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Abstract— This paper presents the theoretical aspects of a
methodology for the design of robust orthogonal adaptive
decision feedback equalizers. The dispersive transmission
channel is assumed to have a transfer function type of
description with small uncertainties in the parameters. A
decision feedback equalizer is designed minimizing a mean
square error objective function that takes into account the
uncertain description of the channel. The equalizer is
conceived with an orthogonal basis structure, so that the
basis parameters inherit the robustness properties of the
design to parameter perturbations. Adaptation of the
coefficients that linearly combine the basis elements is also
considered and the development of the adaptation
algorithm is included. The resulting equalizer has a very
flexible, modular and easy to implement structure. An
example with comparisons of performance with FIR
designs is included.
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I. INTRODUCTION

Channel equalization is nowadays an unavoidable signal
processing procedure to apply if high-speed
communication over severely band limited channels is to
be established. This is particularly true when we are
dealing with the transmission of digital information over
copper wire lines such as in Digital Subscriber Line
systems (xDSL). The lack of shielding, minimum
conditioning and narrow bandwidths are the reasons for
the heavy intersymbol interference (ISI) present in these
channels (Starr et al., 1999; Bingham, 2000). Linear
Equalization (LE) and the more efficient Decision
Feedback Equalization (DFE) are effective methods of
reducing the ISI and constitute a good tradeoff between
computational cost and performance (Belfiore and Park,
1979; Cioffi et al., 1995).

The design of the equalizer relies in the a priori
knowledge of the channel characteristics that can be
materialized in a mathematical model. This model will
normally represent a compromise between good
practical representation of measured effects and
mathematical tractability.

This paper presents a design procedure for an
orthogonal adaptive DFE. The design requires good
knowledge of the transmission channel, with a transfer
function type of model, of known order but allowing the

existence of small uncertainty in the parameters. The
uncertainty is described from a statistical point of view
and the design minimizes a mean square error objective
function. This approach follows the lines of work of
Sternad and Ahlén (1990, 1993) and Chen and Lin
(1996). An orthogonal structure is then considered for
the implementation of the DFE and a coefficient
updating algorithm is developed based on this
representation.

The paper is organized as follows. Section II introduces
some notation, gives a description of the equalization
problem and presents the channel model. Section III
deals with the design procedure. Section IV, presents the
implementation structure using orthogonal functions.
Section V describes the development of an updating
algorithm and an example is presented in Section VI.
Finally, some conclusions are drawn in Section VII.

II. EQUALIZATION PROBLEM AND CHANNEL
MODELING

Figure 1 shows the usual structure of a DFE. The
random uncorrelated symbol sequence )(ka  of variance

σ a
2  is dispersed in time by the channel H q( , )−1 α  and is

corrupted by noise. D q( , )−1 β  is the linear filter that

shapes the white noise sequence n k( ) , of variance σ n
2 .

The sequences a k( )  and n k( )  are independent with
E a k n k{ ( ) ( )} = 0 . The received signal enters the

precursor portion of the equalizer F q( )−1  that deals

with the non-causal effects of the ISI and noise. The
detected symbols $( )a k  are filtered by R q( )−1  and fed

back to the detector input. R q( )−1  is the causal part or

post cursor portion of the DFE and it has the function of
canceling the ISI introduced by the past symbols.

Both )(αH  and )(βD  are considered linear time

invariant filters, of orders N and S respectively, with
uncertainties in the parameter vectors α  and β . They

have causal impulse responses and belong to the space

2 ( )TΗ  of square (Lebesgue) integrable functions on the

unit circle { }: 1T z z= = , which are analytic outside T,

{ }: 1z z > . α  and β  are parameter vectors of the form



δααα += 0  and δβββ += 0  with 0][ αα =E  and

0][ ββ =E  respectively. The zero mean perturbations

δα and δβ  are described by the a priori known

covariance matrices αγδαδα =][ TE  and

βγδβδβ =][ TE .

Fig. 1: Transmission channel, noise and DFE models.

The uncertainty on the parameters results in an uncertain
channel plus noise system which can be described as
having a different realization for each particular value of
the parameter vectors α  and β . The uncertain system

is modeled as

HHH ∆+=+ )()( 00 αδαα (1)

DDD ∆+=+ )()( 00 βδββ (2)

The perturbations H∆  and D∆  are approximated by
the linear terms of the Taylor series expansion of )(αH

and )(βD  around the mean values )( 0αH  and )( 0βD ,

so 
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where the symbol * stands for the joint operations of
conjugation and transposition.

III. DFE DESIGN

To present the design procedure, the blocks representing
the precursor and poscursor filters of the DFE along

with the signals involved are expanded and shown with
more detail in Fig. 2.

Fig. 2: Expanded view of the DFE

F and R are (initially) time invariant linear filters, and
will be designed with an infinite number of terms in
their impulse responses (IIR). In this case, the optimum
design can be performed in two steps (Lee and
Messerschmitt, 1994). First, the linear equalizer

)( 1−qFL  is constructed to minimize the Mean Square

Error (MSE) )}({ 2 keE L . Second, as the remaining error

sequence )(keL  will generally be correlated, and thus

its variance (power) can be further reduced, the addition
of a prediction error filter is considered.

Assuming the decisions of the detector are correct,
)( 1−qFP  and the block 1)( 1 −−qFP  in the feedback loop

of the detector constitute a practical prediction error
filter in the sense it is strictly causal ( )( 1−qFP  is monic)

and is so realizable (Lee and Messerschmitt, 1994). Its
output will depend only of past values of the input, i.e.,
it depends only of past symbols. When the delay L is
different from zero, the filters that constitute the
equalizer are actually performing smoothing on the
received signal )(kw .

The problem to solve is to design the DFE following the
two steps mentioned above and additionally give the
design an orthogonal structure that can easily be
adjusted in an adaptive manner. For this purpose the
orthogonal family of functions considered were
introduced by Ninnes and Gustafsson (1997):
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where 0d =  or 1 and 2||1 nn λν −=  is a

normalization constant. The basis of (5) has the property
of allowing the inclusion of a variety of modes (different
poles) and provides a unifying formulation for almost all
known system identification techniques supported by
orthogonal basis, such as FIR, Laguerre and Kautz
models.

A. Precursor equalizer design
The problem of designing the precursor portion of the
DFE when the system (channel plus noise) has an



uncertain type of model description can be treated as a
deconvolution problem (Doñate et al., 2000a, b). From
Fig. 2, the expression for the error ( )Le k  is obtained

when 0=R  or equivalently when 1=PF :
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where Lq−  takes into account the propagation delay

considered for the error evaluation. Assuming )(ka  and

)(kn  are independent of the models uncertainties and

using (3) and (4), the mean square error over the system
uncertainties can be evaluated as
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where }{⋅∆E  is the expectation operator over the models

uncertainties. The performance index to be used is the
mean value of ξ  over time:
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We see from (8) that the uncertainties in the parameters
of the system are contemplated in the objective function
J by means of the rational functions H∆Γ  and D∆Γ .

Finding the optimal LOF  that minimizes J will yield a

filter that is slightly more conservative than the classical
nominal design but that will generally have a better
overall performance in terms of the MSE if the system
parameters depart from their nominal values.

To minimize J, (8) is first written in the transform
domain with the aid of Parseval´s theorem. Then, a
perturbation is added to the optimal deconvolution
processor 1( )LOF F zκζ −= + , where κ  is a small, real,

positive number and 1( )zζ −  is an arbitrary, rational in z

and realizable function, analytic in 1z ≥ . To

accomplish the necessary and sufficient conditions for a

minimum in J, i.e. 
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Introducing the spectral factorization,

* 2 * 2 *( ) ( )a H n DH H D Dψ ψ σ σ∆ ∆= + Γ + + Γ (10)

replacing in (9) and rearranging, the condition to be
satisfied is now
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where
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The operator +⋅}{ (resp., {}−⋅ ) takes the analytic part of

the argument outside (resp., inside) the unit circle.
Applying Cauchy's theorem to (11), the following part
of the integrand must be zero, since it is the only one
which may have poles inside the unit circle:

* 1 * 2{( ) } 0L
LO dF H zψ ψ σ− −

+− = (12)

From (12), J is minimized by

* 1 * 2 1{( ) }L
LO dF H zψ σ ψ− − −

+= (13)

Three comments on this result follow. First, a realizable

LOF  can only eliminate the parts of the integrand that

involve +⋅}{  terms (must be analytic outside the unit

circle and as so, causal). Second, the {}−⋅  term must be a

rational function starting with a free z to cancel the pole
at the origin of the integrand. Third, for symmetry
reasons, if one of the integrals in (11) is zero so will be
the other. The readers may like to compare this
derivation with the one in Appendix A of Ahlén and
Sternad (1991) and also the approach of Chen and Lin
(1996).

Assuming there are uncertain parameters in the
denominators of both H and D, from (3), (4), and (10),
the maximum degree for the polynomials of ψ  is

)(2 SN + . Therefore, the order of 1ψ − , the IIR part of

the optimal precursor equalizer, if the prediction error
filter is included, will generally be )(2 SNM +≥ . From

(13), noting that *H  and *ψ  have all the roots outside

the unit circle, the {}+⋅  operation reduces to a constant if

0L =  or a FIR type of filter, of length L, if 0L > . So,
the resulting structure for the precursor portion of the
DFE including PF , may generally (when the symbol

sequence is white noise) be considered as a cascade of a
FIR filter and an IIR filter as shown in Fig. 3.

Fig. 3: General structure for the precursor portion of the
DFE

B. Poscursor equalizer design
As a second step, we want to evaluate the part PF  of the

equalizer that minimizes the prediction error. The
spectral density of the error over the detector when



FP = 1 is:
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where σ e E E2 *  is the spectral factorization of PeL
, 2

eσ

is the MSE and E is a monic, rational, minimum phase
function that is also analytic in z ≥ 1 . The optimal

prediction error filter is then

F q E qP ( ) ( )− − −=1 1 1 (15)

In addition, the existence of the poscursor filter is
guaranteed, even for the case when the delay 0L = ,
because R q F qP( ) ( )− −= −1 1 1  is a strictly causal filter.

IV. ORTHOGONAL REALIZATION

Each of the filters that conform the robust DFE is to be
realized using a linear combination of the orthogonal
basis of (5) as:

∑
=

−=
Q

n
nni qLF
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where the number of terms 1+Q  of Eqn. (13) must be

greater or equal to the order of the functions to be
represented. The parameter vector λ  is chosen to
include all of the poles of F and R in each case, to
achieve an exact representation. The parameters that
linearly combine the basis elements are calculated by
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where the integral can be evaluated using Cauchy’s
residue theorem.

Assuming M is the order of the robust precursor filter,
the vector FΘ  groups the coefficients associated with

this filter:

T
MLLF ],...,,,...,[ 10 θθθθ +=Θ (18)

and RΘ  groups the coefficients of the orthogonal

realization of the poscursor filter R:

T
PMMR ],...,[ 1 ++=Θ θθ (19)

P in (18) is the largest degree of the polynomials of R. If
the degree of LOF  is 

0
2( )

LFN N S L≤ + + , then from

(14), the polynomials of E (and R) will have a degree

0LFP N≤ .

From (5) is simple to establish the relation between two
successive members of the basis:
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where 
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+ = , nn qC λλ 11)( −−≡  and

nn qC λλ −≡ −1)( . This relation will be useful for the

practical implementation of the DFE.

Up to this point in the design procedure, we have a DFE
that has an orthogonal structure for each of its filters and
is, by design, robust to small parametric perturbations in
the system model.

 V. UPDATING OF THE BASIS COEFFICIENTS

To improve the performance of the equalizer and to
incorporate the ability of tracking larger changes in the
system dynamics, i. e. changes that exceed αγ  and βγ ,

the updating of the coefficients that linearly combine the
basis elements is next considered. The coefficients Θ
are now treated as time varying and noted:

TT
R

T
F kkk )](),([)( ΘΘ=Θ=Θ (21)

The error functional for the adaptive algorithm,
assuming the decisions of the detector are correct and as
a function of the coefficient set is
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which is the generalized precursor regressor build of
delayed and basis-filtered versions of the received signal

)(kw  and
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that is the generalized poscursor regressor composed of
basis-filtered versions of the detected symbols )(ka .

Expanding (21)

2( , ) [ ( )] 2 ( ) ( ) ( )T T
Ik E a k L k p k R kζ Θ = − − Θ + Θ Θ (26)

with [ ( ) ( )]p E a k L X k= −  and )]()([ kXkXER T
I = , and

considering the update equation

)()()1( kGkk µ−Θ=+Θ (27)

where

))((2)( pkRkG I −Θ=
Θ∂

∂
=

ζ
(28)

is the gradient of the error functional in the parameter
space, a gradient-based family of adaptive algorithms
can be generated.
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Fig. 4: Structure of the Robust Orthogonal Adaptive DFE. The blocks illustrate the case when the basis parameters
are real.

Different estimates of )(kG  result in different

algorithms. The approach considered for the DFE in this
paper uses the instantaneous value of p  and IR  as

estimates of their mean so, ˆ ( ) ( )p a k L X k= − ,

)()(ˆ kXkXR T
I =  and the estimated gradient is

)()(2)(ˆ kekXkG −= (29)

The updating equation finally results

)()(2)()1( kXkekk µ+Θ=+Θ (30)

and the algorithm may be classified as a transform
domain Least Mean Square (Diniz, 1997).

Figure 4 shows the complete structure for the
implementation of the Robust Orthogonal Adaptive
DFE. This structure follows from (20) and is illustrated
for the particular case of a DFE with real poles in both
filters F and R. The inclusion of complex modes in the
basis has to be done in conjugate pairs. In this case, the
new basis functions are formed as linear combinations
of the basis generated by (5), (see Ninnes and

Gustafsson, 1997, for the details of this construction).
This procedure assures that the impulse response of the
basis functions with complex modes is real.

 VI. EXAMPLE

A first order low pass transmission channel model
corrupted by colored noise will be used to illustrate the
performance of the proposed design. The system is
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The gain of these filters are adjusted so that the signal to
noise ratio in the input of the precursor filter is 30 dB.
The design is performed assuming uncertainty in the
parameter 1b  of H, with 

1
0.0003bγ = and 0L = .

Figure 5 shows the variation of MSE achieved by the



DFE when the parameter 1b  departs from its nominal

value. The curve in solid line is the nominal fixed
recursive design. Both filters of the DFE are IIR. This
design gives the best performance when the parameters
remain at the nominal design values. When 1b  changes

the MSE raises and the performance degrades quickly.

The curve in dashed line is the fixed robust design. The
performance around the nominal value of the parameter
is slightly worse than the nominal design. When 1b  is

perturbed, the robust DFE equals and outperform the
nominal design for positive (negative) variations of
more that 4% (-2%) in the parameter.

The robust design has the effect of extending the range
of “good” performance of the equalizer for changes in

1b  at the expense of loosing performance around the

nominal value of this parameter.

Figure 6 shows the performance of the robust orthogonal
adaptive DFE. In this case the initial value of the
coefficients Θ  are those of the robust design and the
updating Eqn. (30) is used to adjust these coefficients as

1b  departs from its nominal value.

Fig. 5: MSE vs. Percentage of change in parameter 1b  for

fixed recursive DFE designs. Solid line: Nominal design.
Dashed line: Robust design.

The MSE attainable when the algorithm converges is
plotted vs. the percentage of variation of 1b  (dashed line

curve). Also included in this figure is the performance of
the fixed nominal design (solid line) and the MSE
attainable by an adaptive FIR DFE (dash-dot line). The
FIR DFE requires 20 taps to achieve a constant MSE
that equals the nominal design. The robust orthogonal
adaptive DFE exhibits a performance that is less than 1
dB within the minimum MSE for 6% of variation in 1b .

This performance is achieved using only 5 adaptive
coefficients.

Fig. 6: MSE vs. Percentage of change in parameter 1b  for

adaptive DFE designs. Solid line: Nominal fixed design
included for reference. Dashed line: Robust orthogonal
adaptive design (5 adaptive coefficients). Dash-dot line: FIR
adaptive design, 10 taps precursor filter and 10 taps poscursor
filter.

VII. CONCLUSIONS

The paper has presented the theoretical aspects for the
design of robust adaptive DFE with an orthogonal
implementation structure. The DFE designed by this
methodology presents robustness to small parametric
uncertainties in the channel and noise models, a very
modular construction by the use of orthogonal bases,
and adaptation capability with the use of a simple
algorithm. A numerical example was presented that
shows the good performance of the robust orthogonal
adaptive DFE in terms of MSE. The example also shows
the reduced computational cost when compared with
adaptive FIR designs. All these properties make this
design a good candidate for practical DSP
implementations.

Further research is currently being performed to apply
this robust DFE to xDSL systems.
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