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Abstract– In this paper a method for
continuous-time identification for the class of
moored semisubmersible marine systems based
on totally measured states is presented. The
exponential convergence of parameter trajecto-
ries is analyzed in the context of conditions for
persistency of excitation (PE). A regression for
the estimator is constructed containing generi-
cally 312 parameters to be identified. The pre-
sented analysis has revealed that the regres-
sor must expand a space of only 24 dimensions
instead of 312 for unbiased estimates. Under
monochromatic excitation, PE conditions are
expected to be satisfied only in chaotic behav-
iors. A case study of a real moored crane-
platform is modelled and simulated to verify
such conditions.
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I. INTRODUCTION

The increasingly growing complexity in ocean opera-
tions and design of marine structures and vehicles, im-
poses the necessity of modern methods and tools for
stability analysis and control tasks. An important ex-
ponent of these systems constitutes the class of moored
semisubmersible structures (platforms, barges, tanks,
buoys, among others), which are set up for operations
in harbors and offshore.
Moored marine structures are often characterized by

transitions from linear to nonlinear behaviors under
certain wave conditions, which make the operation to
become unpredictable (Kreuzer, 1993; Dmitrieva and
Lougovsky, 1997). In extreme cases such a nonlinear
response can turn into chaos and may cause the float-
ing structure to capsize. From practical viewpoints,
small and large chaotic oscillations or subharmonics
have to be avoided and controlled in order to attain
safe and foreseen operations. On the other hand, they
constitute one way to provide a good excitation for
parameter estimation. In other words, bifurcations

are undesired in the behaviour (and so control is re-
quested) but beneficial for identification. As many
physical parameter are slowly varying in time, con-
trol actions have to be intended in an adaptive way.
The design of a generic adaptive law and its analysis
for a case study is the chief matter in this paper.

A semisubmersible can be considered as a multibody
system composed by subsystems interacting each one
with the rest, e.g., platform, mooring lines and load.
The excitation sources result from waves, wind and
currents. Physical parameters of interest are wave
height, frequency, wave number, platform and load
masses, active lengths of catenaries among others.

The use of modern tools for stability analysis, like
Lyapunov coefficient diagrams and bifurcation the-
ory, requires a detailed analytical model of the sys-
tem, what in turns means, a precise knowledge of the
physical parameters and model structure. Related
with them are the hydrodynamic coefficients which
are of pure mathematical provenience, but they play
an important role in the determination of bifurcations
(Kreuzer et al., 2002).

The hydrodynamics of a semisubmersible is based on
the Potential Theory for diffraction and reflection of
waves. These methods use finite elements for comput-
ing the efforts of the fluid interaction with wet parts
of the platform and are available in commercial pro-
grams. Usually, the results of the stability analysis
have to be confronted with experimental results car-
ried out in laboratories with reduced-scale models at
relative high costs.

An alternative to the use of dedicated programs is
developed in this work. It consists of parameter iden-
tification based on measured signals of the behavior,
e.g., gyroscopic and cinematic states. This has the ad-
vantage that it can be performed on-line with a small
amount of a-priori information. The algorithm can
adapt automatically for changes of the mass, the op-
eration points and changes of the environment if a for-
getting factor or similar procedure is incorporated as
in the classic form. Thus, stability analysis and con-
troller design can obtain this information on-line and
directly from on-board instrumentation.



The main objective in this paper is devoted to the
design a method for parameter estimation of physi-
cal coefficients and to the study of convergence con-
ditions. In the first part, the model structure of an
offshore floating structure with mooring lines is con-
structed attending all forces that are present in the
dynamics. By means of dedicated programs, the re-
sponse is simulated for several parameters that leads
to bifurcations. In the second part, an estimator is
designed to accomplish the true model structure. The
estimator is shown to be able to converge exponentially
under unperturbed measures if certain conditions for
the excitation an states are fulfilled. The necessary
and sufficient conditions for persistency of excitation
are also analyzed.

II. DYNAMICS REPRESENTATION

The dynamics of a semisubmersible is characterized by
six degrees of freedom, namely, the surge η1, the sway
η2, the heave η3, the roll η4, the pitch η5 and the yaw
η6. It is represented by (Schelin et al., 1993)

M(η)η̈ +K(η, η̇) = F, (1)

with η = [η1, η2, η3, η4, η5, η6]
T the state vector, M

the inertia matrix of the system, K the generalized
gyroscopic forces and F the generalized forces.
The inertia matrix of the system is

M =


m 0 0
0 m 0
0 0 m
0 −mη3G mη2G

mη3G 0 −mη1G
−mη2G mη1G 0

0 mη3G −mη2G
−mη3G 0 m η1G
mη2G −mη1G 0
Iη1η1 0 −Iη1η3
0 Iη2η2 0

−Iη1η3 0 Iη3η3

 , (2)

where m is the mass of the body and equal to the
displaced water, ηiG are the coordinates of the center
of gravity and Ikj corresponds to the mass moments
of inertia

Iη1η1 =

Z
m

(η22 + η23)dm (3)

Iη2η2 =

Z
m

(η21 + η23)dm (4)

Iη3η3 =

Z
m

(η21 + η22)dm (5)

Iη1η3 =

Z
m

η1η3 dm. (6)

The generalized forces represent external time-
varying forces and they result from the superposition
of the six effects, i.e.,

F = FG + FB + FV + FM + Fω + FI , (7)

where the subscript G corresponds to gravity, B to
hydrostatic buoyancy, V to viscous drag, M to moor-
ing lines, ω to incident waves and I to hydrodynamics
of the ideal fluid response.
The gravity force is given by

FG =


0
0
mg

mg(η1G η6 + η2G − η3G η4)
−mg(η1G − η2G η6 + η3G η5)

0

 , (8)

where g is the gravity constant.
The hydrostatic force containing buoyancy effects

has the expression

FB =


0
0

−mg − ρgAwη3
−mgOMT η4
−mgOMLη3

0

 , (9)

where ρ is the water density, Aw the ship water-plane
area, OMT and OML the longitudinal and transverse
metacentric heights, respectively.
The viscous drag force for each degree of freedom is

represented by

FV j = −1
2
ρCDjAEj |η̇j | η̇j , (10)

with j = 1, ..., 6, CDj an empirical drag coefficient
and AEj a proportionality constant dependent on the
geometry of the wet part.
The nonlinear restoring forces of the mooring lines

are
FMj = −Cljηj − Cqj |ηj | ηj − Ccjη3j , (11)

with j = 1, ..., 6 and Clj , Cqj and Ccj are restoring
force coefficients.
The incident wave forces are approximated by

Fω = F
(1)
ω + F (2)ω , (12)

where F
(1)
ω is the so-called first-order wave force and

F
(2)
ω is the second-order drift force (Kreuzer et al.,
2002).
The hydrodynamics results from the interaction be-

tween structure and fluid. See Schelin et al. (1993)
for more details. The resulting hydrodynamic force is
calculated as

FI = −a(∞)
..
η −b(∞)η̇ + s0, (13)

where a(∞), b(∞) are the values of the so-called hy-
drodynamic added mass and damping at frequency
infinity, respectively. The vector s0 is originated from
a state space model of six order

ṡn−k = sn+1−k −Aks0 −Bkη̇, (14)



with sk the state for k = 0, 1, ..., 7, s7 = 0, Ak and Bk
parameter matrices.

Consider again (1). The term K(η, η̇) contains the
effects of relative motion of the axes, i.e., gyroscopic,
Coriolis and centrifugal forces. In considering instru-
mentation that is based on inertial measurements, all
variables are referred to inertial axes. Thus

d

dt



s0
s1
s2
s3
s4
s5
s6
η̇
η


=



s1 −A6s0 −B6η̇
s2 −A5s0 −B5η̇
s3 −A4s0 −B4η̇
s4 −A3s0 −B3η̇
s5 −A2s0 −B2η̇
s6 −A1s0 −B1η̇
−A0s0 −B0η̇

(M + a(∞))−1(F − FI + s0)
η̇


.

(15)

III. PHYSICAL PARAMETER
IDENTIFICATION

For identification of physical parameters it is supposed
that the signals for dynamic positioning and the hydro-
dynamic states are measurable and noise-free. For the
first group, this is entirely realistic using on-board sen-
sors. For the hydrodynamic states an adaptive obser-
vation system has to be employed. To this goal some
results of the adaptive observation for this problem are
published in Jordán and Beltrán-Aguedo (2001).

Accordingly a regression model is proposed using
the model given by (15). It is

y(t, θ̂) = ΦT (t) θ̂, (16)

where Φ : [0, t] → <m×n0 is the regressor matrix, θ̂ ∈
<n0 is the parameter vector and y : [0, t] → <m×1 is
the predicted state. In more details

y =
£
(ṡ01 − s11) · · · (ṡ06 − s16) · · ·
(ṡ11 − s21) · · · (ṡ16 − s26) · · ·
ṡ61 · · · ṡ66 · · ·
(s01 + Fw1) ... (s06 + Fw6)

¤T
, (17)

ΦT =



s01 · · · s06 0 · · · 0 · · ·
0 · · · 0 s01 · · · s06 · · ·
...

...
...

...
. . .

... · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·

η̇1 · · · η̇6 0 · · · 0 · · ·
0 · · · 0 η̇1 · · · η̇6 · · ·
...

...
...

...
. . .

... · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
...

...
...

...
...

... · · ·
0 · · · 0 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · ·
η̈1 · · · η̈6 0 · · · 0 · · ·
: · · · 0 η̈1 · · · η̈6 · · ·
0 · · · 0 0 · · · 0 · · ·
0 0 0 ... 0 0 · · ·
0 0 0 ... 0 0 · · ·
...

...
...

...
...

... · · ·
0 0 0 ... 0 0 · · ·
0 0 0 ... 0 0 · · ·

|η̇1| η̇1 0 0 η1 0 0 · · ·
...

. . .
...

...
. . .

... · · ·
0 0 |η̇6| η̇6 0 0 η6 · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0

|η1| η1 0 0 η31 0 0
...

. . .
...

...
. . .

...
0 0 |η6| η6 0 0 η36


,(18)

and

θ̂ =
£
A611 · · · A616 A621 · · · A626 · · ·
A011 · · · A016 A021 · · · A026 · · ·
B611 · · · B616 B621 · · · B626 · · ·
B011 · · · B016 B021 · · · B026 · · ·
m11 + a11(∞) · · · m16 + a16(∞) · · ·
m21 + a21(∞) · · · m26 + a26(∞) · · ·
CD1 · · · CD6 Cl1 · · · Cl6 · · ·
Cq1 · · · Cq6 Cc1 · · · Cc6

¤T
. (19)

The method of least-squares will be used for identifi-
cation in continuous time. Least-squares estimates are
obtained by minimizing the integral square error with
respect to the parameter vector variable θ̂, that is

min
θ̂∈<n0

J(t, θ̂) =
1

2t

Z t

0

°°°ε(τ, θ̂)°°°2 dτ, (20)

where the estimation error is ε(τ) = y(τ, θ)− ŷ(τ, θ̂) =
y(τ, θ)− ΦT (t)θ̂(t), with θ the true parameter vector.



Differentiating J with respect to θ̂ one gets

5J(t, θ̂)=1
t

Z t

0

Φ(t)
h
y(t, θ)-ΦT (t)θ̂(t)

i
dτ (21)

and·Z t

0

Φ(t)ΦT (t)dτ

¸
θ̂(t) =

Z t

0

Φ(t)y(t, θ)dτ. (22)

Now, defining the estimator gain matrix as

P (t) =

·Z t

0

Φ(t)ΦT (t)dτ

¸−1
(23)

and differentiating P−1(t) with respect to the time and
with P (t)P−1(t) = I,

0 =
d

dt
[P (t)]P−1(t) + P (t)

d

dt

£
P−1(t)

¤
. (24)

Therefore

.

P (t) = −P (t)Φ(t)ΦT (t)P (t). (25)

Now, differentiating (22) with respect to time and con-
sidering (23) it results

.

θ̂ (t) = −P (t)Φ(t)ε(t). (26)

The trajectory θ̂(t) accomplishes lim
t→∞ θ̂(t) = θ.

A. Analysis of Persistency of Excitation

Consider again (20)

min
θ∈<n0

J(t, θ̂) =

1

2t

n0X
i=1

³
θ̂ − θ

´T µZ t

0

φi(τ)φ
T
i (τ) dτ

¶³
θ̂ − θ

´
=

n0X
i=1

1

2t

Z t

0

ε2i (τ, θ̂i)dτ, (27)

where θ̂T =
h
θ̂T1 , ..., θ̂

T
i , ..., θ̂

T
m

i
, φTi is a row of Φ and

εi are components of ε. For achieving persistency of
excitation every vector φTi must fulfills

span
¡
φTi
¢
= dim(θ̂i), i = 1, ...,m,

where θ̂i ∈ <ni = D θ̂i
with D θ̂1

× ... × D θ̂i
× ... ×

D θ̂m
= <n0 . It means, each regressor φTi must contain

sufficient harmonics (at least ni) in order to span the
subspace <ni . Thus, in ensuring the convergence of
trajectories θ̂(t) ⊂ <n0 , each regressor by itself must
provide persistent excitation in its own subspace <ni .
For instance, consider the first regressor in (18)

φT1 =
£
s01 ... s06 0 ... 0 . . .

η̇1 ... η̇6 0 ... 0
¤T
. (28)

It contains 12 states, then it will be necessary a
frequency content of at least 12 harmonics in order
to ensure the convergence of θ̂1 in (19) with

θ̂1 =
£
A611 ... A616 ... B611 ... B616

¤T
.
(29)

The same occurs for the regressors φT2 up to φT42,
since they are obtained by shifting the components of
φT1 to the right in the corresponding rows. They must
fulfill the same previous condition of exciting persis-
tency. Hence

if span
¡
φT1
¢
= <12 ⇒ partial parameter

convergence in D θ̂1
× ...×D θ̂42

≡ <252 .
The rest of the regressors, i.e., φT43, ...,φ

T
48, have a

different structure with respect to the previous ones.
They are composed by

φT42+i =
£ ..
η1 ...

..
η6 0 ... 0 . . . (30)

|η̇i| η̇i ηi |ηi| ηi η3i 0 ... 0
¤T
.

with i = 1, ..., 6. One notices in (30) that at least

6 harmonics are needed for the subvector
h..
η1, ...,

..
η6

iT
and additionally one more for the rest, it is for the sub-

vector
£|η̇i| η̇i, ηi, |ηi| ηi, η3i ¤T . This is inferred from the

following fact. If ηi contains one harmonic, the |η̇i| η̇i
results linearly independent of ηi. Besides, |ηi| ηi and
η3i are also independent of ηi. Usually, for an arbitrary

signal ηi(t) the regressor
£
ηi, |ηi| ηi, η3i

¤T
must fulfill α1ηi(t) + α2 |ηi(t)| ηi(t) + α3η

3
i (t) 6= c1

α1 + 2α2 sign(ηi(t))ηi(t) + 3α3η
2
i (t) 6= c2

2α2 sign(ηi(t)) + 6α3ηi(t) 6= c3,
(31)

where αj and cj are arbitrary real-valued constants.
Hence, at least 7 harmonics are required for every

φT42+i. Due to the fact that
h..
η1, ...,

..
η6

iT
repeats in

every φT42+i, one concludes that at least 12 frequencies

are needed for [φ43, ...,φ48]
T in order to accomplish

persistency of excitation. Thus

if span
³
[φ43, ...,φ48]

T
´
=

span

µh..
η1, ...,

..
η6, η1, ..., η6

iT¶
= <12

⇒ partial parameter convergence

in D θ̂43
× ...×D θ̂48

≡ <60 .
In summary,

if span
³
[φ1, ...,φ48]

T
´
= <24 ⇒

parameter convergence in <n0 ≡ <312 .
It is worth noticing that only a few amount of dif-

ferent frequencies in comparison with the amount of
parameters is required for achieving exponential para-
meter convergence.



B. Identifiability of Physical Parameters

According to (19) the coefficients mij + aij(∞) = θij
are identified uniquely, so it is impossible to rescue
mij and aij(∞) from θ̂ij separately. In order to attain
identifiability of the physical parameters aij(∞), the
values of the masses and inertia moments are required.
These depend on geometry and mass distribution of
the platform.

It is noticing that in stability analysis of the plat-
form behavior the so-called hydrodynamic coefficients
are required. These can be obtained from the identi-
fied physical parameters (19). The procedures to do
this fall outside the scope of this paper.

IV. REAL-WORLD CASE STUDY

In order to show that the former conditions for persis-
tency excitation are fulfilled for typical behaviours of
the presented systems, a case study is analyzed. This
concerns the crane platform DB102 (see Fig. 1). For
technical details see Riekert (1992).

O

ψ

x

y

z 

ϕ 

θ 

Figure 1: Moored crane ship THIALF (DB102)

The software AQWA
R°
is used for modelling and

simulation of the dynamics of the DB102. This pro-
gram requires a complete geometrical description of
the structure and computes the linearized hydrody-
namic structure-fluid loading using 3-dimensional dif-
fraction/radiation theory. The fluid is considered ideal
and the incident wave acting on the body is assumed to
be monochromatic and of small amplitude compared
with its wavelength.

A series of experiments were set up for different val-
ues of the wave amplitude a and period T , and stiffness
of the mooring lines Cl, Cq and Cc. These were taken
as bifurcation parameters and changes of the qualita-
tive dynamic behaviours were searched for.

Suitable parameters were found for period-2 (a =
0.6 [m], T = 9.66 [sec], Cl = 50 [N/m], Cq = 0 [N/m

2]
and Cc = 100 [N/m

3]) and chaos (a = 0.02 [m], T =
1.5 [sec], Cl = 10000 [N/m], Cq = 0 [N/m

2] and Cc =

1000 [N/m3]). The corresponding behaviours results
of the states η1 and η3 are depicted in Figs. 2-5.
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Figure 2: Behavior of the surge state η1 in period-2
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Figure 3: Behavior of the heave state η3 in period-2

An analysis in the frequency domain of the behav-
iour can reveal that period-2 evolutions are insufficient
to attain persistent of excitation in <24. Consequently
biased parameters would be obtained asymptotically
even when a short transient response can be beneficial
in the approximation phase. On the contrary, in the
presented chaotic situation an appropriate frequency
content is achieved satisfying the necessary and suf-
ficient stationary conditions for persistent excitation.
It is worth noticing that such a situation is unusual
in operation of marine systems, but possible in real
environments..

V. CONCLUSIONS

In this paper a method for continuous-time identifica-
tion for the class of moored semisubmersible marine
systems based on totally measured states is presented.
The exponential convergence of parameter trajecto-
ries is analyzed in the context of conditions for per-
sistency of excitation (PE). A regression for the es-
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Figure 4: Behavior of the surge state η1 in chaos
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Figure 5: Behavior of the heave state η3 in chaos

timator is constructed containing generically 312 pa-
rameters to be identified. The presented analysis has
revealed that the regressor must expand a space of only
24 dimensions instead of 312 for unbiased estimates.
Under monochromatic excitation, PE-conditions are
expected to be satisfied only in chaotic behaviors. A
case study of a real moored crane-platform is modelled
and simulated to verify such conditions.
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