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Abstract– In this paper a robust identifi-
cation strategy for Wiener like models consti-
tuted by a linear dynamic block in series with a
Piecewise Linear (PWL) function as the nonlin-
ear static gain is presented. The proposed real-
ization allows straightforward characterization
of the static gain uncertainty. A robust Model
Predictive Control (MPC) algorithm, using the
presented modeling strategy, is developed to
guarantee that no constraints in the feedback
loop are violated.

Keywords– Identification, Wiener Model,
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I. INTRODUCTION

In the last years, several approaches to incorporate
nonlinearities in to controller design strategies have
been presented. In particular, the Wiener like models
deserve attention as they are suitable for the descrip-
tion of systems which are internally linear but have a
static nonlinear output transformation (e.g. pH neu-
tralization processes). They can also be used for the
approximation of nonlinear fading memory systems
(Castro et al., 1999). Most of the dynamical systems
in industry belong to this class of nonlinear systems.
The choice of Wiener models in control was also mo-
tivated by recent results on nonlinear system identifi-
cation (Westwick and Verhaegen, 1996) and by their
straightforward applications in nonlinear Model Pre-
dictive Control. Important results in this field can be
found in Norquay et al., (1998, 1999a) and in Gerk-
sic et al. (2000). Moreover, some practical imple-
mentations of these algorithms have been reported by
Norquay et al., (1999b).
Model predictive control (MPC) refers to a class of

computer control algorithms that control the future
behavior of a plant through the use of an explicit pro-
cess model. At each control interval, the MPC algo-
rithm computes an open-loop sequence of manipulated
variable adjustments in order to optimize the future
plant output. The first input in the optimal sequence
is injected into the plant, and the entire optimization

is repeated at subsequent control intervals (Qin and
Badgwell, 1997).

Though manufacturing processes are inherently
nonlinear, the vast majority of MPC applications up
to date are based on linear dynamic models, the most
common being step and impulse response models de-
rived from the convolution integral. There are several
potential reasons for this, for example; by using a lin-
ear model and a quadratic objective, the nominal MPC
algorithm takes the form of a highly structured convex
Quadratic Program (QP), for which reliable solution
algorithms and software can easily be found. The algo-
rithm solution must converge reliably to the optimum
value in no more than a few tenths of a second to be
useful in industrial applications. This is the reason
why linear MPC is widely preferred over the nonlinear
version.

Nevertheless, there are cases where nonlinear effects
are significant enough to justify the use of Nonlin-
ear Model Predictive Control (NMPC). With the in-
troduction of a dynamic nonlinear model within the
NMPC algorithm, the complexity of the predictive
control problem increases significantly. Review papers
by Bequette (1991) and Henson (1998) study the vari-
ous approaches to handle nonlinear systems via MPC.
In particular, the Wiener models (Norquay et al.,
1998, 1999a, 1999b; Gerksic et al., 2000) have a special
structure that facilitates their application to NMPC.

In this paper a particular realization for the Wiener
model, where the static gain is described by a Piece-
wise Linear function (PWL) is presented. These PWL
functions have proved to be a very powerful tool in the
modeling and analysis of nonlinear systems. The PWL
Functions are used since 1965 in the area of nonlinear
circuit theory. In the 70’s, they are specially relevant
in the works of Leon Chua (1971) where the treatment
of systems in <2 is properly solved. But only recently
with the work of Julián et al. (1999) on High Level
(HL) PWL it is possible to obtain expressions to solve
the general problems in <n. These expressions allow
the development of a systematic and uniform approxi-
mation of any continuous nonlinear function in a com-



pact domain.

Here, we present a strategy to identify Wiener mod-
els with PWL functions representing the nonlinear
gain. In particular, an uncertainty description will
be incorporated into the static nonlinearity as gain
bounds. A robust Wiener Model Predictive Control
(WMPC) will be presented to guarantee that, in the
presence of model uncertainties, no constraints in the
feedback loop are violated. It is assumed that the func-
tion f of the system under control is biyective, i.e. it
has an inverse. This is a reasonable assumption for
a large set of process models. Then, the PWL func-
tion used for the approximation will have an inverse
too, and a simple set point transformation allows the
formulation of the nonlinear MPC problem as a linear
MPC.

The paper is organized as follows; in Section II a de-
scription of the Wiener model is presented, stressing
the use of the PWL functions to represent the static
nonlinearity. In Section III a methodology to approx-
imate a PWL function and uncertainty bounds is dis-
cussed. The model identification is described in Sec-
tion IV. In Section V, the WMPC is defined in face
of the identified model. The proposed methodology is
applied in Section VI to a neutralization reactor, and
finally, the Conclusions are included in Section VII.

II. WIENER MODELS

In this work, a Wiener approximation will be used
to represent the model process. In general, a Wiener
model consists of a dynamic linear block (H1) in cas-
cade with a static nonlinearity at the output (H2), as
shown in Fig. 1, where vk is the signal at the output
of the linear block.

A. Dynamic linear model

There are several options to describe the linear dy-
namic block in Wiener models. For example, some of
the used representations include convolution models
(step or impulse responses), ARMAX models, ARX
models, state-space models, etc. In this application, a
discrete state space model is used,

xk+1 = Axk +Buk

vk = Cxk +Duk

where x ∈ <nx is the state vector, u ∈ <m is the
control vector, v ∈ <m is the output vector and the
subindex k represents the sample time.

B. Nonlinear static model

In this paper, the use of PWL functions is proposed. In
some sense this approach is a systematic generalization
of the multilinear representation used in Galán et al.
(2000) and Galán (2000).

Formally, a PWL function f : D ⊂ <m → <1, where
D is a compact set, is defined as (Julián, 1999),

Figure 1: Wiener Model

Definition 1 (PWL function): Let the domain D be
divided into a finite number of polyhedral regions R(i),
i ∈ {1, ..., k1} such that D =

Sk1
i=1 R̄

(i), by a finite set
of boundaries

H = {Hi ⊂ D, i ∈ {1, ..., h}}
such that each boundary is (m − 1) dimensional hy-
perplane characterized by

Hi = {v ∈ <m : πi(v) := α0iv − βi = 0},
where i ∈ {1, ...h} ,αi ∈ <m and βi ∈ <1, ∀i. Then, f
is expressed by an affine representation of the form

f (i)(v) = J (i)v + w(i),

where J (i) ∈ <1×m is the Jacobian matrix in the
region R(i), w(i) ∈ <m and f(v) = f (i)(v) for all
v ∈ R(i). Moreover, if J (p)v + w(p) = J (q)v + w(q),
∀v ∈ R̄(p)

T
R̄(q),where R̄(p)

T
R̄(q) 6= φ, for neigh-

bored regions R(p), R(q) ⊂ D then, the PWL function
is continuous.
Julián (1999) formulates the canonical expression

for the family of all continuous PWL functions defined
over of a simplicial partition of the domain D ⊂ <mo .
This type of partition subdivides the domain D in a
simplex set S̄(i), i = 1, 2, ..., q of n + 1 vertices, such

that D =
S q
i=1 S

(i)
. A motivation for this choice

is that the hyperplanes that divide the domain and
the corresponding vertices can be systematically gen-
erated.
Definition 2 (Simplex): Let x0, x1,...., xn, n + 1 be
points in <n. A simplex S̄(i) = ∆ (x0, x1, ...., xn) is
defined as,

∆ (x0, x1, ...., xn) =

(
x : x =

nX
i=0

µixi

)
where 0 < µi < 1, i = 0, 1, . . . , n and

Pn
i=0 µi = 0.

Let us suppose, for simplicity, that the domain D is
in <2. If a boundary configuration is defined such that
the domain is partitioned in proper simplices, and a
value of the function is associated to each intersection
S(i) (or vertex), as shown in Fig. 2, it is possible to
define a PWL function with the following characteris-
tics,

• The function values assigned to each vertex de-
fine a unique (and local) linear affine function for
each simplex.

• The local linear expressions define a PWL con-
tinuous function because they are continuous on
the boundaries of the partition.



Figure 2: Simplex partition in <2.
The extension of this idea to an m-dimensional do-

main leads us to define simplices of m + 1 vertices.
Then, if one function value is associated to each ver-
tex, it is possible to determine a unique linear affine
(local) function for each simplex. In this way, a contin-
uous PWL function is determined by the collection of
all the local functions. From this procedure, it is clear
that any arbitrary PWL function F : D 7→ <1 defined
over the simplicial boundary configuration introduced
is uniquely determined by its values on the vertices.

Next, without loss of generality, it is assumed that
the dimension of the image set is one; because a PWL
map from <m to <m is equivalent to m independent
PWL maps from <m to <1 with the same boundary
configuration.

Definition 3: Consider a compact domain D ⊂ <m
and a set of hyperplanes H . Then, PWLH [D] is de-
fined as the set of all the PWL continuous mappings
taking values on the domain D partitioned with the
boundary configuration H.

Julián (1999) proved that a set of HL CPWL func-
tions which is a basis of PWLH [D] was found as a
function of m nesting absolute values (Julian et al.,
1999). In addition, a set of generating functions for
this base can be expressed in a vectorial form as

Λ = [Λ0
T

,Λ1
T

, . . . ,Λm
T

].

Theorem 1: The PWL functions of the set of
functions Λ are a basis for a linear vectorial space
PWLH [D].

For the proof of this theorem, see Julián (1999).

Then, any PWL function f ∈ PWLH [D] can be
univocally written as a linear combination of entries
of Λ as cTΛ(v) = f(v).

III. PWL FUNCTION APPROXIMATION

In this section, let us consider the approximation of
a generic nonlinear function using a PWL realization.
Specifically, the problem of uncertainty characteriza-
tion for application in analysis and design of robust
systems will be considered. To perform a robust ap-
proximation, Julián and Agamennoni (1999), assume
that the measures to be approximated present uncer-
tainties. In general, a function is called uncertain if it

is characterized by a family of functions of the form

= = {f : S 7→ R1 : f(v) = fN (v) +∆(v)},
where fN is a nominal function and ∆ satisfies
supv∈S k∆(v)k <= K. In addition, let us consider
that a set F = {f1, f2, f3, ..., fs} of s measured val-
ues (members of =) over a set of points in the domain
(V = {v1, v2, v3, ..., vs}) is available (i.e., fi = f(vi),
with f ∈ = and vi ∈ V ⊂ D).
Julián (1999, 2000) proposes an algorithm to ad-

just a function fp ∈ PWLH [D] to measured points
F using a Least Square criterion. In this case, we
are looking for a complete set of uncertain functions.
A natural way to perform this is to find an “upper”
function, fu ∈ PWLH [D] and a “lower” function
fl ∈ PWLH [D], satisfying

fu(vi) ≥ f(vi) ≥ fl(vi), ∀vi ∈ D,
to characterize the uncertain function, in the sense
that f can be represented as

f(vi) = αfl(vi) + (1− α)fu(vi),

∀vi ∈ X,f ∈ =, where 1 ≥ α ≥ 0. The “band” defined
by these two functions should be as narrow as possible.
This is equivalent to find the two functions, fl and fu,
that solve the following optimization problems

Problem 1:

min
fl∈PWLH [D]

µ
max
vi∈X

{| fi − fl(vi) |}
¶

(1)

s.t. fi − fl(vi) ≥ 0, ∀vi ∈ V
Problem 2:

min
fu∈PWLH [D]

µ
max
vi∈X

{| fi − fu(vi) |}
¶

(2)

s.t. fu(vi)− fi ≥ 0, ∀vi ∈ V
Julián and Agamennoni (1999) show that these

problems can be written as two Linear Programming
problems. First, it will be considered that the upper
and lower functions have PWL expressions (fl(x) =
cTl Λ(x) and fu(x) = c

T
uΛ(x)).

Lemma 1: Let V , F , H and D be as described above.
The Problems 1 and 2 can be stated as the linear pro-
gramming problems

1) minλl s.t.
−cTl Λ(vi)− λl ≤ −fi, ∀vi ∈ X,
−cTl Λ(vi) ≥ −fi, ∀vi ∈ X,

λl ≥ 0;
(3)

2) minλu s.t. cTuΛ(vi)− λu ≤ fi, ∀vi ∈ X,
cTuΛ(vi) ≥ fi, ∀vi ∈ X,

λu ≥ 0;
(4)

on the parameters cu, cl,λu and λl.



The computational experience has shown that the
bounds of (1) and (2) could be conservative because
single margins (λ1 and λu) are used for the entire do-
main D. It is possible to define a particular margin λ
for each simplex in the partition of D. In this way, a
less conservative margin is obtained as it will be shown
in the application example.

IV. WIENER MODEL IDENTIFICATION

Various Wiener model identification approaches can
be found in the literature.

• The N-L approach: First the output static non-
linearity is determined using steady state data,
then the dynamic linear block is identified, where
the intermediate signal v is generated from the
output signal using inverse non-linearity map-
ping.

• The L-N approach: First the linear block is iden-
tified using a least squares estimation; after that
the intermediate signal v is generated from the
input signal and the static nonlinearity is esti-
mated.

• The simultaneous approach: Parameters of the
linear block and the static nonlinearity are esti-
mated at the same time.

The second approach is used in this paper because is
straightforward and it allows an accurate description
of the static nonlinearity. In a first step the linear
block is identified using a least squares estimation of
a ARX model. The data to perform this identification
is generated applying to the process a Pseudo Ran-
dom Binary Signal. This ARX model may be easily
transformed in a state space model.
In a second step, the static nonlinear block and the

uncertainty bounds are identified. The identification
data is obtained from experimentation by introduc-
ing several steps inputs to get information of the gain
in the operation domain. Using this information, the
PWL Toolbox proposed by Julián (1999, 2000), based
on the Least Squares method, is used.
A combination of dynamic as well as stationary data

were used in the evaluation of the uncertainty bounds.
To compute these bounds the optimization problems
(3) and (4) are solved.

A. Inverse Model

In order to implement the NMPC scheme, described
in next section, a good representation of the inverse of
the nonlinearity is needed. First, it is important to no-
tice that the domain and the image of all the PWL
functions (f , fu and fl) share the dimension (i.e.,
they are biyective functions). A large set of processes
present this property in the neighborhood of the oper-
ative point. Then, it is possible to define the inverse
function as f−1 (f−1u or f−1l ), such that v = f−1(f(v))
(v = f−1u (fu(v)) or v = f

−1
l (fl(v))). These functions

are also unique and PWL. In order to obtain a de-
scription of such inverses, a set of input-output data is

obtained for the vertexes of the partition and a PWL
function from y to v is approximated.

V. WMPC UNDER UNCERTAINTY

The control problem to be solved is to compute a se-
quence of inputs uk, {k = 1, . . . ,M} that will minimize
the following dynamic objective:

J =

PX
j=1

°°°eyk+j°°°
Qj

+

M−1X
j=0

k∆uk+jkRj

subject to a model equations and to some inequality
constraints

yu ≥ yk+j ≥ yl, ∀j = 1, . . . , P
uu ≥ uk+j ≥ ul, ∀j = 1, . . . ,M − 1

∆uu ≥ ∆uk+j ≥ ∆ul, ∀j = 1, . . . ,M − 1
(5)

where P is the predictive horizon, M is the control
horizon, eyk+j = yk+j−r is the deviation of the output
from the desired set point r, ∆uk+j = uk+j − uk+j−1
and the relative importance of the objective function
contributions is controlled by setting the time depen-
dent weight matrices Qj and Rj . Beyond the control
horizon the control signal is assumed to be constant
(i.e. ∆uk+j = 0, j =M, ..., P ). Disturbances are typi-
cally handled by assuming that a step disturbance has
entered the output and that it will remain constant
for all future time (dk = dk+j , j = 1, . . . ,M). To
accomplish this, a bias term that compares the cur-
rent predicted output yk to the current measured y

m
k

is computed:
dk = y

m
k − yk.

Once uk is computed, following the receding horizon
principle, only the first element of the optimal control
sequence is used as the current control value. Then,
the horizon shifts one step forward in time and the
whole procedure is repeated.
The state vector at the present time is assumed to

be known and the future behavior of the variables is
written in a matricial form as,

v(k) =
£
vT (k + 1) · · · vT (k + P )

¤T
∆U(k) =

£
∆uT (k + 1) · · · ∆uT (k +M) ¤T

y(k) =
£
yT (k + 1) · · · yT (k + P )

¤T
r(k) =

£
rT (k + 1) · · · rT (k + P )

¤T
Then, the predicted output for the linear model is

bv(k) = β∆U + ξx(k) + d(k)

where

β =



CTB D · · · 0
CTAB CTB · · · 0
...

...
. . .

...
· · · CTB

...
...

. . .
...

CTAP−1B CTAP−2B · · · CTAP−MB


,



and

ξ =


CT

CTA
...

CTAP−1

 .
Then the predicted output for the complete model

is

by(k) =

f(bv(k + 1))
f(bv(k + 2))

...
f(bv(k + P ))

 = f(bv(k)).
Let us now define some points related to the MPC

structure:
1. Since the PWL function f was assumed to be in-
vertible, it is possible to write the desired signal
referred to the output of the linear model as a
transformation of the set point r(k) as,

r∗(k) = f−1(r(k))
2. If yu and yl are the upper and lower bounds for
the outputs variables (y(k)), then we can trans-
late these magnitudes to the linear model writing

vu(k) = f
−1(yu(k))

vl(k) = f
−1(yl(k))

3. In this case the disturbance is computed:

d(k) = f−1(ym(k))− v̂(k)
where bv(k) is the current predicted output for
the linear model and ym(k) is the current mea-
sure output for the process. It is straightforward
to show that introducing this bias in the error ex-
pression, the model errors offset in steady state
is removed.

Finally, the nominal WMPC can be posed as a
quadratic optimization problem (QP),

min
∆U(k)

J = (v̂(k)− r∗(k))TQ(v̂(k)− r∗(k)) (6)

+∆UTR∆Us.t. bv(k) = β∆U + ξx(k) + d(k)
vu ≥ bv(k) ≥ vl
∆uu ≥ ∆u(k) ≥ ∆ul
uu ≥ u(k) ≥ ul

where the relative importance of the objective func-
tion contributions is controlled by setting the weight
matrices Q and R. Note that minimization of (6) is a
classical LMPC; then all properties about convergence
to the global optimal solution and stability of the loop
are guaranteed. Moreover, we can use the information
of the uncertainty available from the nonlinear iden-
tification to guarantee no constraint violations along
the process operation. To do this, we should transform
the constraint bounds as

vu(k) = f−1l (yu(k))

vl(k) = f−1u (yl(k))

Note that the structure of the minimization problem
does not change.

Table 1: Model parameters.
Parameter Value
x1,i 0.0012 mol HCL/l
x2,i 0.002 mol NaOH/l
x3,i 0.0025 mol NaHCO3/l
Kx 10−7 mol/l
Kw 10−14 mol2/l2

qA 1 l/min
V 2500 ml

VI. CASE STUDY: NEUTRALIZATION
REACTOR

A. Process Description

We shall consider a continuous stirred-tank reactor
(CSTR) with a constant volume V , where an acid so-
lution with a time varying volumetric flow qA(t) 6= 0 of
a fixed composition x1,i (acid) is neutralized with an
alkaline solution with volumetric flow qB(t) of known
composition made up of base (x2,i), and a buffer agent
(x3,i). The differential equations that describe the dy-
namic behavior of this process are given as (Galán,
2000),

.
x1=

1

θ
(x1,i − x1)− 1

θ
x1u (7)

.
x2= −1

θ
x2 +

1

θ
(x2,i − x2)u (8)

.
x3= −1

θ
x3 +

1

θ
(x3,i − x3)u (9)

h(x, y) ≡ ξ+ x2+ x3− x1− Kw

ξ
− x3

1 + Kxξ
Kw

= 0 (10)

Equation (10) can also be expressed in the polynomial
form as,

h(x, y) ≡ Kxξ
3 + (Kw + (x2 + x3 − x1)Kx) ξ

2

+(x2 − x1 −Kx)Kwξ −K2
w = 0

where ξ = 10−y, θ = V/qA and u = qB/qA. Equa-
tions (7 to 9) are mass balances of Equivalent Chem-
ical Species, referred to in the literature as Chemical
Invariants and Equation (10) is the well known pH
equation (Galán, 2000). The nominal parameter val-
ues appear in Table 1.

A.1. Data preprocessing

It is important to study the data distribution in order
to estimate the generalization properties of the result-
ing model (Abrahantes and Agamennoni, 2001). The
simplicial partition used in the PWL formulation al-
lows an easy determination of the number of points in
each simplex. This information may be used to study
the distribution of the data in the PWL input domain.
A uniform distribution of data is generally associated
with good generalization properties of a model. Fig-
ure 3 shows the number of data points in each simplex.
From this picture it is clear that the steady-state data
is satisfactory.



Figure 3: Number of samples in each simplex.

B. Process Identification

B.1. Linear identification

To perform the dynamic identification, a Pseudo Ran-
dom Binary Signal was applied to the process on
the nominal operating point (qB = 0.5l/min). The
switching time was 1 minute with an amplitude of
+/ − 30%. The data was sampled every 0.1 min-
utes, during 200 minutes. Then, using 1500 samples
of this data, an ARX model was adjusted using a least
squares algorithm. The following model is obtained:·
[A] [B]
[C] [D]

¸
=

 ·
1.4479 1
−0.4880 0

¸ ·
0.5098
−0.1718

¸
£
1 0

¤
[0.3521]


B.2. PWL identification

Having that linear model, several steady-state exper-
iments were carried out and a PWL model was ob-
tained using the PWL Toolbox (Julián, 2000). Using
the same tool, a PWL description of the inverse of the
nonlinear block was obtained. These static models are
shown in Fig. 4. This plot includes the plot of expres-
sion 10 and the PWL approximation. It is clear that
the approximation using 50 sectors is almost perfect.
The performance of the complete model can be appre-
ciated in Fig. 5, where the comparison of the process
and model outputs are shown for the set of data not
used in the dynamic identification.

B.3. Uncertainty characterization

To evaluate the uncertainty, the bounds described in
Eqns. (3) and ( 4) were computed using the combina-
tion of steady state and dynamic data. The addition of
the dynamic data improves the information available
in the central part of the operative region. The results
are included in Fig. 6. In this case, an unique param-
eter λl (and λu) is used. To reduce the conservatism,
the change proposed in order to consider different val-
ues of λl (and λu) for each simplice was implemented.

The resulting bounds are shown in Fig. 7. It is clear
that the conservatism was reduced. The inverses of
these PWL are shown in Fig. 8.

C. Nonlinear Model Predictive Control

The control formulation described in Eqn. (6) was im-
plemented for the neutralization reactor. The weight-
ing matrices and the bounds on the variables are shown
on Table 2. The simulation results are depicted in
Figs. 9, 10 and 11 for the Robust WMPC, the nomi-
nal WMPC and linear MPC, respectively. It is clear,
that the robust WMPC follows the set point better
than the other controllers. Figure 12 shows the ma-
nipulated actions for the robust case.

Figure 4: Nominal PWL approximation and its inverse.

Figure 5: Process and Model outputs.

Table 2: NMPC Parameters.

MPC Parameters
Q−R 10 I−1000 I
P −M 200 - 10
yl − yu 3.9 - 10
ul − uu 0.2 - 0.9



Figure 6: Bounds for Steady State and Dynamic Data.

Figure 7: Bounds for Steady State and Dynamic Data
computed with the modified problem.

Figure 8: Inverse of bounds.

VII. CONCLUSIONS

In this paper some considerations related with robust
identification of Wiener models with PWL gain are an-
alyzed. A Nonlinear Model Predictive Control based

on such models is presented. By assuming invertibil-
ity in the nonlinear static function, a set point change
allows to transform the nonlinear MPC into a linear
MPC. It was also clearly showed that the modeling
strategy used allows a simple gain uncertainty descrip-
tion, from which a robustness result related with no
constrain violation in the feedback loop are naturally
introduced. The performance of the controller is tested
by simulation of a reactor of neutralization.
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