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Abstract— A new method is presented to
predict the localization of an air core, which is
usually found on the internal flow of hydrocy-
clones. The control and stability of the air core
affect the flow split between the products of a
hydrocyclone. The flow split is one of the least
understood aspects of the hydrocyclone oper-
ation. This split is greatly influenced by the
air core radius, so an understanding of the air
core behavior would enhance the prediction of
the flow split. The liquid-air interface is char-
acterized by means of the Young-Laplace jump
condition. A steady flow of Newtonian fluid
is being considered. It was developed a model
considering the air core as having a cylindri-
cal shape. This model that we are presenting
considers a radius as optimum, when the final
expression for the jump condition of the inter-
face liquid - air is minimum. With the velocity
field obtained for an optimal air core radius,
we can trace the trajectories of the solid parti-
cles, thus, it is possible to simulate the perfor-
mance of the hydrocyclone. The velocity field,
the flow split and the selectivity curve obtained
are compared to experimental results. Good
concordance is achieved.

Keywords— Hydrocyclone, Air core, Tur-
bulence, Free surface.

I. INTRODUCTION

Hydrocyclones are used extensively to separate and
classify solid particles in the mineral processing indus-
try. A strong rotational movement takes place inside
the equipment by means of the tangential feeding of
fluid and solid particles, because of this field, the solid
particles suspended in the fluid tend to move towards
the walls. Besides, by the high tangential velocity of
the fluid in the central part of the device, the pres-
sure decreases to values smaller than the atmospheric
pressure. A low pressure region is created causing

the formation of an air core about the central line. In
spite of the simplicity of the geometry and operation
of a hydrocyclone,it is extremely complex to explain
with details the mechanisms of the dynamics of fluids.
The difficulty of finding the actual flow of the hydro-
cyclones makes it necessary to specify the shape and
localization of the air core surface.In the usual models
of flows in a hydrocyclone, the interface that bounds
the air core is modeled as a fixed cylindrical surface,
that simplifies the problem greatly. This approxima-
tion avoids the necessity of calculating an unknown
boundary that modifies the domain, where the field
equations must be solved. Nevertheless, such simplifi-
cation can produce bad results.

Barrientos et al. (1993) presented a theoretical model
to calculate the air core considering that the liquid-
air interface is of the Young-Laplace type. In this
model, we must know the radial velocity gradient and
the pressure jumps on the interface to calculate the air
core. Steffens et al. (1993), analyzed experimentally
the relation between the air core diameter and the drop
of pressure in a single outlet cylindrical vortex cham-
ber in a wide range of operating conditions. They ob-
tained those relationships based on simple models and
empirical correlations for the fluid flow. Dyakowski
and Williams (1995) showed a model to calculate the
flow splits using, as a boundary condition on the inter-
face liquid-air, the same proposal used by Barrientos
et al. (1993). In a first stage, without the air core,
the interface location and shape are marked out by
spots in which the pressure is the same as the atmo-
spheric pressure. Davidson (1995) analyzed the air
core diameter using a simple model for the fluid flow.
He considered a non-viscous fluid in each outlet where
a factor modifies the flow considering the viscous ef-
fects. In each pressure drop it is considered the princi-
ple that the air core diameter is adapted to the largest
flux. The resulting expression is iteratively applied
during the calculation of the flow in the hydrocyclone
and the computational grid is adjusted in each iter-
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ation. Williams et al. (1995) presented an experi-
mental work on which electrical resistance tomography
measurements had been used to visualize in real time
the movement of the air core. These measurements
have confirmed and quantified the oscillatory nature
of the air core. When the pressure in the feed flow in-
creases, the air core diameter in the hydrocyclone also
increases. In the present work, the liquid-air interface
is considered as being of the Young-Laplace type. Us-
ing an iterative process (Romero,1997), the air core
radius is updated in order to minimize the error in the
Young-Laplace jump condition. The results obtained
for the velocity field were compared with experimental
results showing a satisfactory concordance. Further,
by balancing the forces acting upon a particle, one
can arrive at the slip velocity between the solid parti-
cles and the liquid phase, consequently the trajectory
of every solid particle within the body of the device,
can be determined simply by following the path of the
particle from the inlet to either the overflow or the un-
derflow, thus, the particle separation efficiency curves
can be computed.

II. A MATHEMATICAL MODEL FOR THE
INTERFACE

In order to solve the free boundary problem, it is nec-
essary to characterize it. We will consider that the
air core surface that is formed in an hydrocyclone op-
eration is an interface of the Young-Laplace type. It
means that there is a jump through the interface in
the normal stresses, which is proportional to the in-
terface mean curvature, the proportionality constant
being the surface tension. Other conditions are the
impermeability (kinematic) and slip (no shear tension)
condition.

v.n=0 (1)
[Tn-n] = -2Ho (2)
[Tn-t]=0 (3)

where [®] = ®; — ®4 is the jump of the property ®
through the interface, n is the unitary normal vector,
which goes from (1) to (2), t is a unitary tangent vec-
tor and T is the stress tensor. [T'n- n] is the jump of
normal tensions through the interface, 2H is the in-
terface mean curvature, and o the surface tension. As
there is no fluid flow through the surface, the normal
fluid velocity is null.

If the air occupies the region 0 <= r <= R, where
R, = R,(z), equation (2) can be written in this way:

Tn-n|27; — Tn- n|l“””d —2Ho (4)

Supposing that the air is an ideal fluid, and neglect-
ing the viscous and dynamical effects due to air rota-
tion (Sampaio and Romero 1994), then the pressure in
this region is the atmospherical pressure (pg). There-
fore, for the air

Tn-n|2, = -po (5)
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the liquid in the hydrocyclone is considered as an in-
compressible newtonian fluid, therefore the stress ten-
sor is given by:

T = —pI+2uD (6)

where D is the strain rate tensor, D = %(Vv%— vvl), p
is the pressure, p is the liquid viscocity, I is the unitary
tensor of second order and V is the nabla operator. In
cilindrical coordinates, the velocity vector is:

v = ve, + wey + ue., and

ov o0 w ov Ou
%% a3 Gta)
1 0 w v ow
D=-BT —(— - — B
2 ’"ar( r) 2r Oz
XTI VI
o0z Or 0z 0z

(7)
where: B=[e, ep e,]T
For an axissymetric surface parametrized by a curve
of the type r = R,(z), where the axis z is the symme-
try axis, the interface mean curvature is:
1+ R, - R,Rl
of = -1 e = talta (8)
R,(1+ R %)z

the unit normal vector is

(] TR 2)5 ————(er — Re;) 9)

and the unit tangent vector is

1

= m(R;er +ez) (10)
a
_ dRg 2Rﬂ
where R, = &=, Rl = &5

A. Model with a cylindrical shape for the air
core

In the present model it is assumed that the air core
surface has a cylindrical shape, characterized by one
parameter: the radius R,.

For a cylindrical surface, R, =0 and R/ = 0 so, from
(8) and (9) the mean curvature 2H and the unit nor-
mal vector in the interface are:

1
= — 11
2H R, (11)

(12)

n=——e.

from (12), (7) on (6):

Tn- nll“””d =-p+2 ..,ua (13)

I'rR

therefore, equation (4), for this model, can be simpli-

fied to:

ov o
P=po =25 =R, = — 5~
T

o (14)
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III. A MATHEMATICAL MODEL FOR
THE FLUID FLOW

The fluid flow in the hydrocyclone is modeled by us-
ing the Navier-Stokes equations, (continuity and mo-
mentum conservation). Because of the rotational fluid
movement, a low pressure region is created in the cen-
tral part of the device, so an air core of an unknown
nature is produced. The air core shape can vary with
the time or due to the hydrocyclone parameters and
operational conditions. This makes the dynamic prob-
lem a free boundary problem. Therefore, beyond the
calculation of the velocity and pressure fields, the free
boundary shape should also be approximated (liquid-
air interface).

The general case corresponds to a three-dimensional
fluid flow with a free boundary of unknown shape.
However, the problem complexity can be reduced by
considering some simplifications that do not change
the essence of the original physical problem. Since the
tangential inlet imposes a strong rotational movement
in the hydrocyclone interior, generating a symmetry in
the velocity field, thus, the velocity can be considered
independent of the polar angle in all domain, the only
exception are the regions near the feeding or the vortex
finder. As the principal body velocity field determines
the particles classification, there is no significant error
in supposing an axis-symmetric fluid flow.

Due to operation conditions and geometry of the
equipment, the flow is turbulent and anisotropic, thus
hindering the modelling of the flow. Applying the
Reynolds decomposition in the conservation equations
of the momentum (Navier-Stokes) and considering the
time average, an additional term is obtained (v’ ® v’),
it is called Apparent Stress of Reynolds, being thus
necessary to use a turbulence model to close the global
model.

For a steady turbulent flow of newtonian fluid, the
conservation equations are:

e Continuity:

V-a=0 (15)

e Linear momentum:
pV-(i®u) = -Vp+2uD - pV- (W@ W) +b (16)
with the following boundary conditions (Fig. 1.b)):
e U = U,y on O

e U1 = 0, on 0€2;. The pressure gradient is assumed
to be zero at the wall.

e p=0, Vi-n on 903 and 94, where n is the
unit normal vector to the boundary.

e at free boundary 0Qs:

— Cylindrical model

— conditions to be imposed:

z_}lr:R., =0 (1 7)
ov  Ou
—+—=— =0
oz Or (18)
3(2) -0
or'r o
— Condition to be satisfied:
ov o
o o O 1
P—po = 2p5 lr=R, R (19)

IV. TURBULENCE MODELLING

One of the most used models in turbulent flow simula-
tions is the well know x —e model (Launder and Spald-
ing, 1972), (Mohamadi and Pironeau, 1994), where
is the turbulent kinetic energy and e is the rate of dis-
sipation of k. This model supposes that the Reynolds
stresses are proportional to the rate of deformation of
the main flow. This concept is known as the hypothe-
sis of Boussinesq,

T=—pu @U = p;(Vu+VuTl) - %pt(v ‘u)I - %pnI

(20)
The proportionality factor is the turbulent viscosity
¢, a scalar quantity, that is the same for all the com-
ponents of W ® W’ and different from the molecular
viscosity of the fluid, which is a property of the fluid.
The turbulent viscosity depends on several details of
the flow in consideration. Thus, the distribution of the
turbulent viscosity on the field of the flow should be
determined by the turbulence model.

The main limitation to the k — € model is its appli-
cation only for isotropic flows, that means that the
length and velocity dimensions scales are the same
for all directions. In complex flows, where there is a
high rotational velocity, the length and velocity scales
can vary according to the direction. It is well known
that for this kind of flow, the model k — € is inappro-
priate Duginns and Frith (1987), Zerbini (1992). In
the present work it was used the Differential Reynolds
Stress Model (DRSM Launder et al. , 1987), imple-
mented in Fluent (1995), which provides a good alter-
native to simulate the turbulence. This model calcu-
lates the local Reynolds stress, that is obtained from
the transport equation

i Vuwew) = v-(:—*V(ul®u'))
- (Weu)-(Vi+Vvar
ow). ) e
- C3—[v®u — =Kl
K, 3
— C4[P—§€ITT(P)]
where

P--[wow) Vil +Vi- (Weu)
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e Dissipation rate €

2

V- (@) = V- (?Vf) + ck%mwa +val|? - cze%
€

(22)

e kinetic energy

K= %Tr(u’ Qu) (23)

where p; = C',“o"“?2

with empirical constant:o, = 1.0, 0c = 1.3, C3 =
1.8, Cy = 144, Cic = 1.4, Cye = 1.98, C, = 0.09
Fluent (1995).

A. Boundary condition

For the inlet 9; and for the outlets 923 and 9§24 are
requested the turbulence intensity (I) and the charac-
teristic lenght (L). These inputs are used to compute
x and € values at the inlet and outlets, and are given
by

K= gqﬁu)? (24)

and

K3
l
where [ = l“ﬁ}t and C,, is an empirical constant (0.09)
and [ is a length scale characteristic of the turbulence
at the inlet flow. We calculate the inlet turbulence
length [ by multiplying the characteristic length L by
0.07 (1 =0.07L). This factor of 0.07 is obtained from
the average mixing length in a turbulent pipe flow
(Fluent, 1995), where L is the hydraulic radius. We
used the computed value of k to derive the Reynolds
stress at the inlet.

Bjw

e=C (25)

®

u] K
2 — 2 — 1
Pou = (26)
1,
ugu 0.0

where u/? is the Reynolds stress component in the
streamwise direction (normal to the flow inlet).

At solids walls we used wall function. This wall func-
tion is empiric and it is used in the grid points near
the wall to estimate the effect of the wall on the flow.
These functions are used to solve the entire turbulent
boundary layer. The wall function is based on the as-
sumption that a fully developed equilibrium exist in
the turbulent boundary layer. Therefore, all the rele-
vant flow properties can be obtained from the log law
that describes such boundary layers. This fact elimi-
nates the need to solve the equations of the turbulence
model completely in the whole region of a turbulent
boundary layer and it allows that the grid points near
to the wall can be placed relatively far away from the
wall. The approach of the wall function provides big
savings in the computer effort required for the simula-
tion of the turbulent flow.
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In the walls, we compute the values of the Reynolds
stress near the wall and € from the wall function. It
is used an equilibrium assumption and under this as-
sumption production and turbulence dissipation near
the wall are equal. This assumption together with the
law of the wall determines the turbulence production
only. In the wall the Reynolds stress takes the null
value and the gradient of the kinetic energy is zero.
As the dissipation rate is infinite in the walls, it is pre-
scribed in a point close to the wall. € = ‘}c—; (Fluent,
1995), where u* is the friction velocity defined in the
log law, k is the Von Karman constant (0.42), and y
is the distance from the point to the wall.

In the free boundary 9€2s, it is used the same con-
dition that at the solid wall, with the exception of the
slip condition for the mean velocity (18). This is not
an appropriate boundary condition (Romero, 1997),
because it is necessary to consider the interface fluc-
tuation.

This closes the system.

V. SOLUTION METHOD TO THE FREE
BOUNDARY PROBLEM

The conservation equations are solved using the finite
volume method in generalized coordinates. This fact
allows a good adaptation of the grid to the geometry
of the hydrocyclone.

The algorithm used in the present work, makes an
aproximation of the velocity and pressure fields (for a
certain geometry); after an evaluation of the error ob-
tained from the Young-Laplace equation along the air
core surface is done, the algorithm makes an updating
of the air core radius. The process is repeated until
the desired approximation is reached.

The algorithm follows the following steps:

1. An initial curve 98 is chosen to approximate
the free interface 92s. Q2 will be approximated
to .

2. The velocity and the pressure field are approx-
imated in € so they will satisfy the equations
(17) and (18).

3. The solution obtained in the step 2) is used to
evaluate the error in the Young-Laplace jump
condition (equation 19). In this case the error
is the integral on 995 of residual equation. The
position 98 is adjusted to a new curve 9, in
order to minimize the error in this third condi-
tion.

4. If this condition is satisfied with the required ac-
curacy, then the process stops and makes of 9§25
the final approximation of 9Qs. Otherwise, pro-
ceed this way: 0Qg = 0, and go to the step
2).
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VI. PREDICTION OF HYDROCYCLONE
PERFOMANCE

The classification is in some cases a primordial oper-
ation, especially when the wanted product has strict
specifications of size. In other cases, it is an auxiliary
operation of a process and it is here where it has its
most important application in the mineral metallur-
gical industry. Thus, we have the mill operation in
closed circuit, where the classification objectives are
to make more efficient the mill and to ensure that the
product of the operation is under certain size, going
back to the mill the larger particles.

The classification performance of a hydrocyclone is
influenced by the design variables, such as the hydro-
cyclone dimension, and the operating variables, such
as the feed pressure and the physical properties of the
feed solids and the feed pulp. The separation efficiency
curve expresses the relationship between the weight
fraction or percentage of each particle size of the feed,
and the underflow discharge. The particle size is com-
monly used to represent the performance of the hydro-
cyclone.

The effect of the addition of solid particles to the
fluid is the change of viscosity. The presence of
solid particles increases the viscosity of the suspension
significantly in relation to the viscosity of the pure
fluid. In many cases the suspension becomes a non-
newtonian fluid. However, for diluted suspensions it
can still be considered as newtonian, but the effect of
the solid particles in the flow through the correction
of the viscosity must be considered. We used the fol-
lowing expression for the correction of the viscosity
(Hsieh, 1988).

Em — 1.0+ 2.5C, + 10.05C2 + 0.00273 exp(16.6C, )

Ho

(27)
where p,,, is the viscosity of the suspension, p, the vis-
cosity of the fluid. Equation (27) expresses the repre-
sentative viscosity of the suspension. C, is the fraction
in volume of the solid particle given for:

Cuwpm
Py
1

Cu + 1.0=-C\y
Pp Pl

Pm = (29)
being C, the concentration of the solid particle in
weight fraction, p,, the density of the suspension, p,
the density of the solid phase and p; the density of the
liquid.

The method of tracing particle trajectories from the
predicted axial, tangential and radial velocity compo-
nents of the flow are derived by tracing each particle
location at successive time intervals using an algebraic
slip approach. Before one can actually trace the par-
ticle trajectories in the hydrocyclone, one must know
the relative velocities between particles and the liquid

phase ( particle slip velocities). For diluted suspen-
sions it can be considered that the movement of a par-
ticle is not affected by the other particles. Thus, we
can analyze this as the movement of a solid body sub-
merged in a fluid. The dynamics of the particle is ob-
tained through the characterization of the forces that
act upon it (Svarovsky, 1984). One of these forces is
the drag force (Fp), of difficult characterization. The
conventional form of expressing the drag force in a
spherical particle is:

1
2
where v is the relative velocity between particle and
fluid, pn, is the density of the suspension, A is the pro-
jected area of the particle, and Cp the drag coefficient.

For a mass particle m under the influence of a field of
acceleration a, the movement equation is given by:

Fp = 5CpApm|Vlv (30)

mﬂ —ma—ma2® -Fp
dt Pp

31)
The particle Reynolds number (Re,) that character-
izes the flow around the particle is given by Re, =
M, in the common applications of the hydrocy-
clonrg, is usually smaller than 1 and rarely larger than
10. For hydrocyclone applications related to the sep-
aration of fine particles, the Reynolds number is very
low, smaller than 0.2, as a result, the drag coefficient
of a spherical particle (Cp) depends on the Reynolds
number. For a Reynolds number below 0.3, the flow
regime belongs to the creeping flow region, The flow is
laminar where the viscous forces prevail and the iner-
tial forces can be neglected. The drag force can be de-
termined theoretically by the solution of the equations
of Navier-Stokes without the inertial terms. This force
depends on the number of Reynolds. In this way, we
have an expression for the drag coefficient Cp = %,
so that for the steady state the equation (31) reduces
to:

Apd?
Apd? w?
Up = Vf + 18/‘7: T.f (33)

Since significant forces do not exist acting in the par-
ticle in the tangent direction, we can suppose that the
particle is moved with the same velocity as that of the
fluid in the same direction

wp = wy (34)
where up, v, and w, are the components of the ve-
locity vector of the solid particle and uy, vy and wy
the components of the velocity vector of the fluid in
the axial, radial and tangential direction respectively,
and Ap = pp, — pr. When the number of Reynolds of
the particle in the solid-fluid motion is bigger than 0.2,
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it is necessary to use a more general equation for the
hydrodynamic force. In this case the concept of drag
coefficient is used and equations (32) and (33) can be
substituted by:

= Ap4
Col¥9l(up —uy) = ~—Ldyg (35)
Pm
- _ Ap4w?
Col¥l(y —v) = = E 3 (36)
Wp = Wy (37)

where |V| = {(up —ug)? + (vp — vf)Q}% and the drag
coefficient relationship for a sphere can be approached
by

185
 (Rep)0®

The particle trajectories are obtained by the integra-
tion of equations (32) and (33) or (35) and (36).

VII. COMPARISON WIHT
EXPERIMENTAL DATA

The model presented in this work was applied to
two different hydrocyclones, one was the hydrocyclone
AKW-100, located in the velocimeter laser laboratory
at the Metallurgical Engineering Faculty of the Univer-
sity of Concepcién-Chile, operating only with water.
In this case, only the flow was simulated approximat-
ing the velocity and the pressure fields. The second hy-
drocyclone was the one studied by Hsieh (1988), where
the velocity and pressure fields were simulated. With
these simulated results, the trajectories of solid parti-
cles of different sizes were traced and thus the curve of
selectivity was plotted. The numeric simulation was
carried out in a work station IBM-RISC system /6000
installed in the department of Mechanical Engineering
of the Catholic University of Rio de Janeiro.

The geometrical dimensions are detailed in Fig. 1.a
and Table 1. The operating conditions used to repro-
duce the velocities and pressures field to hydrocyclone
AKW-100 are listed in Table 2.

Cp (38)

Table 1: Values of the geometric parameters (mm)

AKW-100 | Hsieh
D, 18 12.5
D, 102 75
hai 43 25
ly 50 25
lei 331 75
leo 285 186
lbv 82 50
D,; 32 25
D, 53 27
lre 95 -

co

2)
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O —\.
o !
4
oQ,
< Q
a0s

L1
N3 /'e‘i

b)

Figure 1: a) Hydrocyclone geometry b) Domain ge-

Table 2: Operational condition for the hydrocyclones
AKW-100 and Hsieh (75 mm). (where Q is the under
flow and Q) is the feed flow)

AKW-100 | Hsieh
Ap(pa) 25072 60000
Q,(t/s) T754 | 1.141
pm(kg/m>) 1000.0 1031.0
pp(kg/m?) - 2650.0
Lm(cp) 1.0 1.0548
Cuy - 0.0488
us - 0.0190
Qa(lt/s) 0.322 0.0808
Qa/Qs 0.1836 0.071
Cud - 0.2835
Re 3.03 x 10°
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Figure 2: Error of the Young-Laplace equation in the
interface, case 1

A study of sensibility was made for the operation
parameters, shown in Table 3. We observed that, the
choice of the radius can affect the feeding pressure and
the split flow notably, being this last parameter impor-
tant for building the classification curve. The results
showed that the final values for the optimal radius is
close to the experimental values.

Table 3: Numerical results for the hydrocyclone AKW-
100 (R,: air core radius (mm) * Optimal radius )

L _R. | Ap(pa) [ Qa(lt/s) | Qu/Qs | E(Pa) |
30 ] 20500 | 0.2183 [ 0.1245 | 830.3
50 | 21200 | 0.3403 | 0.1940 | 452.0

6.01% | 21800 | 0.3853 | 0.2190 | 161.4
70 | 21300 | 0.3053 | 0.1741 | 377.4
80 | 20300 | 0.1512 | 0.0862 | 560.0

Figure 2 shows the error of the equation of Young-
Laplace in the interface for different values for the air
core radius. The optimal radius obtained numerically
is close to another obtained experimentally. We can
also observe that the error varies in the center line;
this means that we can find an optimal shape for the
air core where this error vanishes, indicating that the
radius could not be constant, which is known by the
experience, but to consider the air core in a cylindrical
shape is a good approximation.

Figure 3 compares the predictions of the model with
experimental measures for the tangential and axial ve-
locities, showing good agreement. Moreover, the free
vortex is very well predicted for the tangential com-
ponent that characterizes this kind of flow. It is well-
known that the air core fluctuates quickly and the ex-
perimental measures are distorted by noise near the
free interface. However, some deviations are observed,
both for axial and tangential velocities near the free
interface. The assumption of a cylindrical air core and
that the interface is not fluctuating can be responsible

for these discrepancies, because the liquid-air interface
is in fact a free surface that fluctuates.

! |
| |
i |
J 401 &
20
0.0] = 0.0
1.0] =
200 L a0 b
4 q
10] EN 20
0.0 B, 0.0
1 wof [
1.0] _,‘\, ??M 2.0 J
&
0.0 e 0.0

-1.0] h 4.0 ;N
- L/ ” ¥
1.0. (:‘,’:‘M 20| 4
0.0 0.0

10 7 10] |
1.0 % 2.0. ;"( %\%\,
001 % a f 0.0

N 4.0] o,
1.0 .w’\ 2.0 e
0.0 o o 0.0!
1.0 2
o\ 38 T
0.0- . 0.0

0 Experimental o Expenimental

-1.04 - Predicted - Predicted

a)

b)

Figure 3: Velocity profile to the case 1 (m/s) a) axial,
b) tangential

Figure 3 shows the typical profile of the tangential
velocity (predicted and experimental). We observed
that the experimentally measured maximum value is
not reached by the theoretical prediction. An explana-
tion for this fact is that a boundary condition adapted
for the turbulence was not considered. The kinetic
energy is considered zero. The real phenomenon has
an oscillatory movement of the free interface. There-
fore, the kinetic energy as different from zero should be
considered. Figure 4 shows the fluctuation of axial and
tangential velocity (rms) and figure 5 shows the cross
product ww’. The experimental results show that the
fluctuation of velocity near the interface grows consid-
erably and it stays almost constant in the region of
free vortex.

The model presented to simulate the flow in a hy-
drocyclone is used in the hydrocyclone of 75 mm. of
Hsieh (1988). The operation parameters are given in
table (2). The flow of a dilute limestone slurries were
studied, where p,, and pu,, were calculated using the
equations (29) and (27). In a first stage, the flow was
simulated, approximating the velocitiy and pressure
fields as well as the location of the liquid-air interface.
With the approximate velocity field, the trajectories of
the solid particles are calculated for several sizes, and
with these values the selectivity curve is built, being
compared with the experimental results. These results
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Figure 4: Fluctuation velocity profile (rms) to the
AKW-100 (m/s) a)axial, b) tangential
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are shown in Fig. 7. Figure 6 shows the streamlines.
In the Duginns work (1987) the streamlines do not re-
produce the area of re-circulation as a close region,
which is the expected.

Figure 6: Streamlines to the hydrocyclone of 75 mm
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Figure 7: Selectivity curve for the hydrocyclone of 75
mm. (selectivity x particle size)

It is possible to trace the particle trajectories by
having the means to compute the particle velocities.
Since axial symmetry is assumed, the description of
the particle path in the radial and axial directions is
sufficient only to determine whether a particle reports
to the overflow or underflow. The projected trajec-
tories for three sizes of solid particles injected in the
feeding are shown in Fig. (8).
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Figure 8: Trajectories of solid particle a) d, = 3.13um
b) d, = 17.74pm c) d,, = 35.50pm

VIII. CONCLUSIONS

From the results we can conclude that the choice of
the air core radius for the hydrocyclone flow simula-
tion affects notably the split flow prediction, an impor-
tant parameter to build the curve of selectivity and the
general flow prediction.

This work helps for an initial understanding of the
air core behavior and its influence in the classification
process of hydrocyclones. Although there were differ-
ences between predicted and experimental results near
the free interface, a reasonable global agreement was
found.

As it was shown in the work, it is of great impor-
tance to model the turbulent diffusion for a model that
adapts itself to the characteristics of the flow. This was
reached using the model RSM, which provides qualita-
tive and quantitative solutions quite close to the exper-
imental ones obtained for the velocity field. The use of
models of turbulence of larger complexity, as the Dif-
ferential Model of the Reynolds stress, still represent
difficulties because it involves the simultaneous solu-
tion of 12 coupled equations. The convergence of the
numeric solution is slow, being requested a high num-
ber of iterations, with the use of small sub-relaxation
factors.

The presented model is applied to diluted suspen-
sions, considered as a newtonian fluid.
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