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Abstract— By using a special transforma-
tion, the new exact travelling wave solutions to
the generalized Kuramoto- Sivashinsky equa-
tion are obtained.
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I. INTRODUCTION
In this paper, we consider the generalized Kuramoto-
Sivashinsky equation (Yang, 1994):

(1)

ug + ﬁuauz + VUTu:wc + 6uacac:wc = 07

where a, 3,7,0,7 € R and a7 # 0.

When o« = 8 = 1 and 7 = 0, (1) reduces to
the original Kuramoto-Sivashinsky (K-S) equation.
The K-S equation was derived by Kuramoto (1978)
for the study of phase turbulence in the Belousov-
Zhabotinsky reaction. An extension of this equation
to two or more spatial dimensions was then given by
Sivashinsky (1977, 1980) in the study of the propaga-
tion of a frame front for the case of mild combustion.
The K-S equation represents one class of pattern for-
mation equation (Yang, 1994; Temam, 1988), and it
also serves as a good model of bifurcation and chaos
(Abdel-Gawad & Abdusalam, 2001; Li and Chen 2001,
2002).

As far as the travelling wave solutions are concerned,
one can always use the transform

(2)

where ¢ is the wave velocity. The travelling wave so-
lutions of (1) satisfy the following ordinary differential
equation:

U(l‘,t):u(f), €:$_Ct7

—cu' + Bu®u +yuTu” + 6" =0. (3)
In (Yang, 1994), using the ansatz (Bernoulli equa-

tion)
u' = au + bu",

(4)
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where a,b,n € R,ab < 0 and n # 1, the exact travel-
ling wave solution to (1) for & = 37 = 9 was obtained.
In this presentation, we further introduce the following
ansatz:

u(®) =", v =a+b", (5)
where abh # 0,n # 1 and ab < 0, and obtain a new
exact solution for the equation.

From (5), one first gets

g ™o

in which ¢p is an arbitrary constant. If h/(n — 1) > 0,
(6) is the solitary wave solution connecting the two
stationary states v = 0 and u = (—%)h/(n_l) (Lu, et
al., 1993). So, the relative orbit is a heteroclinic orbit.

Repeating some differential calculations, one can ob-
tain the following formulas:

n —

ale - )

a

2b

a
——tanh

u() = |~

V" = (a+nbo" ", (7)
= [a®+a*bn(n®+n+1)0" " +3ab’n?(2n—1)0*" 2
+b°n(2n — 1)(3n — 2)v*" 3’ . (8)

o = hot ', (9)

u” = [h2av" ™t + hb(n 4+ h — )"t (10)
= {h*a®*o" ™ + ha®b(n+h — 1)[A* + (n + h — 1)-

n
v

"
u

(n+2h—1)]0" "2 4-3hab? (n+h—1)%(2n+h—2)v*" =3

+hb*(n+h—1)2n+h—2)3n+h— 3)7)3n+h—4} o
(11)

Then, by substituting the first formula of (5) and
(9)-(11) into (3), one has

{(—ch + 5h4a3)vh_1 + Bhy®hth=1 4 7h2avTh+h_1
+Ahb(n 4+ h — 1)t T+HDR=2 L 5ha2b(n + b — 1)-
[3R%+3h(n—1)+ (n—1)*0" "2 1 36hab® (n+h—1)*
2n+h —2)v 04 n+h—1)2n+h —2)-
h 2n+h—3 5hb3 h h
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(3n+h —3)*Th=41 o' = 0. (12)

By furthermore comparing the same orders of v, one
can determine values of the parameters a,b,n and h.
However, to consider all possible cases is rather com-
plicated. In order to keep the presentation short, only
the following interesting cases with A = 1,n = 0 and
n = 2 are considered here.

II. CASE h=1
If h =1, then u(¢) = v(€) and «' = au + bu™, so that
(12) is reduced to
(6a® — ¢) + Bu® + yau" + yonu T4

sa*bn(n® +n+ Du™ ! + 36ab’n?(2n — 1)u®" "2+
b3 n(2n — 1)(3n — 2)u* "3 = 0. (13)

By comparing the same orders of u, one finds the fol-
lowing situations.

(1)71—%

(1a)7’=0,a:—%

1 7
da® —c+va=0, 5+ §'yb+ §5a2b:O,
that is,

___ 8

e 14
4 + T6a?’ (14)

c=da®+a.
In (14), a is a parameter. One should choose a such
that ab < 0. The same should be done for the similar
cases below.

(1b) 7 = —1

5, a=—1

1 7
da® —c=0, ﬂ+§vb:0, 7a+§5azb:O,
that is,

2p3 3

—, c=da.

(15)

If n= %, then (13) can be translated into

2
(6a® — ¢) + Bu® + yau™ + gybuT_%

38 4
+§6a2bu_% + §6ab2u_% =0.
The following results are immediate.
(2&)7:0,&:—%

2

da’— =0
a”—ct+vya '3

38 .5 4.0 5
7b+276a b=0, ﬁ—l—géab =0.
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Therefore, one can easily find that

1

5(75<O)) b=:|:§

c=da®+a. (16)

(2b) 7=—%, a=—1

38 2 4
3— — _ 2 — — — 2:
0a>—c =0, B+~ya+ 275a b=0, 3vb+95ab 0,

S0,
95 5 3
— 2 =2 =da’. 17
“= 150 3557 =% (17)
(2¢) T:—%,a:—%
38 2 4
3— = _— 2 = —_ — 2 =
6a>—c=0, 'ya+275a b=0, ﬂ+37b+95ab 0,
S0,
902 5708 3
= =—— =da’. 18
= 36186 20, €7 (18)
Besides n = % and n = %, one has the following
case.

B)r=n—-1,a=3n-3

For this case,
da® —c=0, ~ya+da’m(n®+n+1)=0,

ybn+36ab’n*(2n—1) =0, [+6b>n(2n—1)(3n—2) =0

From the second and the third equations, it follows
that n = 4. So, if and only if n = 4,a = 37 = 9, there
exist real number solutions for a,b and ¢, as

()" o= ()

This result is the same as that obtained in Yang
(1994).

5
49362

B
2805

C = 7573
T 1058435 °
(19)

g

“%

III. CASE n=0

For n = 0, (12) is reduced to

(6a3n® — )"~ 4 Bueh T Ly ™R L yb(h—1)-

P24 50%0(h—1)(3h% —3h+1)v" 2 4+ 38ab?* (h—1)?-
(h—2)v" =2 4603 (h — 1) (h— 2)(h — 3)v"~* = 0. (20)

After considering the coefficients of some orders of v,
one has the following cases, with h = 1, h = 2 and
h = 3, respectively.

(1) h=1

There exists one and only one sub-case with a =
7 # 0 for h =1 (Note: o # 0), as follows.



(la) a =7 #0,
a:—é, ¢ =dd’ (21)
Y
(2)h=2
For h = 2, one also has a sub-case.
(2) 7=0, 0 = —%
For this sub-case, one has
70620+ b+ B=0, 83a®—c+2ya=0.
Thus,
bz—L, c=86a” + 2ya. (22)
75a% 4+
3)h=3

For h = 3, (20) can be changed to
(2760 — )v® + Fr3T? + 3yav ™2 4 29037
+388a%bv 4+ 126ab* =0, (23)

and only three cases exist, as follows.

_ 1 __2
(3&) T = —3 o = -3
Here,

2756 — ¢ =0, 3ya+385a%b = 0, f+2yb+126ab> = 0.

Therefore,
30~ 193 3
= —— =—— = 270a” . 24
“= 361053 20y € “ (24)
(Bb)7=—-1%,a=—1%

It is clear that
2760 —c =0, B+3va+383a®b = 0,2vb+120ab® = 0.

Hence,
35 5v2 3
- 27 =2 -9 . 9
a 107’ %3’ c Toa (25)
Bc)T=0,a= —%

By the same reasoning, one has
276a® — c+3va = 0, 2yb+385a*b = 0, f+125ab*> =0,

S0 a, b, c are as below:

(N (BN
“‘i( 195) ’ (5<O)’b_¢( 126a> ’
<£ < 0) , ¢ =276a® + 3va. (26)

For h # 1, h # 2, and h # 3, a comparison between
the corresponding terms in (20) gives only one case, as
follows.
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(4) a=3r=-

Sl

It follows that
6ah® —c=0, da’b(h—1)(3h* —3h+1)+~vah =0,
30ab*(h — 1)2(h — 2) +4b(h — 1) = 0,

b3 (h—1)(h—2)(h—3)+3=0.

The second and the third equations of the above sys-
tem give h = —%. So, if and only if h = —%, 0 = 37 =
9, the above system has real number solutions for a,b

3
and c, as
5 3
(F) =il

IV. CASE n=2
Substituting n = 2 into (12) gives

_ o
Too2r”
(27)

350

&

~y

= 14

(—c+0h%a®)o" 1 + 8a%b(h + 1)(3R% + 3h + 1)o"
+35ab* (h+1)2(h+2)0" T 466 (h+1)(h+2)(h+3)0" 2
+yhav™ L b (1) 0™h TR 4 gttt — 0 (28)
(1) h=-1

For h = —1, there exist only one sub-case.
(lay rT=a#0
a:é, c=—da>. (29)
Y
(2) h=-2
For h = —2, there exist two sub-cases.

(2&)7’:0,0(:—%
By the same reason, one has

—c—88a® —2va=0, —76a*b—~yb+3=0,

S0,
p 3
=c— = —2vya — .
b a1 c ~a — 8da (30)
(2b)7=-1,a=-1
Similarly, one has
—c—86a® =0, —76a’b—2ya=0, —yb+3=0,
S0,
29° B 3
=2 b==, c=-83d°. 31
708’ A “ (31)
(3) h=-3
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For h = —3, there exist three sub-cases.
(3a) T=0,0=—-2
For this sub-case,
c+278a%+3va = 0, 386a%b+2vb =0, 126ab>—3=0.

The solutions are

_ —\? Y B B \*(8
“_i(@> (5<0)’b_$(126a> <%<0)’

(32)

¢ = —276a® — 3va.
Bb)yr=a= —%

Similarly,
c4+278a® = 0, 388a2b+3va—B =0, 126ab’>+2vb =0.

The solutions are

_ 36 _ 5 _ 3
=—lo0 =gy =M. ®)
(Bc)T=—3,a=-3

The following system is determined by the same rea-
soning:

c+276a® = 0, 380ab+3va = 0, 126ab®>+2vb—5 =0,
SO,

M b:% c=—278a>.

T 36108 20y

(34)

Besides h = —1, h = —2 and h = —3, there exists

only one case, with h = %, a = 3T.

It follows that
—c+0h*a® =0, 0a’b(h+1)(3h*+3h+1)+vha =0,
30ab®(h + 1)2(h +2) + vb(h + 1) =0,

3h+1)(h+2)(h+3)+5=0.

The second and third equations in the above system
give h = % So, if and only if A = % and @« = 317 =9,
parameters a,b and c¢ are given by

5 3 3
a = 1 > 3 b =-3 _ﬁ , C= 57 .
2 \ 49352 2806 1058436

(35)
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