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Abstract| In this work we present an out-

put feedback algorithm that solves the trajec-

tory tracking problem in control aÆne nonlin-

ear systems. This algorithm, is an improve-

ment, for this class of systems, of that of (Man-

cilla Aguilar et al. 2000a), since it reduces the

chattering e�ect on the control while keeping

the original performance. In addition, and via

a high gain observer, it deals with discrete out-

put measurements instead of the states, as the

original algorithm does.

Keywords| Sampled-data; Chattering; Ob-

server; Output feedback; Trajectory Tracking.

I. INTRODUCTION

Nowadays, the use of digital computers for the control

of continuous-time systems is commonplace. For this

reason it is important to study the digital implemen-

tation of continuous-time control laws. In this case

it is assumed that the states (or outputs) of the sys-

tem to be controlled are available only at certain times

(sampled-data). Since the control is based on these

sampled-data, during the intersample periods the con-

trol actions applied to the system will be open-loop

ones, even if the original continuous-time control law

is a feedback one. It is then natural to study the digital

implementation of the diverse continuous-time control

laws for nonlinear systems, in particular stabilizing or,

more generally, trajectory tracking control laws.

Although good results are obtained via the digi-

tal implementation via Sample and Zero Order Hold

(SZH) of stabilizing laws (see (Mancilla Aguilar et al.,

2000b) and the references therein for details), this is

not the case for trajectory tracking unless strong as-

sumptions about the tracking control law are made.

An example presented in (Mancilla Aguilar et al.,

2000a) shows that there is no reason to expect a \nice"

behavior of the implementation via SZH of a trajectory

tracking control feedback law.

The algorithm proposed in (Mancilla Aguilar et al.,

2000a), from now on Algorithm 0, for a rather gen-

eral class of systems, solves this problem by making

the system to follow the trajectories of a model in-

stead of discretizing the continuous-time tracking law.

The control law so obtained assures semiglobal prac-

tical stability of the tracking error, with �nal error

arbitrarily small for a small enough sampling period.

The controller is robust with respect to external dis-

turbances and actuator and data measurements errors,

when all of them are small enough.

One of the main drawbacks of Algorithm 0, when

applied to control aÆne systems, appears in the im-

plementation. In fact, as the algorithm is based in

a maximization process, when the control space is a

polytope, the extremal control values appear at the

vertexes. This fact usually gives origin to a chattering

e�ect : the values of the control switch undesirably

fast. Another drawback of the algorithm is that it

makes use of the states of the system, and in general

only discrete-time samples of the output are available.

In this work we develop, for control aÆne systems,

a trajectory tracking algorithm that reduces the chat-

tering e�ect appearing in Algorithm 0, while it keeps

the original tracking error performance. It works with

the output sampled-data due to the addition of a high

gain observer developed by Garc��a et al., (2000), that

performs the state estimation.

The paper is organized as follows. In section II we

introduce some basic de�nitions; in section III Algo-

rithm 0 (adapted to control aÆne systems) is presented

and an example where the chattering e�ect can be ob-

served is shown. In section IV we present a modi�ed al-

gorithm that obtains a high reduction of the chattering

e�ect, while a small tracking error is kept. In section V

we review a high gain observer introduced in (Garc��a

et al. 2000) and present the output feedback algo-

rithm that copes with the two drawbacks mentioned

above. In the same section, we apply this algorithm

to the example of section III. Finally, the conclusions

are presented in section VI.



II. NOTATION AND BASIC DEFINITIONS

Let us start with some basic de�nitions: IR�0 denotes

the real interval [0;+1). The continuous function 
 :

[0; r)! IR�0 is of class K if it is strictly increasing and

satis�es 
(0) = 0; 
 is of class K1 if it is of class K, is
de�ned in [0;1) and lims!1 
(s) =1. A continuous

function � : [0; r) � IR�0 ! IR�0 is of class KL if for

each �xed t the mapping �(s; t) is of class K and for

each �xed s, �(s; t) is decreasing to zero on t as t!1
(Khalil, 1995).

We use h�; �i and k � k to denote the Euclidean inner

product and the Euclidean norm in IRm whichever be

m, respectively. A function ! : IR�0 � IRn ! IRp is

a feedback control law if for each x 2 IRn, !(�; x) is

measurable and for each t � 0, !(t; �) is continuous.
Consider a nonlinear control system described by:

�
_x = f(x) + g(x)u

y = h(x)
(1)

with x 2 IRn the state, u = (u1; � � � ; um) 2 IRm

the control, y 2 IRp the output, f : IRn ! IRn,

g = (g1; � � � ; gm) with gi : IR
n ! IRn are locally Lips-

chitz and h : IRn ! IRp is the output function. Since

we suppose that only the outputs are available, we con-

sider that there exist an estimation x̂(t) for the state

vector x(t), (as might be given by an observer):

x̂(t) = x(t) + d(t) (2)

where the estimation error d(t) satis�es kd(t)k �

d̂; 8t � 0:

We say that x� : [�0;+1) ! IRn is an admissible

trajectory (a reference) for (1) if there exists a bounded

measurable function (its generator) u� : [�0;+1) !
IRm such that x�(t) is a solution of _x(t) = f(x(t)) +

g(x(t))u�(t) in a compact set of IRn.

De�nition II..1 Let x� : [�0;+1) ! IRn be a given

reference. We say that a feedback control law !(t; x)

solves the closed-loop uniform asymptotic problem (is

a CLU for x
�) if the equation of the tracking error

e(t) = x(t) � x
�(t)

_e(t) = f(x�(t) + e(t))� f(x�(t))+

g(x�(t) + e(t))!(t; x�(t) + e(t))� g(x�(t))u�(t)

has unique solution for each initial condition and has

the origin as an uniformly globally asymptotically sta-

ble equilibrium, i. e., there exists � 2 KL such that

8 t � �0; ke(t)k � �(ke(�0)k; t� �0).

We will make in the sequel the following assump-

tion, which is instrumental in order to assure the con-

vergence of Algorithm 0 (see Mancilla Aguilar et al.,

2000a for details):

H1 !(t; x) is such that there exists a non-decreasing

function � : IR�0 ! IR�0 with k!(t; x)k � �(kx �
x
�(t)k);

and we will also adopt the following notation:

Given a sampling period Æ, consider the sampling

instants �k = kÆ; k = 0; 1; � � � , and for a positive real

number T , let r be the �rst natural number such that

T (Æ) := rÆ � T ; then we denote TN (Æ) = NT (Æ) if

N 2 N.

III. A TRAJECTORY TRACKING

ALGORITHM

In this section we present Algorithm 0 adapted to con-

trol aÆne nonlinear systems described by (1).

Let �x a compact set U � IRm and ' : IRn � IRn !
U , be a function that veri�es:

< z � x; g(x)'(z; x) >= max
u2U

< z � x; g(x)u > : (3)

Consider the control law de�ned for each pair

(z(�k); x̂(�k)) by:

u(t) = u(�k) = '(z(�k); x̂(�k)) �k � t < �k+1: (4)

Then Algorithm 0 can be described in this case as

follows:

1. In the interval [TN(Æ); TN+1(Æ)) we solve the ini-

tial value problem:

�
_z(t) = f(z(t)) + g(z(t))!(t; z(t))

z(TN(Æ)) = x̂(TN (Æ));
(5)

2. For TN(Æ) � �k � t < �k+1 � TN+1(Æ), the

control u(t) that we apply to the plant (1) is

given by (4) with z(t) as in (5), and x̂(�k) and

z(�k) are obtained from (2) and (5) respectively.

The next result, that appears in (Mancilla Aguilar

et al., 2000a), shows that the �nal tracking error can

be made arbitrarily small for a suitable choice of the

sampling period Æ.

Theorem III..1 Let x� a reference for (1), !(t; x) a

CLU for it that veri�es H1 and positive real numbers

R0 and "0 > 0. Then there exist a compact set U �
IRm and positive numbers T , Æ0, d̂ and T

0 such that if

0 < Æ � Æ0 and x(�) is a trajectory of (1) corresponding
to the control u(�) given by Algorithm 0, with kx(0)�
x
�(0)k � R0, we have:

1. there exist a K-class function �, depending only

on � such that kx(t) � x
�(t)k � �(R0 + "0) +

"0 8t � 0

2. kx(t)� x
�(t)k � "0 if t � T

0
:

Although the maximization (3) over a compact set

technically sounds, in practice the convex hull of a

�nite number of points is adopted as the control space,

since the evaluation of u(�k) is easier and its value

is unique. We consider then, U =

mY
j=1

[�aj ; aj ]. In



this case Eqn.(3) becomes: < z � x; g(x)'(z; x) > =

max
u2U

mX
j=1

< z � x; gj(x)uj > :

Then; if bj(�k) =< z(�k)� x̂(�k); gj(x̂(�k)) >; (6)

the control u given by (4) has now components

uj(t) =

�
�aj if bj(�k) < 0

aj if bj(�k) � 0
(7)

for j = 1; � � � ;m, and t 2 [�k; �k+1).

This control strategy strongly resembles that of the

variable structure controllers. In consequence, it is not

surprising that a chattering e�ect may appear, as it is

shown in the following simulation.

Consider the control aÆne system whose state x =

(x1; x2) is supposed to be available:�
_x1(t) = x2(t) + u1(t)(1� x

2
1(t))

_x2(t) = �x1(t) + u2(t)(1� x
2
2(t))

(8)

The reference is: fx�(t) = (x�1(t); x
�
2(t)); t 2 [0;+1) :

kx�(t)k = r
�g with r

� 2 (0; 1). The feedback

tracking law is: !(t; x) = (!1(t; x); !2(t; x)), with

!1(t; x(t)) =
�Kx1(t)er(t)

2

(1� x
2
1(t))kx(t)k

2 and !2(t; x(t)) =

�Kx2(t)er(t)
2

(1� x
2
2(t))kx(t)k

2 , where er(t) = kx(t)k � r
� is the

radial tracking error. This law veri�es the assumption

H1 with �(�) = k̂�
2 and k̂ a certain constant.

Then, er(t) veri�es the equation: _er(t) = �Ker(t)
2

where K is taken such that sign(K) = sign(er(0)),

and then the closed loop system will track the refer-

ence with an asymptotic decaying error norm given by:

jer(t)j = �(jer(0)j; t), where �(r; s) = r=(Krs+ 1).

In the simulations of the application of Algorithm

0 to this example, we adopted the values: T = 2;

Æ = 0:04; u = (u1; u2) 2 [�1; 1]� [�1; 1] and K = �7,
and the initial conditions (x1(0); x2(0) = (0:2; 0). Fig-

ures 1 and 2 show the results of the simulations. Fig-

ure 1 shows jer(t)j (the blurred curve) and jerz(t)j =
jkz(t)k � r

�j, the modulus of the radial tracking error

of the model of the system (the smoother curve) (see

Mancilla Aguilar et al., (2000a) for precisions about

the model). Figure 2 shows a detail of the tracking

controls u = (u1; u2) as given by (7). It can be ob-

served that the controls switch very fast between the

values 1 and -1 for any given time interval (the chat-

tering e�ect).

IV. THE MODIFIED ALGORITHM

In what follows we introduce a modi�ed algorithm that

enables us to overcome the problem of chattering of

Algorithm 0. The modi�cations are made in two steps:

in the �rst one (Step A) a boundary layer is introduced

in order to obtain a continuous approximation of the

control (7). In the second step (Step B) a prediction

strategy is added in order to improve the �nal tracking

error performance of Step A.
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Figure 1: Algorithm 0: tracking errors.
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Figure 2: Algorithm 0: controls

� Step A

As can be easily seen from Eqn.(7), the change of

each component uj of the control is consequence of

the change of the sign of bj . In order to avoid the fast

switching by smoothing out the control discontinuity,

we introduce the following modi�cation: given a posi-

tive value �, if the value of bj lies in the interval [��; �],
uj will take its values from a linear interpolation be-

tween �aj and aj , and if jbj j > � it will take the values

given by (7).

Then, for a given � and �k � t < �k+1, the control

law u(t) will have now components de�ned by:

uj(t) =

8<
:

�aj if bj(�k) < ��
aj

�
� bj(�k) if jbj(�k)j � �

aj if bj(�k) > �

(9)

j = 1; � � � ;m, instead of those given by Eqn. (7).

Since Step A consists basically of a smoothing out

of the original control discontinuity, it is to be ex-

pected that some degradation in the tracking perfor-

mance with respect to that of Algorithm 0 appears. As

a consequence, we introduce in addition a prediction

strategy in order to improve the performance.

� Step B

The (one step ahead) strategy consists in achieving

the value of bj in (6) using advanced information give

by Eqn. (5) (prediction). In this scheme, we replace

z(�k) by z(�k+1) in (6). The value of z(�k+1) can be



obtained from Eqn.(5) as

z(�k+1) �= z(�k) + Æ _z(�k)

�= z(�k) + Æ[f(z(�k)) + g(z(�k))!(�k; z(�k))]:

(10)

In this way, the value of bj(�k) is obtained as

bj(�k) =< z(�k+1)� x̂(�k); gj(x̂(�k)) > : (11)

Then, for a boundary layer thickness �, the modi�ed

algorithm (Algorithm 1) can be described as follows.

1. In the interval [TN(Æ); TN+1(Æ)) we solve the ini-

tial value problem (5).

2. For TN(Æ) � �k � t < �k+1 � TN+1(Æ), the

control u(t) that we apply to the plant is given

by (9), bj given by (11), z(�k+1) as in (10) and

where x̂(�k) and z(�k) are obtained from (2) and

(5) respectively.

Next, we state a lemma, which is analogous to

Lemma 2.1 in (Mancilla Aguilar et al., 2000a), and

that can be proved similarly. This lemma shows the

behaviour of control u as given by (9)-(11), for the

tracking of a reference in a bounded interval of length

T .

With this aim, for K � IRn a compact set and

� = maxfai; i = 1; : : : ;mg, let lf and lg the Lip-

schitz constants with respect to K for f and g re-

spectively, and denote m = max
u2U;x2K

kf(x) + g(x)uk,

mg = max
x2K

kg(x)k and ~
l = (lf + alg).

For any d̂; T; � and Æ positive numbers, let us de�ne

�K;�(T; �; Æ; d̂) =

�
e
2~lT

d̂
2 +

(e2
~lT�1)C

2~l

�1=2
with

C = 4Æ�(2mmg+mlg)+4��+4�d̂(mg+(2+d̂+Æm)lg)

and [K(z(:))]1 := fx 2 IR : 9t 2 [0; T ]; kx � z(t)k �
1g � IRn. The following holds:

Lemma IV..1 Let K � IRn and � as above and pick

T; Æ; d̂ and � such that �K;�(T; �; Æ; d̂) < 1. Let x� :

[�i� ; �i� + T ] ! IRn, with �i� = i
�
Æ, be a trajectory

of (1) such that [K(x�(�))]1 � K and whose generator

u
�(�) veri�es u

�(t) 2 U 8t 2 [�i� ; �i� + T ]. Then if

x(�) is a trajectory of (1) controlled by u as given by

(9)-(11), such that kx(�i�)� x
�(�i�)k � d̂, we have:

kx(t)� x
�(t)k � �K;�(T; Æ; �; d̂); (12)

8t 2 [�i� ; �i� + T ].

Remark IV..1 Note that we can make the tracking

error arbitrarily small by choosing a suitable Æ, if d̂

and � are small enough.

Remark IV..2 If we choose the \boundary layer

thickness" � too small the chattering e�ect appears,

while if it is too large the �nal tracking error will also

be large. The selection of the optimal value of � follows

from an analysis of the magnitude of the control �elds

kgj(x)k as x evolves in the compact K.

Remark IV..3 Lemma IV..1 gives a bound of the dif-

ference kx(t) � x
�(t)k at each time interval of length

T . A bound for the tracking error in the whole track-

ing time-scale is presented in the next theorem. This

result is analogous to Theorem III..1 and can be proved

in the same way.

Theorem IV..1 Let x�, !(t; x), R0 and "0 as in The-

orem III..1. Then there exist positive numbers �, T ,

Æ0, d̂, � and T
0 such that if 0 < Æ � Æ0 and x(�) is a

trajectory of (1) corresponding to the control u(�) given
by Algorithm 1 with kx(0)� x

�(0)k � R0, we have:

1. there exist a K-class function �, depending only

on � such that kx(t) � x
�(t)k � �(R0 + "0) +

"0 8t � 0

2. kx(t)� x
�(t)k � "0 if t � T

0
:

Remark IV..4 If in addition � is not too small, the

resulting control u(�) presents no chattering e�ect.

V. THE OUTPUT FEEDBACK

ALGORITHM

As we stated in the Introduction, generally the values

of the states are not available and an estimation of

them is needed in order to obtain bj as given by (11).

With this aim, in this section we present a high gain

observer introduced in (Garc��a et al., 2000) for a non-

linear continuous time system that is well �tted for

this purpose, since it is designed in order to estimate

the states when the output measurement is a discrete

time process.

According to the assumptions made in (Garc��a et al.,

2000) we suppose that system (1) veri�es the following

hypotheses.

� H2: There exist p integer numbers �1; �2; ::::; �p
that verify: �

p

i=1�i = n, and a globally Lipschitz

di�eomorphism � : IRn ! IRn, with �
�1 also

globally Lipschitz such that by performing the

nonlinear change of coordinates w = �(x), the

system (1) can be written as:

�
_w = Aw(t) + �(w; u)

y(t) = Cw(t)
(13)

where A = diagfA1; :::; Apg, C =

diagfC1; :::Cpg where Ai 2 IR�i��i and

Ci 2 IR1��i are in Brunovsky canonical form.

� H3: There exist two sets of integer numbers

f�1; :::; �ng and f�1; :::; �pg with �i > 0 8i such
that:

1. ��i+l = ��i+l�1 + �i, l = 1; :::; �i � 1; i 2
Ip = 1; 2; ::p

2. For � = colf�1; :::; �ng; �i < �j )
@�i

@xj
�

0 ; 1 � i; j;� n; j 6= �l; l 2 Ip

where �1 = 1, �i = �i�1 + �i�1,i = 2; :::; p



� H4 : � is locally Lipschitz with respect to w

uniformly with respect to u.

Remark V..1 Hypothesis H3 is suÆcient for the lo-

cal uniform observability of system (1), i.e. that every

input be universal for (1) (see Garc��a et al., 2000 for

details).

A. The observer

The observer presented in (Garc��a et al., 2000) is a

high-gain one, and the parameter that controls such

gain, 
, is assumed to have a �xed but arbitrary value.

The observer is given by

� For t 2 Ik = [�k�1; �k) the prediction step is:

8<
:

_̂
w = Aŵ(t) + �(ŵ; u)

_
S(t) = �S(t) �QS(t)�A

T
S(t)� S(t)A

+CT
R
�1
C

(14)

where S = diagfS1; ::::; Spg; Si 2 IR�i��i .

� The correction step is: in t = �k

8>><
>>:

S(�+
k
) = S(��

k
) + C

T
R
�1
CÆ

ŵ(�+
k
) = ŵ(��

k
)

+S(�+
k
)�1CT

R
�1
Æ[y(�k)� Cŵ(��

k
)]

x̂(�k) = �
�1(ŵ(�+

k
))

(15)

� The initial conditions Si(0) = Si0 are symmetric

positive de�nite matrices and ŵ(0) = �(x̂0):

Here �
Q is a �xed positive de�nite and symmetric

matrix, R is diagonal, and both matrices depend on


 (see (Garc��a et al., 2000) for details). The following

result, that was presented in that paper, establishes

the convergence of the observer:

Theorem V..1 If the conditions H2 - H4 hold, there

exists 
0 2 (0; 1) such that for any 
 < 
0 if the sam-

pling period Æ is small enough, the system (14)-(15) is

an observer for the nonlinear system (1) (for the esti-

mation x̂(t) = �
�1(ŵ(t)), that veri�es:

a) when the measures are noiseless, it is an exponen-

tial observer.

b) For noisy measurements, the estimation error vari-

ance is bounded, and the bound is proportional to the

noise variance.

B. The algorithm

The combination of the observer and the Algorithm 1

gives origin to theOutput feedback algorithm for trajec-

tory tracking, Algorithm 2, that for a positive number

T , a sampling period Æ and a boundary layer thickness

� may be described as follows.

1. In the interval [TN(Æ); TN+1(Æ)) we solve the ini-

tial value problem (5).

2. For TN(Æ) � �k � t < �k+1 � TN+1(Æ), the

control u(t) that we apply to the plant and to

the observer is given by (9) with bj given by (11)

with x̂(�k) given by (15) and z(�k+1) as in (10).

The next result, whose proof we omit, assures that

for small enough initial estimation error and adequate

sampling periods, Algorithm 2 will work properly.

Theorem V..2 Let x�, !(t; x), R0 and "0 as in The-

orem III..1, and suppose that system (1) veri�es H2 -

H4. Then there exist positive numbers �, T , Æ0, �, d̂
�

and T
0 and a number 
0 2 (0; 1) such that if the ob-

server gain 
 < 
0, the sampling rate 0 < Æ � Æ0 and

x(�) is a trajectory of (1) corresponding to the control

u(�) given by Algorithm 2 such that kx(0)�x̂(0)k < d̂
�,

and kx(0)� x
�(0)k � R0, we have:

1. there exist a K-class function �, depending on

both � and 
 such that kx(t)� x
�(t)k � �(R0 +

"0) + "0 8t � 0

2. kx(t)� x
�(t)k � "0 if t � T

0
:

Remark V..2 If in addition � is not too small the con-

trol u(�) so obtained presents no chattering e�ect.

C. Simulation

In this section we apply Algorithm 2 to the system of

the example given in section III. In order to do so we

adopt the output function h(x) = x1. Since now the

system can be written as:

�
_x1
_x2

�
=

�
0 1

0 0

��
x1

x2

�
+

�
�1(x; u)

�2(x; u)

�

y = [1; 0]

�
x1

x2

�

with �1(x; u) = u1(1�x
2
1); �2(x; u) = �x1+u2(1�x

2
2),

the hypotheses H2 - H4 are satis�ed with f�1; �2g =
f1; 2g, �1 = 2, �1 = 1 and �1 = 1.

For the simulations we consider a (more realistic)

noisy output measurement process with normal distri-

bution given by N(0; 0:01), i. e. y(�k) = x1(�k) + �k

with E(�k�s) = Æ
s

k
0:01.

The design parameters adopted are: d̂
� = 0:22,


 = 0:7, �Q1 = diagf2:08; 4:25g, Si(0) = Si0 = I where

I is the identity matrix, and initial conditions for the

observer (x̂1(0); x̂2(0)) = (0:4; 0). The boundary layer

thickness was taken as � = 0:1, and the other param-

eters were taken as in the simulation in section III.

The simulation results are shown in Figs. 3 - 6.

In Fig. 3 the estimation errors x1(t) � x̂1(t) and

x2(t) � x̂2(t) are shown. In Fig. 4 the tracking errors

jer(t)j (dotted) and jeri(t)j are exhibited, being eri(t)

the ideal tracking error of system (8), controlled by

the CLU !(t; x) . Figure 5 exhibits the tracking con-

trols, as given by Algorithm 2. It can be seen that no

chattering e�ect is present. Figure 6 shows the track-

ing controls also given by Algorithm 2, but in the case

on noiseless measurements. This �gure shows that the

blurring e�ect that appears in the controls in Fig. 5 is

due to the noise.
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Figure 3: Algorithm 2: estimation errors.
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Figure 4: Algorithm 2: tracking errors.
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Figure 5: Algorithm 2: controls

0 4 8 12 16

−1

−0.5

0

0.5

1

Control

  u
1 

0 4 8 12 16

−1

−0.5

0

0.5

1

 u
2 

time t  (sec.)

Figure 6: Algorithm 2: noiseless controls

The �nal tracking error values, as obtained in this

simulation and in that of section III, and the behavior

of the controls, are presented in the following table.

The second column of the table shows jer(t)j for t �
8(sec:) and the third one, the control behavior.

Algorithm jer(t)j � Control u:

Algorithm 0 0:063 chattering

Algorithm 2 0:018 No chattering

VI. CONCLUSIONS

In this work we presented an algorithm that improves

the one of (Mancilla Aguilar et al., 2000a) for the dig-

ital implementation of trajectory tracking controllers

for control aÆne systems. This algorithm reduces the

chattering e�ect that appears in the original algorithm

while keeping a good tracking error performance. An

observer was introduced in order to cope with the case

where the states were not available, providing an esti-

mation of the states. It was shown to work properly

in a closed loop scheme even with noisy output mea-

surements. Simulations were presented that exhibit

the improvements of this strategy for an aÆne control

system.
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