obstacle
avoidance path).

Figure 8 shows the corresponding linear and angular
velocities along the above trajectory in the constrained space
with anti-saturation controller.
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Figure 7. Trajectory described by the mobile robot to avoid an
obstacle on its path.
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Figure 8. Linear and angular velocities of the mobile robot
when avoiding obstacles.

C. Motion Control II Special Case: Following a path.

This is a particular case of "positioning with prescribed
orientation". Under this control objective we follow a strategy
similar to that presented in (Aicardi et al., 1995). The <g>
goal frame defining (xg,y4,¢q) is moved along the desired

trajectory. The velocity dr of <g> on the path is given by

2
dr = max[O; D- e]
&

with >0, and D>0 representing the maximum velocity of goal
frame on the path. Under this strategy, the robot follows the
moving goal <g> on the path.

Figure 9 shows the trajectory described by the mobile
robot when it follow a path. The reference path, selected as
yd=atan(xd"), is represented by a solid line. Fig. 10 shows the
corresponding linear and angular velocities when the robot
navigates along the path.
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Figure 9. Trajectory of the robot following a path.
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Figure 10. Linear and angular velocities of the mobile robot
when following a path.

VIII. CONCLUSIONS

This paper presents a simple and effective closed loop
control law for a unicycle-like vehicle, combined with an
effective control law for obstacle avoidance. First, two control
objectives are considered: positioning with and without final
orientation of the vehicle. The control system is structured
based on two loops, the position control loop and the
impedance control loop. Impedance is defined as referred to a
fictitious force, as a function of the sensed distance to any
obstacle in the vicinity of the robot. Finally, the control
objective of path following was considered. The controllers
keep the position error e within admissible bounds in order to
avoid saturation of control actions. The control system is
proven to globally and asymptotically drive the control errors
towards zero. Experiences have been carried out on a Pioneer
mobile robot in order to show the good performance
properties of the proposed control system.
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