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Abstract| A methodology for the stability
analysis of invariant cycles emerging from Hopf
bifurcations in discrete-time nonlinear systems
is presented. The technique is formulated in
the so-called frequency-domain and it is based
on the Nyquist stability criterion and a higher-
order harmonic balance method. The study of
a planar cubic map is included for illustration.
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I. INTRODUCTION

The Hopf bifurcation theorem (HBT) for maps de-
scribes the appearance of an invariant cycle when one
parameter of the system is varied appropriately. As-
suming that the ¯xed point changes its stability, the
emerging bifurcation can be supercritical or subcriti-
cal denoting the birth of stable or unstable cycles for
parameter values larger or smaller than the critical
one, respectively. This behavior is similar to that ob-
served in continuous-time nonlinear systems as well
as in time-delayed nonlinear systems. Consequently,
a technique formulated in the frequency-domain for
single-input single-output (SISO) and multiple-input
multiple-output (MIMO) discrete-time systems has
been introduced in D'Amico et al. (2002) to deal with
this characteristic bifurcation. The formulas capture
the dynamical behavior of the emerging invariant cycle
using concepts from control theory and a second-order
harmonic balance method. These results are exten-
sions of the earlier developments obtained by Allwright
(1977), and Mees and Chua (1979) for continuous-time
systems.

To have a better approximation of the cycle or the
possibility of studying more complex dynamical struc-
tures, it is necessary to use higher-order expansions
of the classical Hopf normal form. This extension

is analogous to consider the higher-order approxima-
tions obtained using the harmonic balance method in
the frequency-domain. However, some care should be
exercised when this result is applied to the discrete-
time case (Robinson, 1999) as the nonlinear maps fre-
quently exhibit additional dynamical phenomena, such
as weak and/or strong resonances. We will not address
this issue on this paper, and we will concentrate on de-
riving the higher-order approximation of the emerging
invariant cycle, and on developing algebraic expres-
sions of the so-called stability indices to establish the
stability of the cycle even in degenerate Hopf bifur-
cations (Iooss, 1979; Shilnikov et al., 2001). These
indices allows the comparison of the results obtained
via the frequency-domain approach with those given
by the classical normal form method (Whitley, 1983;
Glendinning, 1994; Balibrea and Valverde, 1999). The
approximation of the invariant cycle is based on a
higher-order harmonic balance resembling the proce-
dures followed by Mees (1981) and Moiola and Chen
(1996) for continuous-time systems.
The conditions for detecting degenerate Hopf bifur-

cations may be translated to the discrete-time case us-
ing the frequency-domain approach. Moreover, some
of the results can be applied to a much more complex
theoretical construction, such as the Poincar¶e map
(Kuznetsov, 1995), to study the stability of quasiperi-
odic motion in continuous-time nonlinear circuits and
systems (see, for instance, Bi and Yu, 1999).
The paper is organized as follows. In Section II,

higher-order formulas to determine the stability of the
invariant cycle emerging from a Hopf bifurcation are
derived. The study of a planar cubic map near a de-
generate condition is presented in Section III. Finally,
in Section IV some conclusions are given.

II. HOPF BIFURCATION IN THE
FREQUENCY-DOMAIN

Let us consider the discrete-time nonlinear system

xk+1 = Axk +Bg (Cxk;¹) ; (1)



where xk, xk+12Rn, A2Rn£n, B2Rn£`, C 2Rm£n,
k 2 N is the iteration index, ¹ 2 R is the bifurcation
parameter and g (¢) :Rm£R! R` is a smooth (C2q+1,
q ¸ 1) function. All the matrices may have explicit
dependence on ¹, and A may be the zero matrix.
Many distinct but equivalent feedback representa-

tions for (1) can be obtained by introducing an arbi-
trary matrix D 2 R`£m (which may also depend on
¹) and then applying the z-transform. Thus,

G (z;¹) = C [zI ¡ (A+BDC)]¡1B; (2)

uk = f(ek;¹)
:
= g(yk;¹)¡Dyk; (3)

yk = ¡ek:
This representation suggests that (1) can be seen as
a feedback interconnection between the linear transfer
matrix G (¢ ) and the nonlinear function f (¢), de¯ned
by (2) and (3), respectively. The equivalent feedback
system is presented in Fig. 1, where dk represents per-
turbations, noise e®ects, etc., vk is an external refer-
ence input, uk is the control variable and yk is the
output. Observe that dk and vk are set to zero as in
the continuous-time version of the HBT.
Local dynamical behavior is analyzed by means of

the linearization of the open-loop system, given by
G (z;¹) J (¹) where J (¹) = @f(ek;¹)=@ekjek=ê is the
Jacobian matrix. As a result, the crossing of a sim-
ple pair of complex eigenvalues of (1) through the unit
circle for a given value ¹ = ¹o is equivalent to the
crossing of one eigenvalue of G

¡
ei!;¹

¢
J (¹), denoted

as b̧ ¡ei!;¹¢, over the critical point ¡1+ i0 for certain
values !o and ¹o.

A. Higher-order harmonic balance method

A frequency-domain approach to analyze Hopf bifur-
cations for MIMO discrete-time systems has been in-
troduced in D'Amico et al. (2002). The technique is
based on the application of a second-order harmonic
balance to capture the periodic solution emerging from
the bifurcation. A natural way to obtain a better ap-
proximation is the addition of higher-order terms via
a higher-order harmonic balance method.
Let us ¯x ¹ close to ¹o, so the Nyquist diagram ofb̧ ¡ei!;¹¢ lies near the critical point ¡1 + i0: In this

case, if a periodic solution exists, it can be written as

ek = be+Re( 2qX
r=0

Ereir!k

)
; (4)

with ek 2 Rm and Er 2 Cm. Expanding the nonlinear
function f (¢) with respect to ek in Taylor series up to
the (2q+1)-order and replacing ek with (4), we obtain

f (ek;¹) = f (be;¹) + Re( 2qX
r=0

F reir!k

)
;

where the coe±cients F r depend on the vectors Er.
Assuming also that the harmonics Er are function of

Figure 1: An equivalent feedback representation of (1).

the amplitude µ of the periodic solution,

Er =
X
j

Vrjµ
j (5)

with Vrj as intermediate variables grouping the contri-
butions of Er and j varying from r (or 2 for r = 0) in
steps of 2 up to 2q+1 (or 2q for r even), the coe±cients
F r can be expressed as

F r = J (¹)Er +
X
j

Wrjµ
j; (6)

where j varies in the same way as before and each
Wrj is a function of the higher-order derivatives
Di(ek;¹) = @

if(ek;¹)=@e
i
k evaluated at be and the vec-

tors Vr0j0 with r
0 · r and r0 + j0 · r + j; except for

the r = 0 case (see Mees, 1981 for details).
The harmonic balance equations, obtained equating

the input and output of the linear part of the system,
are given by

Er = ¡G ¡eir! ;¹¢F r : (7)

Substituting (5) and (6) into (7), we have£
G
¡
eir!;¹

¢
J (¹) + I

¤
Vrj = ¡G

¡
eir!;¹

¢
Wrj : (8)

To avoid resonances, we will assume that the matrix
G
¡
eir!;¹

¢
J (¹) + I is nonsingular for r > 1: In that

case, (8) can be rewritten in the compact form

Vrj = ¡H
¡
eir!;¹

¢
Wrj ;

with H(eir!;¹) =
£
G(eir!;¹)J(¹) + I

¤¡1
G(eir!;¹)

and then each Vrj may be calculated if the vectors
V1j0 with j0 · j are known.
For r = 1, G(eir!;¹)J(¹) + I is singular so that it

is not possible to solve (8) directly. To overcome this
di±culty, we suppose V11 = v; where v is the normal-
ized right eigenvector of G(ei!;¹)J(¹) associated with

the eigenvalue b̧(ei!;¹), and V1j , with j = 3; 5; :::; are
orthogonal to v. Thus, each vector V1j is obtained
from

P
£
G(ei!;¹)J(¹) + I

¤
V1;2j+1 = ¡PG(ei!;¹)W1;2j+1;

where j = 1; 2; : : : ; q and P = I¡vvT is the projection
on the subspace orthogonal to V11. The idea behind



these assumptions is that µ ¯xes the amplitude of E1

in the direction of v, acting the remainder terms as
corrections in directions orthogonal to that of the main
contribution. Then, the harmonic balance equation for
r = 1 is£
G(ei!;¹)J(¹) + I

¤ qX
j=0

V1;2j+1µ
2j+1 =

¡G(ei!;¹)
qX
j=1

W1;2j+1µ
2j+1: (9)

Premultiplying both sides by uT , which is the normal-
ized left eigenvector of G(ei!;¹)J(¹) associated withb̧(ei!;¹), and assuming that

b̧(ei!;¹) = ¡1 + µ2»1 + µ4»2 + µ6»3 + : : : ; (10)

then (9) can be expressed as

¡
µ2»1 + µ

4»2 + µ
6»3 + : : :

¢ qX
j=0

uTV1;2j+1µ
2j+1 =

¡uTG(ei!;¹)
qX
j=1

W1;2j+1µ
2j+1:

Finally, equating the terms of the same power in µ,

»1= ¡uTG(ei!;¹)W13;

»2= ¡uTG(ei!;¹)W15¡ »1uTV13;
...

»j = ¡uTG(ei!;¹)W12j+1¡ »j¡1uTV13¡ »j¡2uTV15 : : :
It is clear that all the »j expressions can be calculated
if the vectors V1;2j+1 are known.
From a control theory viewpoint, Eqn. (10) is inter-

preted as the intersection between the Nyquist locus
of b̧(ei!;¹) and a curve depending on µ starting at
¡1+i0. If this intersection occurs at qR = b̧(ei!R;¹R);
then µR and !R are the amplitude and frequency of the
periodic solution, respectively.

B. Algebraic expression of the stability indices

Based on the graphical approach presented previously,
an analysis for small perturbations of the point qR
may reveal the stability of invariant cycles in maps
(Mees and Chua, 1979). Another alternative is the
calculation of the stability indices (or curvature coef-
¯cients). The computation of the ¯rst-order stability
index through the formulation of a second-order har-
monic balance has been presented in D'Amico et al.
(2001). In this section, we will derive algebraic ex-
pressions of higher-order indices using the frequency-
domain approach. The interested readers can obtain
more details in Moiola and Chen (1996) for the anal-
ogous continuous-time case.
Assuming that the matrix G(z;¹)J(¹) possesses an

eigenvalue b̧(zo;¹o) = ¡1 + i0; it is easy to verify

that the matrixG (z;¹) J (¹) has the same eigenvalue.
Moreover, at the criticality, we have zo = ei!o and
zo = e¡i!o, which are actually the two corresponding
complex eigenvalues of (1) of the discrete-time version
of the HBT for a given value ¹ = ¹o.
Now, let us suppose that when the parameter ¹ is

larger than ¹o, the pair of complex eigenvalues of (1)
crosses the unit circle taking the value z = ½eib!, with
½ > 1. Furthermore, let us consider that under this
condition the analysis in the frequency-domain ensures
a periodic solution with an approximate frequency !
and small amplitude µ. Therefore, we can write

G(ei!;¹) = G(z;¹) + (ei!¡ z)G0(z;¹)
+ 1
2(e

i!¡ z)2G00(z;¹) + : : : (11)

where G0(z;¹) and G00(z;¹) are the ¯rst and second-
order derivatives of G (z;¹) with respect to z, respec-
tively.
On the other hand, substituting (5) into (9) for

r = 1 and considering that V11 = v; W1;2j+1 = pj
and V1;2j+1 with j = 1; 2; : : : ; q are known,£
G
¡
ei!;¹

¢
J (¹) + I

¤ ¡
vµ + V13µ

3 + : : :
¢
=

¡G ¡ei!;¹¢ (p1µ3 + p2µ5 + : : : :)
Premultiplying both sides by uT , replacing G

¡
ei!;¹

¢
with (11) and extending the result in terms of the vec-
tors V1;2j+1 and pj ,

uT
£
(ei!¡ z)G0(z;¹) + 1

2(e
i!¡ z)2G00(z;¹) + : : :¤ J(¹)

£¡v + V13µ2 + (ei! ¡ z)v0 + (ei! ¡ z)V 013µ2 + : : :¢ =
¡uT£G(z;¹) + (ei!¡ z)G0(z;¹) + : : :¤
£¡p1µ2 + p2µ4 + : : :+ (ei! ¡ z)p01µ2 + : : :¢ ; (12)

where v0 = dv=dz and V 01;2j+1 = dV1;2j+1=dz and
p0j = dpj=dz for j = 1; 2; : : : ; q.
Then, if µ is close to zero, the ¯rst-order approxi-

mation is given by

¡
z ¡ ei!¢ = uTG (z;¹) p1

uTG0(z;¹)Jv
µ2 = °1µ

2: (13)

By substituting (13) into (12) and grouping to-
gether the coe±cients of equal power in µ,

(z ¡ ei!) = °1µ
2 + 1

´
uT fG(z;¹)(p2 ¡ °1p01)

+°1G
0(z;¹)[J(¹)(°1v0 ¡ V13)¡ p1]

+ 1
2°

2
1G

00(z;¹)J(¹)v
ª
µ4 + : : : ;

with ´ = uTG0(z;¹)J(¹)v, which can be written in
the compact form

(z ¡ ei!) = °1µ2 + °2µ4 +O
¡
µ5
¢
: (14)

Observe that, instead of using (13) as a ¯rst-order
approximation of (z ¡ ei!), it can be used the more



accurate Eqn. (14). In fact, following a similar rea-
soning with (12) and (14), it is possible to calculate
the next higher-order approximation. This procedure
can be continued in the same way until obtaining the
desired order.

Equation (14) allows us to determine the stability of
the invariant cycle emerging from a Hopf bifurcation.
De¯ning ±! = ! ¡ b! and considering the real part of
(14), we have

½¡Re©ei±!ª =

Re
n
°1e

¡ib!o µ2 +Ren°2e¡ib!o µ4+O ¡µ5¢ : (15)
Taking into account that ½ > 1, the left-hand side of
this equation is always greater than zero. Therefore,
to have a solution for small µ2 > 0, it is necessary that

¾1 = Re

½
uTG(eib!;¹)p1e¡ib!
uTG0(eib!;¹) J (¹) v

¾
> 0;

with p1 calculated as in Moiola and Chen (1996). Al-
though ¾1 depends on b! (the frequency of the ex-
act periodic solution) a reasonably accurate (local)
approximation can be obtained computing ¾1 at !o,
i.e. the frequency at which the Nyquist eigenlocus ofb̧ ¡ei!;¹o¢ passes over the critical point ¡1 + i0:
In the case that ¾1 = 0 at criticality, the stabil-

ity of the emerging invariant cycle can be determined
analyzing the coe±cient of the term µ4 in the expan-
sion (15). De¯ning the second-order stability index as
¾2 = Re

©
°2e

¡ib!ª, there will exist a periodic solution
only if ¾2 > 0: In a similar way, if both ¾1 and ¾2
vanish for certain critical combination of the system
parameters, it will be necessary to study the sign of
the coe±cient corresponding to the term µ6, and so
on.

III. EXAMPLE

Let us consider the planar cubic map

x1k+1 = ®x
1
k ¡ ¯x2k + ±1

¡
x2k
¢3
;

x2k+1 = ¯x
1
k + ®x

2
k + ±2

¡
x2k
¢3
;

(16)

where ±1; ±2 are constants which do not vanish simul-
taneously and ®;¯ are bifurcation parameters. Notice
that if ±2 and ±1 were equal to zero, the nonlinear terms
in (16) would disappear so that the planar map would
become linear, acting as a center.

One of the ¯xed points of the cubic system is
(x1; x2) = (0; 0) and its eigenvalues in the time-domain
are given by ® § i¯ = ½e§iÁ: For ½2 = ®2 + ¯2 < 1
the origin is stable and as ½2 is increased to 1, the pair
of complex conjugated eigenvalues crosses the unit cir-
cle from inside to outside changing the stability of the
¯xed point. In fact, the planar map exhibits a Hopf
bifurcation at the critical point ½o = 1.

In order to determine the stability of the invariant
cycle emerging from the criticality ½ = ½o, (16) can be
transformed into (2) and (3) considering

A =

·
® ¡¯
¯ ®

¸
; B =

·
±1
±2

¸
; C =

£
0 1

¤
;

D =
¯

±1
; g(yk) = y

3
k:

Then,

G (z;¹) =
¯±1 + ½2 (z ¡ ®)

(z ¡ ®)
µ
z ¡ ®¡ ±2

±1
¯

¶ ;
f (ek;¹) = ek

µ
¯

±1
¡ e2k

¶
;

yk = ¡ek:
with ¹ as the parameter vector (®; ¯). Linearizing
f(ek;¹) around the ¯xed point ê = 0, we obtain
J (¹) = ¯=±1 and thus,

H (z;¹) =
¯±1 + (z ¡ ®) ±2
z2 ¡ 2®z + ®2 + ¯2 :

The only eigenvalue of this SISO feedback system
is b̧ ¡ei!;¹¢ = G ¡ei!;¹¢J (¹), and then the right and
left eigenvectors are given trivially by uT = v = 1.
Moreover, V13 = 0, D2 (ê;¹) = 0; D3 (ê;¹) = ¡6 and
in general Dk (ê;¹) = 0 for k = 4; 5; : : :. Therefore,

V02 = ¡1
4
H (1;¹)D2 (ê;¹) = 0;

V20 = ¡1
4
H(ei2Á;¹)D2 (ê;¹) = 0;

p1 = ¡1
8
D3 (ê;¹) = ¡3

4
:

As a result, °1 = ¡3
8
(±2 ¡ i±1) and the ¯rst-order sta-

bility index at the criticality is

¾1 = ¡3
8
(±2 cosÁ¡ ±1 sinÁ) : (17)

As can be seen, the sign of ¾1, and thus the stability
of the invariant cycle, depends on the values of Á, ±1
and ±2. This fact can be corroborated via numerical
simulations, ¯xing Á = 0:515, ±1 = 2 and using ±2 as a
control parameter. Figure 2 shows the invariant cycle
obtained for ±2 = 0:7 and ½ = 1:015 > 1. In this
case, the stability index is ¾1 = 0:1408 > 0 so that
the invariant cycle is stable. On the other hand, for
±2 = 1:4 and ½ = 0:991 < 1, ¾1 = ¡0:088 and thus
the emerging cycle is unstable (Fig. 3). For values of ½
beyond to ½o, these cycles interact with the other two
¯xed points of the system, and disappear.
The planar map (16) develops a degenerate Hopf

bifurcation if the index ¾1 vanishes at the criticality,
i.e. if

±2 = ±1 tanÁ: (18)
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Figure 2: Stable invariant cycle obtained for ±1 = 2,
Á = 0:515, ½=1:015 and ±2 = 0:7 (¾1 = 0:1408).

Therefore, to establish the stability of the emerging
invariant cycle the computation of the next higher-
order index is required.
For a fourth-order harmonic balance, it is found that

V04 = V24 = 0,

V33 =
1

4
H(ei3Á;¹);

and then the second-order stability index at the critical
point is

¾2=
1

4
Re

½
e¡iÁ°1

·
3±1
¯
+
2G00(eiÁ;¹o)°1
G0(eiÁ;¹o)

+H(ei3Á;¹o)̧

¾
:

Taking into account (18), this expression can be
rewritten as

¾2 =
9

128
±21 sec

2 Á: (19)

Since ¾2 > 0 for all values of ±1, the cycles emerging
from the degenerate bifurcation (¾1 = 0) are stable.
Once again, numerical results verify this prediction.
As before, we choose Á = 0:515, ±1 = 2 and vary ±2
and ½. The invariant cycle obtained for ±2 = 1:1302
and ½ = 1:0001 is presented in Fig. 4. In this case, ±2 is
very close to the value ±2d = 1:131547 corresponding to
the degenerate condition and thus, ¾1 = 4:399£ 10¡4.
Although ½ is closer to the unit circle than in the sit-
uation of Fig. 2, the amplitude of the invariant solu-
tion is larger. This behavior becomes more notice-
able as ±2 is closer to ±2d. For values of ±2 slightly
larger than ±2d, we should observe a connection be-
tween both stable and unstable cycles that occurs gen-
erally through a limit point bifurcation. However, this
e®ect is not appreciated in this system because of the
disappearance of the cycles explained previously. This
phenomenon of cycle connection seems to be common
in discrete-time systems of dimension equal or greater
than 2, certainly related to global bifurcations and
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Figure 3: Unstable invariant cycle obtained for ±1 = 2,
Á = 0:515, ½= 0:991 and ±2 = 1:4 (¾1 = ¡0:088).

resonance phenomena, and thus explain the interest
to study these behaviors in the specialized literature
(Iooss, 1979; Whitley, 1983; Shilnikov et al., 2001).
It is worth noticing that the expressions of the ¯rst

and second stability indices, given by (17) and (19),
respectively, are in complete agreement with those
obtained applying the normal form technique (Iooss,
1979).

IV. CONCLUSIONS

A frequency-domain approach to detect Hopf bifur-
cations for discrete-time systems using a higher-order
harmonic balance method has been presented, and al-
gebraic expressions that determine the stability of the
emerging invariant cycle have been derived. The appli-
cation of the main results is shown studying a planar
cubic map.
It is noticeable that the coalescence between stable

and unstable invariant cycles has not been detected
in the system, although an extensive numerical search
has been performed in the parameter space. However,
this fact con¯rms one of the ¯rst remarks in the intro-
duction: the analysis of Hopf bifurcations in discrete-
time systems is more di±cult than that for continuous-
time systems. A relationship between the coalescence
of invariant cycles and the e®ects of resonances will
be pursued in the forthcoming investigations following
the preliminary results obtained by Frouzakis et al.
(1991) and Peckham et al. (1995), but including the
information of higher-order bifurcation formulas.
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Figure 4: Stable invariant cycle for ±2 = 1:1302; near
the degenerate condition ±2d = 1:131547:
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