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Abstract—— A motion control strategy for robot
manipulators, with inverse dynamics and non-linear
proportional-derivative gains is presented. On
account of a possible interaction of the robot with
the environment, impedance is incorporated to
modify the robot’s motion references according to
the interaction force. The gains, that are non-linear
state functions, allow to improve robot performance
and to prevent actuator saturation. It is proved that
an asymptotically stable closed-loop system is
obtained with the proposed controller. Simulation
results on a 3-dof robot show a good performance of
the controller with variable gains, as opposed to that
of a constant gain PD controller.
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I. INTRODUCTION

One of the basic problems in robot control is the so-
called motion control, when a robot manipulator is
required to follow a pre-established trajectory.

Current present-day manipulators use proportional-
derivative controllers (PD) or proportional-integral-
derivative controllers (PID) in closed-loop systems in
order to reach the desired configurations. For an
updated reference on PID controllers, see (Benett, 2001)
and (Astrom and Hagglund, 2001). It has been proven
that PID controllers, despite their widespread use, do
not show global asymptotic stability when controlling a
robotic manipulator (Wen and Murphy, 1990). Various
motion controllers with rigorous stability
demonstrations can be found in the literature: (Sciavicco
and Siciliano, 2000; Craig, 1989) among others.

The PD controller with gravity compensation
produces a global asymptotically stable closed-loop
system through a trivial selection of the proportional
and derivative gains (Takegaki and Arimoto, 1981). The
PD+ controller, introduced by Koditschek (Koditschek,
1984) is both simple and attractive. Its control structure
is based on a linear PD feedback loop plus a specific
compensation of robot dynamics. The first stability
analysis of a PD+ controller was done by Paden and
Panja (1988), who termed it PD+ control. Later,

Whitcomb et al. (1993) present a rigorous stability
analysis by introducing a Lyapunov function in an
adaptive control context.

The global asymptotic stability analysis of a closed-
loop system using the above-cited controllers has been
carried out in the above mentioned papers by
considering a selected set of constant gains of the
controllers. This characteristic may constrain the
application of these controllers when, in addition to
asymptotic stability, a high performance of the control
system is required as well. To have a good performance
in manipulator control with actuator constrains implies
to implement variable gains in the controllers. Variable-
gain PD controllers for position and motion control of
manipulators have been implemented in (Kelly and
Carelli, 1996) and, recently, Santibaiiez et al. (2000)
presented a variable-gain PD+ controller that uses fuzzy
logic.

We present here an inverse dynamics controller with
non-linear PD gains, which allows for motion and
impedance control. It avoids saturation of control
actions and improves the performance for small control
errors.

The work is organised as follows. Section II
describes the model and control scheme along with its
stability analysis. The application of a control algorithm
to a 3-dof manipulator is presented in Section III, and
the conclusions in Section I'V.

II. ROBOT MODEL AND CONTROLLER
DESIGN

A Robot Model

With no perturbations present, the joint-coordinates
dynamic model of a robot manipulator interacting with
the environment is:

t=M(q)i+C(q.4)q+g(q)+6(q)+J" (q)f, (1)

where 7 is the nx/ vector of torques or forces
applied on the joints, M (q)e R"*" is the manipulator’s
inertia matrix that is symmetric and positive definite;

C(g,¢)e R™ is the matrix of centrifugal and Coriolis

forces; g(q)e R" is the vector of gravitational torques
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or forces; H(q') is the friction force vector; f,, is the
vector of forces interacting with the environment and
g € R" is the joints position vector.

For an analysis of the interaction between
manipulator and environment and, since this interaction
is typically described in the operational space, it is
convenient to refer the control schemes to such a space.
Then, the dynamic model of the manipulator in
Cartesian coordinates (Sciavicco and Siciliano, 2000)
can be written as:

fo=H @i+C (xx)x+g (x)+O(x)+ f, (2)

where f, is the actuator force defined at the end

effector, H " is the inertia matrix of the manipulator and
C'x

. . *
friction force vector, g

the centrifugal and Coriolis forces, & is the
the gravity force wvector;

x € R" is the position vector in Cartesian coordinates
and f, is the interaction force with the environment.

This force, for an elastic environment, can be modelled
by,

Su=K,(x=x,) 3)

where K is the environment’s elasticity matrix and

X, is the environment’s position vector. The dynamic
model of Eqn. (2) is defined outside the singular
configurations of the robot.

B. Control Strategy

A simplified scheme for the proposed control is shown
in Fig. 1.
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Figure 1 Control Scheme

The control law involves two feedback loops. One of
them is external and generates a modified motion
reference by adding a term obtained after filtering the
interaction force by the inverse of the transfer function
of the desired impedance (Carelli and Postigo, 1992).
Besides, the modified reference is obtained for both the
velocity and the acceleration. These modified references
are applied to the internal loop.

The internal loop follows an inverse dynamics PD
motion control law:

fo=H ®a+C xX)i+g W)+ f, @

where X is the error vector defined as: X = X,—Xx,
and x, =x, —x,, with x, the desired trajectory and

the reference adjustment vector x, obtained by

applying the impedance inverse to the interaction force,
by means of the following law:

x, ) =[4p> + Bp+ K[ 1,0 5)

A, B, K are the matrices for the desired impedance,
p=d/dt.

Note that if f, =0, ie.,

environment is verified, then x, =x,, thus the

no contact with the

manipulator follows the nominal reference.
The vector a in (4) is the resultant of a

proportional-derivative controller with non-linear gains,
defined by,

a=3i +KEXX+ K F)F (6)

where K p,K , are positive definite matrices given by:

Kp()z) = diag(I_KpiJ i=1...n) ™)
with
r k '
tanh| —"-X,
k i X, #0
T L By el IRALCY
X,
kl"”!lv\’ l
L kpi )71 =0

and matrix K is given by

K,(%%)=diag([K,],..) ©)

i

2@@%’7—)(%7);&0

2 kpi (TC[_,}I,):O
koo (10)
tanh| —=Xx,
h P i,
where =k,
X
k

where k,; are constants to be determined in such a way

that when X; -0 the controller will ensure that the
robot follows the desired trajectory without saturating
should be chosen in

ax

the actuators. The constants £,



such a way that when )71 increases, the value of a

remains bounded. Thus, the manipulator can follow the
trajectory without going beyond the maximum values
allowed for the actuators, provided the robot is moving
within a region far enough from singularities. Then, to

compute k; it is necessary to know the maximum
s

acceleration a,,,

. attainable by the robot, or at least an

Then,
knowing a,  and applying limits to Eqn. (6) when

estimation of this value from simulations.

X, > y X, > o it follows that

ky +2.0k,  —(a,, —%)=0

‘max

(11

where X, depends on the followed trajectory. By

solving the quadratic equation, the positive value of the
root is chosen. After the above-mentioned definition of

constants & ,i» both K p,Kv are positive definite

matrices.

Remark 1: in Eqns. (8) and (10), the fanh non linear
function has been used, due to its good properties such
as to be bounded between 1 and -1 with unity slope
close to 0, continuous and odd. Note that any other
function with similar properties could be also used in
defining the variable controller gains. 0

A demonstration below will show that the proposed
controller is asymptotically stable. The following
lemma will be used

Lemma 1: If f:®R —> %R is an increasing, odd,
continuous function then

jzf(u)du S0 VreR.  (12)

Proposition 1: Let the dynamic model of a robot be
stated by Eqns. (4) and (6), where the elements of the
gain matrices of the PD controller are defined by Eqns.

(8) and (10). Then, the closed-loop system is
asymptotically stable, and it is verified that
lim x(t) = x,(1 (13)
t—0

Proof: The closed-loop system obtained by
combining the robot model (4) with the control law (6)
can be expressed as

X+K,EXR+K,FR =0 (14)
A Lyapunov candidate function is proposed as
v=liiy J‘;,UTK (u)du (15)
2 0 ’

with a positive first term representing the norm of the
velocity error vector. The second term can be expressed

| g#TKp(u)du =y IgiuiKpi(#i)du,- (16)
i=1

Each of the summation terms is

_ _ tanh| - 1,
X X Tnax
J.O /uiKpi(/ui)d/ui = J.O /uikpi

rrrrrr

~

X, X, k,
i _ i pi
J.O K (u;)dy, = IO /zl.kl.mwtanh(k ,uijd,ui (18)

lmax

and, bearing in mind that fanh is a continuous, odd and
increasing function, by Lemma 1 it is verified that the
integral (17) is positive. Then, function V is positive

definite. As regards the time derivative ¥ , it follows:

V=X"X+3K {)x (19)
Then, by substituting the closed-loop equation
V=X"K®F5)% (20)

and, since by definition K is positive definite, we

conclude that — ¥ is positive semi-definite. It should be
resorted, then, to apply the Krasovski-Lasalle theorem
(Vidyasagar, 1993). It can be verified that, within the

set
Q:{E}/Wi}):O}:{?:O} 21)

the origin is the unique invariant set. This can be
verified by noting in the dynamic Eqn. (14) that, when

¥=0, the unique solution for X=0is X =0.
Therefore, the origin of the space state is
asymptotically stable, thus verifying Eqn. (13).

Remark 2: For the robot dynamics model as the
one described in Eqn. (2), the analysis is valid outside
the singular configurations of the robot, due to well
known restrictions of inverse kinematics.

I . SIMULATION RESULTS

A model of PUMA 560 robot with 3-dof (waist,
shoulder and elbow) (Troch and Desoyer, 1990) was
used. Figure 2 shows a scheme of this robot.

The planned task is to polish a plane surface
parallel to the x-y plane of the reference base system,
following a trajectory defined by Santibafiez et al.
(2000):



x, =03+0.051—e" )sin(t)
y, =02-0.051-e" )sin(1)

zZ, =2,

(22)

Figure 2 Robot scheme

with initial position at xy =0 ; yy = 0.22m z,=0.56m.
The proposed inverse dynamics, non-linear gain PD
controller was implemented, and the results obtained
were contrasted with those of an inverse dynamics,
constant gains PD controller. Gains for the second
controller are listed in Table 1. For the variable gain
controller, it was chosen k, =180 and

.. =[1.5 1010]. The value of k; ~ was computed
with Eqn. (11).

Tablel. Data of the Constant Gain Controller

P-D gains Impedance
_ . . . A = I
K, = diag([20,20;20]) 210

K,=2/K, K=25

The position errors obtained with both controllers
are presented in Figs. 3 and 4. It can be noted that the
constant-gain PD controller can not follow the trajectory
with zero error. It oscillated about a constant error zone,
because an increase in the gains saturates the actuators,
as in Fig. 5. The variable-gain PD controller
accomplished the trajectory without saturating the
actuators, as shown in Fig. 6. Also, a good performance
for the system is obtained. The reasons are that the gains
decrease when the error is high, and they increase when
the error tends to zero (see Fig. 7). Actuator saturation is
thus avoided. The presence of non-modelled non-linear
dynamics causes that the constant-gain proportional
derivative controller does not reach the desired
trajectory, whereas the proposed controller does attain
the objective with a high performance, because it allows
to increase the gains when the error is small without

saturating the actuators. The non-modelled dynamics in
this simulation corresponds to Coulomb’s friction
effects.

Error [m]
0.3 T T T T T
1 1 1 1 1
| ‘ ‘ | ‘
0.25F -\----- Fo-m——-- re-m——- R L L
1 1 1 1 1
1 1 1 1 1
| i i | i
02p==-y--- [Tt O VTt VTTTTTe PR
| 1 1 | 1
i : : i :
0.15F----4-- e Fo------ To------ [ REEEEEE L
|y xerrof i | i
01f------ bmmmmme e PR O PO HN
| 1 1 | 1
1 1 1 1
h i i | i
0.05F------- Nl e el e L L by
| - Y-error | | ‘
| 1 1 1 1
1 1 | 1
1 \\\\\%‘ 1 1 1
. A z-error | . 1 T[s]
-0.05 M : : . :
0 1 2 3 4 5 6
Figure 3: Position errors with variable gains
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Figure 4: Position errors with constant gains
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Figure 5: Voltages obtained with the constant-gain
controller
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controller
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Figure 7: Variable Gains K, of the controller

IV. CONCLUSIONS

This work has presented a control strategy for robot
manipulators that allows to improve the performance
and to avoid saturation of the control actions. The
control is composed of an inverse-dynamics controller
with PD gains that are non-linear state functions. It has
been proven that the proposed controller is
asymptotically stable. The simulation results show a
good behaviour of the controller, which has reached the
proposed objectives. It should be observed that, even
though the work is referred to robot manipulators, the
proposed controller can be applied to any second order
non-linear system which allows for feedback
linearization.
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