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Abstract— In this paper, non iterative al-
gorithms for the identification of (multivari-
able) Hammerstein and Wiener systems are
presented. The proposed algorithms are nu-
merically robust, since they are based only on
least squares estimation and singular value de-
composition. For the Hammerstein model, the
algorithm provides consistent estimates even in
the presence of coloured output noise, under
weak assumptions on the persistency of exci-
tation of the inputs. For the Wiener model,
consistency of the estimates can only be guar-
anteed in the noise free case. Key in the deriva-
tion of the results is the use of rational or-
thonormal bases for the representation of the
linear part of the systems.
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I. INTRODUCTION

In the last decades, a considerable amount of research
has been carried out on modelling, identification, and
control of nonlinear systems. Most dynamical systems
can be better represented by nonlinear models, which
are able to describe the global behaviour of the sys-
tem over the whole operating range, rather than by
linear ones that are only able to approximate the sys-
tem around a given operating point. One of the most
frequently studied classes of nonlinear models are the
so called block-oriented nonlinear models (Pearson and
Pottmann, 2000), which consist of the interconnec-
tion of Linear Time Invariant (LTI) systems and static
(memoryless) nonlinearities. Within this class, two of
the more common model structures are:

• the Hammerstein model, which consists of the
cascade connection of a static (memoryless) non-
linearity followed by a LTI system (see for in-
stance (Eskinat et al., 1991) for a review on iden-
tification of Hammerstein models), and

• the Wiener model, in which the order of the lin-
ear and the nonlinear blocks in the cascade con-
nection is reversed (see for instance (Greblicki,
1994), (Wigren, 1993), (Wigren, 1994) for dif-
ferent methods for the identification of Wiener
models).

These model structures have been successfully used to
represent nonlinear systems in a number of practical
applications in the areas of chemical processes (Es-
kinat et al., 1991), (Pearson and Pottmann, 2000),
(Kalafatis et al., 1995), (Chou et al., 2000), biological
processes (Korenberg, 1978), signal processing, com-
munications, and control (Fruzzetti et al., 1997).

Several techniques have been proposed in the litera-
ture for the identification of Hammerstein and Wiener
models. The reader is referred to (Narendra and Gall-
man, 1966), (Billings, 1980), (Billings and Fakhouri,
1982), (Eskinat et al., 1991), (Greblicki and Pawlak,
1989), and the references therein, for identification of
Hammerstein models; and to (Billings, 1980), (Wi-
gren, 1993), (Wigren, 1994), (Greblicki, 1994), (Ha-
genblad and Ljung, 2000), and the references therein,
for identification of Wiener models. For the purpose
of putting into context the present work, three main
approaches for the identification of Hammerstein and
Wiener models will be distinguished. The first one is
the traditional iterative algorithm proposed by Naren-
dra and Gallman in (Narendra and Gallman, 1966).
In this algorithm, an appropriate parameterization of
the system allows the prediction error to be sepa-
rately linear in each set of parameters characterizing
the linear and the nonlinear parts. The estimation is
then carried out by minimizing alternatively with re-
spect to each set of parameters, a quadratic criterion
on the prediction errors. A second approach, based
on correlation techniques, is introduced in (Billings,
1980). This method relies on a separation principle,
but with the rather restrictive requirement on the in-
put to be white noise. A more recent approach for
the identification of single-input/single-output (SISO)
Hammerstein-Wiener systems has been introduced by



Bai in (Bai, 1998). This algorithm is based on Least
Squares Estimation (LSE) and Singular Value Decom-
position (SVD), but consistency of the estimates can
only be guaranteed for the case of the disturbances be-
ing white noise, or in the noise-free case. Inspired by
the work in (Bai, 1998), Gómez and Baeyens (Gómez
and Baeyens, 2000) proposed a noniterative algorithm
for the identification of Hammerstein models, which, in
contrast to (Bai, 1998), applies also to multivariable
systems and where the consistency of the estimates
is guaranteed even in the presence of coloured output
noise. As in (Bai, 1998), the main computational tools
employed by the algorithm are LSE and SVD, which
results in numerical robustness under weak assump-
tions on the persistency of excitation of the inputs1.
Key on the derivations of these results is the use of
orthonormal basis functions for the representation of
the linear part of the Hammerstein model.

In recent years, there has been a lot of research on
the issue of how to introduce a priori information in
the identification of black box LTI model structures.
A natural answer to this problem has been the use
of rational orthonormal bases for the representation
of the system. Choosing the poles of the bases close
to the (approximately known) system poles the ac-
curacy of the estimate can be considerably improved
(see (Gómez, 1998) for a detailed review of the use of
Orthonormal Bases in Identification of LTI Systems).
It is not intended to give here a complete overview
on Identification using Rational Orthonormal Bases,
and the reader is referred to (Gómez, 1998), (Ninness
and Gustafsson, 1997), (Wahlberg, 1991), (Wahlberg,
1994), (Van den Hof et al., 1995), and the references
therein. In addition, the use of orthonormal bases
leads to a linear regressor model, so that least squares
techniques can be used for the parameter estimation.
Furthermore, since the regressors only depend on past
inputs, the estimate is consistent even if the output
is corrupted by coloured noise, under the assumption
that the actual system belongs to the model class (i.e.,
there is no undermodelling).

In this paper, basis function expansions are used
to represent both the linear and the nonlinear parts
of Hammerstein and Wiener systems. For the Ham-
merstein model, this parameterization results in a lin-
ear regressor form so that least squares techniques can
be used to estimate an oversized parameter matrix.
Then, by recurring to Singular Value Decomposition
and rank reduction, optimal estimates of the param-
eter matrices characterizing the linear and nonlinear
parts can be obtained. For the Wiener model, the pa-
rameterization also results in a linear regressor from
where the parameters characterizing the linear and

1This is actually not a restriction, since it is clear that any
identification algorithm requires some degree of persistency of
excitation of the inputs. One can only identify the system modes
that are sufficiently excited by the input and that can be ob-
served from the output.

the nonlinear parts can be estimated using only least
squares techniques.

In comparison with other works, the proposed algo-
rithms have the following advantages: 1. They apply
to multivariable Hammerstein and Wiener models,
2. No special assumptions on the inputs, other than
the standard persistency of excitation conditions, are
required, 3. For the case of the Hammerstein model,
the algorithm provides consistent estimates even in the
presence of coloured noise, while for the Wiener model,
the algorithm provides consistent estimates only in the
noise free case.

The rest of the paper is organized as follows. In Sec-
tion II, the multivariable Hammerstein model is intro-
duced, the identification problem is formulated, and
the optimal identification algorithm is derived. The
same is done in Section III for multivariable Wiener
models. Simulation examples illustrating the perfor-
mance of the algorithms are presented in Section IV,
and finally, some concluding remarks are provided in
Section V.

II. HAMMERSTEIN MODEL
IDENTIFICATION

A. Problem Formulation

A (multivariable) Hammerstein model is schematically
represented in Fig. 1. The model consists of a zero-
memory nonlinear element N (·) in cascade with a
LTI system with transfer function (matrix)2G(q) ∈
Hm×n

2 (T). It is assumed that the measured output
yk contains an unknown additive noise component νk.
The input-output relationship is then given by

yk = G(q)N (uk) + νk, (1)

where yk ∈ R
m, uk ∈ R

n, and νk ∈ R
m, are the system

output, input, and measurement noise vectors at time
k, respectively. It will be assumed that the nonlinear
block can be described as

N (uk) =

r∑

i=1

aigi(uk), (2)

where gi(·) : R
n → R

n, (i = 1, · · · , r), are known (non-
linear) basis functions, and ai ∈ R

n×n, (i = 1, · · · , r),
are unknown matrix parameters. Typically, the non-
linear basis functions gi(·) are polynomials that al-
lows the representation of smooth nonlinearities3, but
they can also be Radial Basis Functions (RBF) or ba-
sis functions generated from a mother function (e.g.,
wavelets). It is not the intention of this paper to give

2Here, q stands for the forward shift operator defined by
qxk = xk+1, and Hm×n

2 (T) is the Hardy space of (m×n) trans-
fer matrices whose elements are in H2(T), the Hardy space of
functions that are square integrable on the unit circle T, and
analytic outside the unit disk. With some abuse of terminol-
ogy Hm×n

2 (T) will be referred as the space of all stable, causal,
discrete-time, (m × n) transfer matrices.

3Any smooth function in an interval can be represented with
arbitrary accuracy by a polynomial of sufficiently high order.



a complete overview of nonlinear approximation using
basis functions, and the reader is referred to the survey
papers (Sjöberg et al., 1995), (Juditsky et al., 1995),
and the references therein.
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Figure 1: Multivariable Hammerstein Model.

On the other hand, the LTI subsystem will be rep-
resented using rational orthonormal bases as follows

G(q) =

p−1∑

`=0

b`B`(q), (3)

where b` ∈ R
m×n are unknown matrix parameters,

and {B`(q)}
∞
`=0 are rational orthonormal bases4 on

H2(T).
The identification problem is to estimate the un-

known parameter matrices ai, (i = 1, · · · , r), and b`,
(` = 0, · · · , p − 1), characterizing the nonlinear and
the linear parts, respectively, from an N -point data set
{uk, yk}

N

k=1 of observed input-output measurements.

B. Identification Algorithm

Substituting equations (2) and (3) in (1), the input-
output relationship can be written as

yk =

(
p−1∑

`=0

b`B`(q)

)(
r∑

i=1

aigi(uk)

)
+ νk, (4)

=

p−1∑

`=0

r∑

i=1

b`aiB`(q)gi(uk) + νk. (5)

It is clear from equation (5) that the parameteriza-
tion (2)-(3) is not unique, since any parameter ma-
trices b`α and α−1ai, for some nonsingular matrix
α ∈ R

n×n, provide the same input-output equation
(5). In other words, any identification experiment can
not distinguish between the parameters (b`, ai) and(
b`α, α−1ai

)
. As it is common in the literature (Bai,

1998), these two sets of parameters will be called equiv-
alent. To obtain a one-to-one parameterization, i.e.
for the system to be identifiable, additional constrains
must be imposed on the parameters. A technique that
is often used to obtain uniqueness is to normalize the
parameter matrices ai (or b`), that is to assume for

4The bases are orthonormal in the sense that 〈B`,Bk〉 = δ`k,

where δ`k is the Kronecker delta, and 〈·, ·〉 is the standard inner
product in L2(T), defined as

〈B`,Bk〉 ,
1

2π

∫ π

−π

B`(e
jω)Bk(ejω)dω.

instance that ‖ai‖2 = 1 (or equivalently ‖b`‖2 = 1 ).
A similar methodology was employed in (Bai, 1998)
for a scalar Hammerstein-Wiener model. Under this
assumption the parameterization (2)-(3) is unique.

Defining now

θ = [b0a1, · · · , b0ar, · · · , bp−1a1, · · · , bp−1ar]
T
(6)

φk =
[
B0(q)g

T
1 (uk), · · · ,B0(q)g

T
r (uk), · · · ,

...

Bp−1(q)g
T
1 (uk), · · · ,Bp−1(q)g

T
r (uk)

]T
, (7)

equation (5) can be written as

yk = θT φk + νk, (8)

which is in linear regression form. Considering the N -
point data set, the last equation, and defining

YN , [y1, y2, · · · , yN ]
T

, (9)

VN , [ν1, ν2, · · · , νN ]
T

, (10)

ΦN , [φ1, φ2, · · · , φN ] , (11)

the following equation can be written

YN = ΦT
Nθ + VN . (12)

It is well known (Ljung, 1999) that the estimate θ̂

that minimizes a quadratic criterion on the prediction
errors εN = YN − ΦT

Nθ (that is, the least squares esti-
mate) is given by

θ̂ =
(
ΦNΦT

N

)−1
ΦNYN = Φ†

NYN , (13)

provided the indicated inverse exists5 (Ljung,
1999),(Södeström and Stoica, 1989).

The problem is how to estimate the parameter ma-
trices ai, (i = 1, · · · , r), and b`, (` = 0, · · · , p − 1)

from the estimate θ̂ in (13). From the definition of θ

in (6), it is easy to see that θ = blockvec (Θab), where
blockvec (Θab) is the block column matrix obtained by
stacking the block columns of Θab on top of each other,
and where Θab has been defined as

Θab =




aT
1 bT

0 aT
1 bT

1 · · · aT
1 bT

p−1

aT
2 bT

0 aT
2 bT

1 · · · aT
2 bT

p−1
...

... · · ·
...

aT
r bT

0 aT
r bT

1 · · · aT
r bT

p−1


 = abT , (14)

with the following definitions for the matrices a and b,

a = [a1, a2, · · · , ar]
T

, (15)

b =
[
bT
0 , bT

1 , · · · , bT
p−1

]T
. (16)

5The inverse exists, provided that the regressors φk are per-
sistently exciting (PE) in the sense that there exist some integer
`0, and positive constants α1 and α2 such that

α2I ≥

k0+`0∑

k=k0

φkφT
k ≥ α1I > 0.



An estimate Θ̂ab of the matrix Θab can then be ob-
tained from the estimate θ̂ in (13). The problem now
is how to estimate the parameter matrices a and b

from the estimate Θ̂ab. It is clear that the closest, in
the 2-norm 6 sense, estimates â and b̂ are such they
minimize the norm

∥∥∥Θ̂ab − âb̂T
∥∥∥

2

2
. (17)

That is,

(
â, b̂
)

= arg min
a,b

{∥∥∥Θ̂ab − abT
∥∥∥

2

2

}
. (18)

The solution to this optimization problem is provided
by the Singular Value Decomposition (SVD) (Golub

and Van Loan, 1989) of the matrix Θ̂ab. The result is
summarized in the following Theorem.

Theorem 1 Let Θ̂ab ∈ R
nr×mp have rank k > n, and

let the economy-size SVD of Θ̂ab be given by

Θ̂ab = UkΣkV T
k =

k∑

i=1

σiuiv
T
i (19)

where Σk is a diagonal matrix containing the k

nonzero singular values (σi, i = 1, · · · , k) of Θ̂ab

in nonincreasing order, and where the matrices
Uk =

[
u1 u2 · · · uk

]
∈ R

nr×k and Vk =[
v1 v2 · · · vk

]
∈ R

mp×k contain only the first k

columns of the unitary matrices U ∈ R
nr×nr and

V ∈ R
mp×mp provided by the full SVD of Θ̂ab,

Θ̂ab = UΣV T , (20)

respectively 7. Then, the matrices â ∈ R
nr×n and

b̂ ∈ R
mp×n that minimize the norm

∥∥∥Θ̂ab − abT
∥∥∥

2

2
,

are given by

(
â, b̂
)

= arg min
a,b

{∥∥∥Θ̂ab − abT
∥∥∥

2

2

}
= (U1, V1Σ1) ,

(21)
where U1 ∈ R

nr×n, V1 ∈ R
mp×n, and Σ1 =

diag {σ1, σ2, · · · , σn} are given by the following par-
tition of the economy-size SVD in (19),

Θ̂ab =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, (22)

6The 2-norm of a matrix A = (aij)(m×n) is the norm induced
by the 2-norm (or Euclidean norm) of vectors

‖A‖2 = sup
w 6=0

‖Aw‖2

‖w‖2

7In equation (20), the matrix Σ ∈ R
nr×mp is given by

Σ =

[
Σmp

0

]
; for nr ≥ mp,

or
Σ =

[
Σnr 0

]
; for nr ≤ mp.

and the approximation error is given by

∥∥∥Θ̂ab − âb̂T
∥∥∥

2

2
= σ2

n+1. (23)

Proof: See APPENDIX. �

Based on this result, the nonlinear identification algo-
rithm can then be summarized as follows.

Algorithm 1

Step 1: Compute the least squares estimate θ̂ as
in (13), and the matrix Θ̂ab such that

θ̂ = blockvec
(
Θ̂ab

)
. (24)

Step 2: Compute the economy-size SVD of Θ̂ab

as in Theorem 1, and the partition of this de-
composition as in equation (22).

Step 3: Compute the estimates of the parameter
matrices a and b as â = U1 and b̂ = V1Σ1, re-
spectively. �

An important issue in any identification method is that
of the consistency of the estimates, i.e. the conver-
gence of the estimated parameters to the true values
as the number of data points N tends to infinity. Sup-
pose that the real system belongs to the model class
(defined by equations (1)-(8)). Therefore, the observed
data have actually been generated by

yk = θT
0 φk + ν0

k , (25)

for some sequence
{
ν0

k

}
, where θ0 can be considered as

the true parameter vector. Since the regressors φk de-
pend only on past inputs, then they are uncorrelated
from the noise. It is well known (Ljung, 1999) that,

under these conditions, the least squares estimate θ̂

is strongly consistent, in the sense that θ̂ converges
(with probability one) to θ0 as N → ∞, under the as-
sumption on persistency of excitation of the regressors.
Moreover, the consistency of the estimate θ̂ holds even
in the presence of coloured noise. The convergence of
the estimate θ̂ implies that of â and b̂. The result is
summarized in the following Theorem.

Theorem 2 Let â and b̂ be computed using the iden-
tification Algorithm 1. Then, under the uniqueness
condition, and the assumption on persistency of ex-
citation of the regressors, â

a.s.
−→ a, and b̂

a.s.
−→ b as N

tends to infinity. The result holds even in the presence
of coloured noise.

Proof: See APPENDIX. �

III. WIENER MODEL IDENTIFICATION

A. Problem Formulation

A (multivariable) Wiener model is schematically de-
picted in Fig. 2. The model consists of the cas-
cade of a LTI system with transfer function (matrix)
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Figure 2: Multivariable Wiener Model.

G(z) ∈ Hm×n
2 (T), followed by a zero-memory nonlin-

ear element with input-output characteristic given by
N (·). In this case, yk ∈ R

m, uk ∈ R
n, and νk ∈ R

m,
represent the system output, input, and process noise
vectors at time k, respectively.

As in the case of Hammerstein models, it will be
assumed that the LTI subsystem is represented as an
orthonormal basis expansion of the form (3). On the
other hand, the nonlinear function N (·) : R

m → R
m

will be assumed to be invertible8,9, and that its inverse
N−1(·) can be described as

N−1(yk) =

r∑

i=1

aigi(yk) (26)

where gi(·) : R
m → R

m, (i = 1, · · · , r), are known
basis functions, and ai ∈ R

m×m, (i = 1, · · · , r), are
unknown matrix parameters. Without loss of gener-
ality, it will also be assumed that a1 = Im, with Im

standing for the identity matrix of dimensions (m×m).

The identification problem is to estimate the un-
known parameter matrices ai, (i = 2, · · · , r), and b`,
(` = 0, · · · , p − 1), characterizing the nonlinear and
the linear parts, respectively, from an N -point data set
{uk, yk}

N

k=1 of observed input-output measurements.

B. Identification Algorithm

The intermediate variable vk in Fig. 2, can be written
as

vk = G(q)uk + νk, (27)

and also as

vk = N−1(yk). (28)

Equating the right hand sides of the above two equa-
tions, and considering the parameterizations (3) and
(26) of the linear and the nonlinear subsystems, re-
spectively, the following equation is obtained

g1(yk) = −
r∑

i=2

aigi(yk) +

p−1∑

`=0

b`B`(q)uk + νk, (29)

8As pointed out in (Pearson and Pottmann, 2000), this rules
out the use of the proposed identification algorithm for processes
in which the phenomenom of input multiplicity is present (see
next footnote).

9Input Multiplicity is the situation in which more than one
steady-state input value uss corresponds to the same steady-
state output value yss.

which is a linear regression. Defining

θ , [a2, a3, · · · , ar, b0, b1, · · · , bp−1]
T

, (30)

φk ,
[
−gT

2 (yk),−gT
3 (yk), · · · ,−gT

r (yk),

B0(q)u
T
k ,B1(q)u

T
k , · · · ,Bp−1(q)u

T
k

]T
,(31)

equation (29) can be written as

g1(yk) = θT φk + νk. (32)

Now, an estimate θ̂ of θ can be computed by mini-
mizing a quadratic criterion on the prediction errors
εk = g1(yk) − θT φk (i.e., the least squares estimate).
It is well known (Ljung, 1999) that this estimate is
given by10

θ̂ =
(
ΦNΦT

N

)−1
ΦNYN = Φ†

NYN , (33)

where the following definitions have been made

YN , [g1(y1), g1(y2), · · · , g1(yN )]
T

, (34)

VN , [ν1, ν2, · · · , νN ]
T

, (35)

ΦN , [φ1, φ2, · · · , φN ] . (36)

Now, estimates of the parameters ai, (i = 2, · · · , r),
and b`, (` = 0, · · · , p − 1), can be computed by parti-

tioning the estimate θ̂ in (33), according to the defini-
tion of θ in (30).

In this case, the consistency of the estimate θ̂ in
(33), can only be guaranteed in the noise free case,
since in the presence of noise the regressors {φk} at
time k will be correlated with the disturbances {νk}
at the same instant, even if the disturbance is a white
noise process (Ljung, 1999).

IV. SIMULATION EXAMPLES

The performance of the proposed identification algo-
rithms is illustrated through two simulation examples.

Example 1 (Hammerstein model)
The nonlinear true system consists of a third order
linear discrete system with transfer function

G(z) =
z2 + 0.7z − 1.5

z3 + 0.9z2 + 0.15z + 0.002
, (37)

preceded by a static nonlinearity described by a fourth
order polynomial of the form

N (uk) = 0.8585uk + 0.0149u2
k − 0.5113u3

k − 0.0263u4
k.

(38)
The nonlinear characteristic is shown as curve A (solid
line) in Fig. 3. The system was excited with the input

uk = sin(0.0005πk) + 0.5 sin(0.0015πk)

+ 0.3 sin(0.0025πk)

+ 0.1 sin(0.0035πk) + γk, (39)

10Provided the indicated inverse exists.
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Figure 3: True (Curve A: solid line) and Estimated
(Curve B: dashed line) nonlinear characteristic (indis-
tinguishable one from the other).

where γk is a zero mean white Gaussian process with
variance 10−6, and the output was corrupted with
zero-mean coloured noise with spectrum Φν(ω) =

0.64×10−8

1.2−0.4 cos(ω) .

For the purposes of identification, the linear subsys-
tem was represented using the rational Orthonormal
Bases with Fixed Poles (OBFP) studied in (Ninness
and Gustafsson, 1997),(Gómez, 1998), that have the
more common FIR, Laguerre (Wahlberg, 1991), and
Kautz (Wahlberg, 1994) bases as special cases. The
bases are defined as

B0(q) =

√
1 − |ξ0|

2

q − ξ0
,

B`(q) =




√
1 − |ξ`|

2

q − ξ`




`−1∏

i=0

(
1 − ξiq

q − ξi

)
, ` ≥ 1,

and they allow prior knowledge about an arbitrary
number of system modes to be incorporated in the
identification process.

In this example, the poles of the bases were chosen at
{−0.01,−0.2,−0.7}, so that a third order linear model
was identified. The estimated transfer function was
(compare with the true transfer function (37))

Ĝ(z) =
1.0034z2 + 0.6941z − 1.4967

z3 + 0.91z2 + 0.149z + 0.0014
.

On the other hand, a fourth order polynomial was used
to represent the nonlinear part of the model. The es-
timated nonlinear model was (compare with the true
nonlinearity (38))

N̂ (uk) = 0.8591uk − 0.0147u2
k − 0.5110u3

k − 0.0263u4
k.

The estimated nonlinear characteristic is represented
as curve B (dashed line) in Fig. 3. Finally, the mea-
sured (solid line) and estimated (dashed line) outputs

are represented in Fig. 4, where a good agreement be-
tween them can be observed (they are almost indistin-
guishable one from the other).
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Figure 4: Measured (solid line) and Estimated (dashed
line) Outputs.

Example 2 (pH Neutralization Process)
In this example, a Wiener model is identified based
on the simulation data of a pH neutralization process.
The process consists of an acid (HNO3) stream, a base
(NaOH) stream, and a buffer (NaHCO3) stream that
are mixed in a constant volume (V ) stirring tank. The
process is schematically depicted in Fig. 5, and cor-
responds to a bench-scale plant at the University of
California, Santa Barbara (see (Henson and Seborg,
1992), (Henson and Seborg, 1994), (Henson and Se-
borg, 1997)).

PSfrag replacements

base (u1)buffer (u2)

effluent solution

acid (u3)

pH (y)

pHV

Figure 5: Schematic representation of the pH neutral-
ization process.

The inputs to the system are the base flow rate (u1)
and the buffer flow rate (u2), while the output (y) is
the pH of the effluent solution in the tank. The acid
flow rate (u3), as well as the volume (V ) of the tank are
assumed to be constant. A simulation model, based
on first principles, is derived in (Henson and Seborg,
1992) introducing two reaction invariants for each in-
let stream ((Wa1,Wb1) for the base stream, (Wa2,Wb2)



for the buffer stream, (Wa3,Wb3) for the acid stream,
and (Wa,Wb) for the effluent solution). The dynamic
model for the reaction invariants of the effluent solu-
tion (Wa,Wb), in state-space form, is given by:

ẋ = f(x) + g(x)u1 + p(x)u2, (40)

h(x, y) = 0, (41)

where

x , [x1, x2]
T

= [Wa,Wb]
T

,

f(x) =
[u3

V
(Wa3 − x1),

u3

V
(Wb3 − x2)

]T
,

g(x) =

[
1

V
(Wa1 − x1),

1

V
(Wb1 − x2)

]T

,

p(x) =

[
1

V
(Wa2 − x1),

1

V
(Wb2 − x2)

]T

,

h(x, y) = x1 + 10y−14 − 10−y

+ x2
1 + 2 × 10y−pK2

1 + 10pK1−y + 10y−pK2

.

The nominal operating conditions of the system are
given in (Henson and Seborg, 1992), (Henson and Se-
borg, 1994), (Henson and Seborg, 1997).

For the purposes of identification, the model was ex-
cited with band limited white noise around the nomi-
nal values of the base and buffer flow rates. The first
six hundred data were used for the estimation of the
model, while the following five hundred data were used
for validation purposes. The linear subsystem was rep-
resented using the same rational Orthonormal Bases
with Fixed Poles (OBFP) as in the previous exam-
ple, with poles at {0.978, 0.9897, 0.9897, 0.99, 0.9784},
while a third order polynomial was used to represent
the nonlinear part of the model. The true and esti-
mated output (estimation-validation data) are repre-
sented in the top plot of Fig. 6, where a good agree-
ment between them can be observed. The estimated
nonlinear characteristic is represented in the bottom
plot of Fig. 6.

V. CONCLUDING REMARKS

In this paper, noniterative methods for the identifi-
cation of multivariable Hammerstein and Wiener sys-
tems have been presented. The proposed algorithms
are numerically robust, since they rely only on LSE
and SVD. For the case of the Hammerstein model, the
algorithm provides consistent estimates under weak as-
sumptions on the persistency of excitation of the in-
puts, even in the presence of coloured noise. For the
case of the Wiener model, consistency of the estimates
can be guaranteed only for the noise free case. The key
issue in the derivation of the results is the representa-
tion of the linear part of the system using orthonormal
basis functions which allows to put the system in lin-
ear regressor form. In addition, the use of rational
orthonormal bases allows a priori information one can
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Figure 6: Top plot: True (solid line) and Estimated
(dashed line) Output (Estimation-Validation Data).
Bottom plot: Estimated nonlinear characteristic.

have about the dominant dynamics of the system, to
be incorporated in the identification process, to im-
prove the estimation accuracy.

REFERENCES

Bai, E.-W., “An optimal two-stage identification algorithm
for Hammerstein-Wiener nonlinear systems”, Automat-

ica, 34(3), 333–338 (1998).

Billings, S., “Identification of nonlinear systems - A sur-
vey”, Proc. of IEE, Part D, 127, 272–285 (1980).

Billings, S. and S. Fakhouri, “Identification of systems con-
taining linear dynamic and static nonlinear elements”,
Automatica, 18(1), 15–26 (1982).

Chou, C., H. Bloemen, V. Verdult, T. van den Boom, T.
Backx, and M. Verhaegen. “Nonlinear identification of
high purity distillation columns”. In Proc. of the IFAC

Symposium on System Identification SYSID 2000, 415–
420, Santa Barbara, CA (2000).

Eskinat, E., S. Johnson, and W. Luyben, “Use of Ham-
merstein models in identification of nonlinear systems”,
AIChE Journal, 37(2), 255–268 (1991).

Fruzzetti, K., A. Palazoglu, and K. McDonald, “Nonlinear
model predictive control using Hammerstein models”,
Journal of Process Control, 7(1), 31–41 (1997).

Golub, G. and C. Van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, 2nd edition
(1989).
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APPENDIX

Proof of Theorem 1 Let the Singular Value De-
composition of the matrix Θ̂ab ∈ R

nr×mp be given by

Θ̂ab =

k∑

i=1

σiuiv
T
i , (42)

where k is the rank of Θ̂ab. Appealing to Theorem
2.5.2 in (Golub and Van Loan, 1989), the rank-n ma-
trix Θ ∈ R

nr×mp (n < k) which is closest, in the 2-

norm sense, to Θ̂ab is given by

Θ = Θn ,

n∑

i=1

σiuiv
T
i , (43)

and the approximation error is given by

∥∥∥Θ̂ab − Θn

∥∥∥
2

2
= σ2

n+1. (44)

Considering now the partition of the economy-size
SVD of Θ̂ab in (22), it is clear that

Θn = U1Σ1V
T
1 = (U1) (V1Σ1)

T
,

what concludes the proof, by equating â = U1 and
b̂ = V1Σ1 . �

Proof of Theorem 2 The convergence of the esti-
mate θ̂ in (13) implies that Θ̂ab → Θab with probabil-

ity one as N tends to infinity (denoted Θ̂ab
a.s.
−→ Θab).

Noting now that

∥∥∥âb̂T − abT
∥∥∥

2

2
=

∥∥∥âb̂T − Θ̂ab + Θ̂ab − Θab

∥∥∥
2

2
,

≤
∥∥∥âb̂T − Θ̂ab

∥∥∥
2

2
+
∥∥∥Θ̂ab − Θab

∥∥∥
2

2
,

= σ2
n+1 +

∥∥∥Θ̂ab − Θab

∥∥∥
2

2
, (45)

and taking into account that Θab is a rank n matrix,
then ∥∥∥âb̂T − abT

∥∥∥
2

2

a.s.
−→ 0

as N tends to infinity. Now, from the uniqueness of the
decomposition abT , it can be concluded that â

a.s.
−→ a,

and b̂
a.s.
−→ b as N tends to infinity, what concludes the

proof. �


