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Abstract— In this paper, we prove the exis-
tence of norm-estimators for switched nonlin-
ear systems. The proof is based on an existing
converse Lyapunov theorem for IOSS nonlinear
systems, and on the association of the switched
system with a nonlinear system with inputs and
disturbances that take values in a compact set.
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I. INTRODUCTION

Recently, the study of switched systems has received
a great deal of attention, being the rapidly develop-
ing area of intelligent control an important source of
motivation for this study. Informally, a switched sys-
tem is a family of continuous-time dynamical subsys-
tems and a rule that determines the switching between
them. The recent paper (Liberzon and Morse, 1999)
is a very interesting survey on the subject, where an
updated account of results and open problems may be
found.

This paper concerns itself with the following ques-
tion, for a switched system: is it possible to estimate,
based on external information provided by past input
and output signals, the magnitude of the internal state
x(t) at time t?

State estimation is central to control theory as it
arises in signal processing applications (Kalman fil-
ters), in stabilization based on partial information (ob-
servers), etc. An open question is the derivation of use-
ful necessary and sufficient conditions for the existence
of observers, i. e., dynamical systems which provide
an estimate Z(¢) which converges to the state x(t) of
the system of interest, using the information provided
by the sets of past inputs and outputs, {u(7), 7 < t}
and {y(r), T < t} respectively. In order to stabilize
a system to an equilibrium (that we will assume with
no loss of generality to be the origin) of an Euclidean
space, it may suffice to have a norm-estimate, that is
to say, an upper bound &(¢) on the magnitude (norm)
|z(t)| of the state z(t). Indeed, it is often the case
(Jiang and Praly, 1992; Praly and Wang, 1996) that
norm-estimates suffice for control applications. To be

more precise, in the context of switched systems, one
wishes that Z(t) becomes an upper bound of |z(?)|
as t — oo uniformly with respect to the switching
signal (see next section for precise definitions). We
are thus interested in uniform norm-estimators which,
when driven by the input-output data generated by a
switched system, produce such an upper bound Z(t)
irrespectively of the switching signal.

One obvious necessary property for the possibility of
norm-estimation is that the origin must be uniformly
(with respect to the switching signal) globally asymp-
totically stable with respect to the “subsystem” con-
sisting of those states for which the input u = 0 pro-
duces the output y = 0. In this case the switched sys-
tem is wniformly zero-detectable. However this prop-
erty is not sufficient, since one should ask that, ir-
respectively of the switching signal, when inputs and
outputs are small, states should also be small, and if
inputs and outputs converge to zero as t — 00, states
do too.

On the other hand, the notion of input-output-to-
state stability (I0SS), introduced by Sontag and Wang
(1997) for a system
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resulted in an useful paradigm in the study of nonlin-
ear detectability. In that paper the authors describe
relationships between the existence of full state ob-
servers and the IOSS property.

In a recent paper Krichman et al. (2001) proved
that system (1) is IOSS if and only if it admits a norm
estimator (in a sense that will be made precise in Sec-
tion 4). This result suggests that, for our purposes,
the right notion of detectability is the generalization
of the IOSS property to switched systems.

Since in (Krichman et al., 2001) it was also shown
that this result is, in turn, a consequence of a necessary
and sufficient characterization of the IOSS property in
terms of a smooth dissipation function (an uniform
I0SS Lyapunov function), the problem that naturally
appears in our context may be stated as follows: given
a switched system with outputs whose component sub-
systems are each IOSS, find necessary and sufficient
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conditions for the IOSS of the switched system, uni-
formly with respect to the switching signals.

It can be easily shown that the sufficient conditions
for TOSS of system (1) established by Krichman et al.
(2001) carry over with little changes to the switched
system. In fact, the existence of a common IOSS
Lyapunov function implies that the switched system
is IOSS for arbitrary switching, and that a norm-
estimator for this system exists.

The question of the validity of the converse, that
arises naturally as a byproduct of the question of the
existence of the norm-estimator, originates the prob-
lem of the existence of such Lyapunov function, i.e.,
of the existence of a converse Lyapunov theorem.

In this paper we obtain a converse Lyapunov the-
orem for a certain class of switched nonlinear sys-
tems. This theorem is in the spirit of the converse ones
for asymptotic stability, input-to-state stability (ISS)
and integral input-to-state stability (iISS) of switched
nonlinear systems obtained in (Mancilla Aguilar and
Garcia, 2000) and (Mancilla Aguilar and Garcia, 2001)
respectively, since we also suppose that the index set
is not endowed a priori with any topology. Follow-
ing the ideas there developed, we base our approach
on the association of the switched nonlinear system
with a perturbed control system whose disturbances
take values in a compact set. Once this association
is performed, we obtain a straightforward proof of the
converse theorem above by extending the results about
I0SS obtained in (Krichman et al., 2001).

The outline of the paper is as follows. In sec-
tion II we give the basic definitions including those of
switched system, uniform input-output-to-state stabil-
ity (UIOSS), uniform input-output-to-state-stability
Lyapunov functions, etc. In section III we associate
a perturbed control system with outputs whose dis-
turbances take values in a compact set, with a class
of switched nonlinear systems, and based on this asso-
ciation we prove the converse Lyapunov theorem. In
section IV we introduce the notion of norm-estimator,
and prove its existence for that class of switched non-
linear systems. Finally, in section V we present some
conclusions.

II. SWITCHED SYSTEMS AND UIOSS

Here we introduce some notations and definitions that
will be used in the sequel. We denote with IR™ the
usual n-dimensional Euclidean space, and with | - |
its Euclidean norm. BI' C IR™ stands for the closed
ball of radius r around the origin in IR™. The set
of measurable locally essentially bounded functions
w : [0, 4+00) — IR™ is denoted by L7 ; for each t > 0
and each w € L} . we denote with w; the truncation
of w at t, i.e., we(7) = w(7) if 7 < t, and wy(1) =0
if 7> t, and ||wy|| = ess sup {|w(7)|,0 < 7 < t}.

Following standard terminology (Hahn, 1965), a con-
tinuous function « : [0,T) — IR is positive definite if
a(0) = 0 and a(r) > 0 whenever r > 0, and is of class

K if in addition it is strictly increasing. A Ko-class
function « is a function of class K, defined in [0, +00)
that verifies lim,_, ;o a(r) = +00. A continuous func-
tion B : [0,+00) X [0,4+00) — [0,+00) is a KL-class
function if for any fixed ¢, (-, t) is of class K, and for
a fixed r, B(r,-) is decreasing and lim;_,4 o, 8(7,t) = 0.

Let the family P = {(fs(z,u), h(z)), fo : R™ x
R™ -+ R",0 €T, h: R* — IR}, where I is an in-
dex set and f, are locally Lispchitz, f,(0,0) = 0Vo €
I and the fized output function h, is of class C! and
h(0) = 0.

We will assume in the sequel, with no loss of general-
ity, that there is a one to one correspondence between
the elements of I and the pairs of P, i.e., given o # ¢’
elements of T', then (f,, h) # (fr, h). Given the family
P, we consider the switched system with outputs

{ i(t) = fule()ul) &)
y(t) = h(z(t)),
where z € R", u € L . and s is a switching signal,

i.e., s is a piecewise constant function s : [0, +00) — T;
we will denote by S the family of the switching sig-
nals of a given switched system. Associated with
each s € &S there is a sequence of real numbers
0 =t < t1 < -+ < tr < --- and a sequence
of indexes 09,01, - ,0k,-- such that s(t) = oy, for
all t < t < tgy1. We recall that a trajectory of
(2) corresponding to s € S, u € L7, , and originat-
ing from £ € IR™, is a locally absolutely continu-
ous curve 1 : [0,7) — IR™, such that n(0) = £ and
1(t) = fo, (n(t),u(t)) a.e.t € [t tp41) N[0, T). Then,
since the members of P are locally Lipschitz, for each
s € &, each initial condition £ € IR™ and each con-
trol u € L . there exists a unique maximally defined
trajectory corresponding to s, & and u. We denote
this curve and its maximal interval of definition by
z(t,€,u, ) and [0,T¢, ) respectively. We will also use
the notation y(t,&,u,s) := h(z(t,£,u,s)), and, when
clear from the context, we will write y(t) instead of
y(t, & u, s).

Definition IL1 The system (2) is uniformly (with re-
spect to s € S) input-output-to-state stable, (UIOSS) if
there exist a X L-function 5 and KC-functions 1 and 7
such that, for each input u € L7 . and each § € R",
it holds that

l2(t, €, u, s)| < max{B([&], ), v ([[ael]), v2(llgel )} (3)
for each t € [0,7¢,, ,) and for all s € S.

It follows from the definition above that a necessary,
but not sufficient, condition for the UIOSS of the
switched system (2) is each subsystem
{ i(t) = folx(t),u(t))
y(t) = h(xz()),
of the family P be I0SS.

In order to establish sufficient conditions for the
UIOSS of (2), we introduce the following:



Definition II2 A positive definite radially un-
bounded smooth (C*°) function V' : IR® — IR>¢ is a
common I0SS-Lyapunov function for P if there exists
a Kso-function o and two K-functions x and v that
verify:

VV (&) fa (& u) < —a(lg]) + x(Jul) +y(hE))  (4)
forall( e R", 0 €' and u € R™.

As pointed out in the Introduction, it can be eas-
ily shown, with similar arguments to those used in
(Krichman et al., 2001), that the existence of a com-
mon IOSS-Lyapunov function V for P assures that the
system (2) is UIOSS, i.e.,

Theorem II1 Suppose that there exists a common
IOSS Lyapunov function for P. Then the system (2)
is UIOSS.

IIT. A CONVERSE LYAPUNOV
THEOREM

The question naturally arises whether the converse to
Theorem II1 holds.
In order to assure the existence of a common I0SS-
Lyapunov function for P, we consider the family P*
of mappings associated with P, P* = {f, : (f5,h) €
P} and assume that this family verifies the following
condition:

C The family P* is uniformly locally Lipschitz, i.e.,
for each N € IN there exists Iy > 0 such that

|fo(z,u) = fo(z' u)| <In(lz—2'| + |u—u'|)

for all (z,u), (' ,v') € By x Bt and all o € T
The main theorem of this paper may be stated as
follows:

Theorem III1 Suppose P* satisfies C. Then if
system (2) is UIOSS there exists a common IOSS-
Lyapunov function V' for P.

The following result will be useful in the proof of The-
orem III1, since it establishes the connection between
switched systems and perturbed controlled nonlinear
systems.

Theorem III2 Suppose P* verifies C. Then there
exist a compact metric space D, an injective function
t:T'— D and a continuous function F : R" x IR™ x
D — IR™ such that:

1. () is dense in D.

2. F(x,u,d) is locally Lipschitz on (x, u) uniformly
on d, i.e., for each compact subset K of IR™ x IR™
there is some constant cx so that |F(z,u,d) —
F(2',u',d)| < ex(lz — 2'| + |u — u']), for all
(z,u),(z',u") € K,and all d € D.

3. F(z,u,(0)) = fo(z,u) for all x € R", all u €
IR™ and all o € T.

Proof: Since the family P* is equibounded due to
the condition C and to the fact that f,(0,0) = 0 for
all ¢ € T', the theorem can be proved following the
same steps of the proof of Theorem 3.2 of Mancilla
Aguilar and Garcia, (2000). ]

Remark IIL1 It is clear that when I is a finite set
the family P* satisfies C. In this case we can take D =
I" endowed with the discrete metric, ¢ the identity map
and F(z,u,0) = fy(x,u) for all x € R"™, all u € R™
and all 0 €T

Consider F, D and ¢ as in Theorem III2. We denote
with D = {d : [0,00) — D, d measurable} and with
Dr C D the subset of elements of D that are piecewise
constant ¢(I')-valued functions, and associate to the
switched system (2) the following perturbed control
system with outputs:

{z.(t) = F(z(t),u(t),d()), (5)
y() = h(z(t)

where the state z evolves in IR™, the output y in IRP,
the control u belongs to L7 . and the disturbance d
to D.

Given { € R", u € LY, and d € D, if we denote
with z(¢,&,u,d) the maximally defined trajectory of
(5) originating from £ with control u and disturbance
d, and with [0, T¢, 4) its maximal interval of definition
then, as consequence of Theorem III2, the following
hold:

e For each s € S, if d; = v o s, then d; € Dr,
Téu’ds =77 . and z(-, & u,s8) = 2(-,&,u,dy).
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e For each d € Dr, there exists a unique switching
signal sq such that 1o sq = d.

Remark ITI2 We conclude from Theorem III2 that
a switched system with outputs whose associated fam-
ily P* verifies C can be considered as a perturbed con-
trol system with outputs whose disturbances are piece-
wise constant functions that take values in a dense
subset of a compact metric space D.

The following result will be used in the sequel:

Proposition II11 Suppose that £ € R", u € L,
and d € D and let {d, : n € IN} C D such that
lim, 00 dn(7) = d(7) a.e. Then if 2(-, &, u,d) is de-
fined on [0, ], (-, &, u,d;,) is also defined on [0, ¢] for n
large enough and, in addition, lim,, 2(7, &, u,d,) =
z(1,&,u,d) for all 7 € [0, ¢].

Proof: It follows with arguments similar to those in
the proof of Proposition 3.1 in (Mancilla Aguilar and
Garcia, 2000). |

In the following lemma we show that the perturbed
control system (5) has the same stability properties as
the switched system (2).



Lemma ITL1 Suppose the family P* verifies C. If
the switched system (2) is UIOSS, then the perturbed
control system (5) is uniformly (with respect to d € D)
I0SS, i.e., there exist a function 8 of class KL and
functions y; and s of class K such that, for each input
u € LY . and each initial state £ € IR™, it holds that

|2(t,€,u,d)| < max{B([¢], 1), 71 ([luel]), v2(llwel )}, (6)
forallt € [0,T¢, 4) and alld € D.

Proof: Suppose that { € R",u € L, and d € D.
Due to the density of «(T') in D, there exists a sequence
{sn:n €N} C Ssuchthatd, =t0s, = d a.e. (see
(Mancilla Aguilar and Garcia, 2000) for details).

Let ¢ such that z(7,&,u,d) is defined for all 7 €
[0,£]. Then due to Proposition III1, for all 7 €
[0,%], limp—y00 2(7, &, 1, 8p) = limp o0 2(7,&,u,dy) =
z(1, & u,d).

If (3) holds, then |2(t, &, u,d)| = lim, o0 |2(, &, 1, 84,)|

< max{B([¢], ), v (llel]), v2([lyel)}-

Remark ITLI3 We recall that a positive definite radi-
ally unbounded C! function V' : IR" — IR is an UIOSS-
Lyapunov function for system (5) if there exist a func-
tion « of class Ky and two functions x and v of class
K verifying:

VV(F (& u,d) < =p([¢]) + v ([R(E)]) + x(|ul)

for all £ € R", all d € D and all u € IR™.

It follows that if C holds for the family P*, then V'
is an UIOSS-Lyapunov function for system (5) with p
and x as above if and only if it is a common IOSS-
Lyapunov function for P.

Due to this last remark, Theorem III1 is a corollary
of the following:

Theorem IIL3 Suppose system (5) is UIOSS. Then
there exist a smooth UIOSS-Lyapunov function for it.

Proof:

Since system (5) is UIOSS then, due to Theorem 1 in
Krichman et al., 2001, (which holds, with minor modi-
fications of its proof if the disturbance set is a compact
metric space instead of [—-1,1]?, p € IN), there exists
a smooth UIOSS-Lyapunov function for (5). ]

IV. NORM-ESTIMATORS

In this section we prove that the existence of a common
I0SS Lyapunov function for the family P implies the
existence of a norm-estimator for the switched system
(2) in the following sense.

Definition IV.1 A (uniform with respect to the
switching signal) state norm-estimator for a switched
system (2) (briefly, a norm-estimator for (2)) is a pair
(3, p), where p is a function of class K and ¥ is a
system

Y 9=g(p,u,y) (7)

evolving in IR! and driven by the controls and outputs
of (2), such that the following conditions are satisfied:
e g: R x R™ x R? — IR' is continuous and locally
Lispchitz on ¢ uniformly on (u,y).

e There exist K-functions 4; and 42 and a function
B of class KL such that for any initial state ¢ € IR!,
all inputs u € LY . and y € L%, ., and any ¢ in the
interval of definition of the solution ¢(-,{,u,y), the
following holds:

l(t, ¢, y)| < BUCL ) + A (luell) + Ao (llyell),  (8)

that is, (7) is ISS with respect to u and y (considered
as inputs).
e There is a function 8 € KL such that, for any pair
of initial states £ and ¢ of (2) and (7) respectively, any
control u € L7 , and any switching signal s € S, it
holds that

|z(¢,€,u, 8)| < BEI+CI, 1) +p(lo(E, ¢ us Yeu,s)]) (9)

for all t € [0,T¢,, ;)), where y¢ u,s denotes the output

trajectory of (2), that is, y(t, &, u, s).

A. Construction of a norm-estimator for (2)

In order to construct a norm-estimator for (2), we need
the following lemma whose proof is similar to the one
of Lemma 5.2 of (Krichman et al., 2001)

Lemma IV.1 Suppose V is a common IOSS-
Lyapunov function for P. Then there exists a Keo-
function 6 and K - functions y; and x2 such that the
function W = oV : R™ — IR> is of class C*, positive
definite, radially unbounded and verifies

VW (§).fo (& u) < =W(E) +xa(lul) +x2(|R(§)]) (10)
forall e R",ue€ R™ and o €T.
The norm-observer is then obtained as follows.

Theorem IV.1 Suppose that P* verifies condition
C. Then, if the switched system (2) is UIOSS, it ad-
mits a norm-estimator.

Proof: From Theorem III1 and Lemma IV.1 there
exists a positive definite and radially unbounded func-
tion W of class C! that verifies (10). Due to the posi-
tive definiteness and radial unboundedness of W, there
exist K-functions o and as such that

ar(|€]) < W (&) < az([¢]) (11)

for all £ € IR". We assume, with no loss of generality
that 7 < an(r) for all r > 0.
Consider the system X
L ¢o=—p+xa(lu]) + x2(ly)), (12)
with x1 and x» as in (10).
Since system (12) is ISS with respect to v and y, (it
can be seen as an exponentially stable linear system



driven by the “input” (x1(Ju|), x2(|y|))), the inequality
(8) trivially holds.

Let any initial states £ and ¢ of (2) and (12) respec-
tively, any control u € L . and any switching signal
s € 8, and consider the resulting trajectory (z(t), ¢(t))
of the composite system

fs(2(), u(t)?

=) + xa([u@®)]) + xa(|h(=($))])

with initial condition (x(0),¢(0)) = (£,¢). It is easy
to see that the maximal interval of definition of this
trajectory is [0, T¢,, ,); then, due to property (10), we
have

a.e.t €[0,T¢, ). Then,

W (x(t)) = o(t)

W) -0 =
W(xz(t)) < e

(O] + e (a2(lg]) +1¢]) <
e (aa(€]) + a(¢])
o (®)] + 2e " aa (€] + 1¢]),

since r < as(r) and az(r) + az(s) < 2aq(r + s) for all
r,s > 0. Then, and due to (11),

|l2(®)] < ap ' (W (2(t))
<oy (Je(®)] + 2 ax(lg] + 1))
<ar' 2let)]) + o1 (de o (€] + <)),

P (@)

IN + INIA

as a;'(r +s) < al_l(r)+oz1_1( ) for all r,s > 0.
Finally, if we take p(s) = aj'(2s) and f(s, t) =
a7t (detas(s)), p is of class Koo, B is of class KL
and

lz(8)] < B(EN+ IC], ) + plep(®)]);

in consequence (9) holds and the proposed pair is a
norm-estimator for (2). §

V. CONCLUSIONS

In this paper we have proved the existence of a norm-
estimator for a certain class of IOSS switched systems
as a byproduct of a converse Lyapunov theorem for
this class of IOSS systems. The proof of the theorem
is based on the association of these system with per-
turbed nonlinear control systems, and on simple gen-
eralizations of results on a converse Lyapunov theorem
for IOSS systems with bounded time-varying pertur-
bations.
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