EXACT TRAVELLING WAVE SOLUTIONS TO THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

Changpin Li[†], Guanrong Chen[‡] and Suchuan Zhao[§]

†Department of Mathematics, Shanghai University, Shanghai 200436, P. R. China leecp@online.sh.cn

 $\label{lem:city-def} \begin{tabular}{ll} \updownarrow Department of Electronic Engineering, City University of Hong Kong, Hong Kong, P. R. China \\ gchen@ee.cityu.edu.hk \end{tabular}$

§Department of Physics, Shanghai University, Shanghai 200436, P. R. China

Abstract— By using a special transformation, the new exact travelling wave solutions to the generalized Kuramoto- Sivashinsky equation are obtained.

Keywords— travelling wave solutions, solitary wave solutions, Kuramoto-Sivashinsky equation.

I. INTRODUCTION

In this paper, we consider the generalized Kuramoto-Sivashinsky equation (Yang, 1994):

$$u_t + \beta u^{\alpha} u_x + \gamma u^{\tau} u_{xx} + \delta u_{xxxx} = 0, \qquad (1)$$

where $\alpha, \beta, \gamma, \delta, \tau \in R$ and $\alpha\beta\gamma\delta \neq \mathbf{0}$.

When $\alpha=\beta=1$ and $\tau=0$, (1) reduces to the original Kuramoto-Sivashinsky (K-S) equation. The K-S equation was derived by Kuramoto (1978) for the study of phase turbulence in the Belousov-Zhabotinsky reaction. An extension of this equation to two or more spatial dimensions was then given by Sivashinsky (1977, 1980) in the study of the propagation of a frame front for the case of mild combustion. The K-S equation represents one class of pattern formation equation (Yang, 1994; Temam, 1988), and it also serves as a good model of bifurcation and chaos (Abdel-Gawad & Abdusalam, 2001; Li and Chen 2001, 2002).

As far as the travelling wave solutions are concerned, one can always use the transform

$$u(x,t) = u(\xi), \quad \xi = x - ct, \tag{2}$$

where c is the wave velocity. The travelling wave solutions of (1) satisfy the following ordinary differential equation:

$$-cu' + \beta u^{\alpha}u' + \gamma u^{\tau}u'' + \delta u'''' = 0. \tag{3}$$

In (Yang, 1994), using the ansatz (Bernoulli equation) $\,$

$$u' = au + bu^n, (4)$$

where $a,b,n\in R,ab<0$ and $n\neq 1$, the exact travelling wave solution to (1) for $\alpha=3\tau=9$ was obtained. In this presentation, we further introduce the following ansatz:

$$u(\xi) = v^h(\xi), \quad v' = av + bv^n, \tag{5}$$

where $abh \neq 0$, $n \neq 1$ and ab < 0, and obtain a new exact solution for the equation.

From (5), one first gets

$$u(\xi) = \left[-\frac{a}{2b} \tanh\left(\frac{n-1}{2}a(\xi - c_0)\right) - \frac{a}{2b} \right]^{\frac{h}{n-1}}, (6)$$

in which c_0 is an arbitrary constant. If h/(n-1) > 0, (6) is the solitary wave solution connecting the two stationary states u = 0 and $u = (-\frac{a}{b})^{h/(n-1)}$ (Lu, et al., 1993). So, the relative orbit is a heteroclinic orbit.

Repeating some differential calculations, one can obtain the following formulas:

$$v'' = (a + nbv^{n-1})v', (7)$$

$$v'''' = [a^3 + a^2bn(n^2 + n + 1)v^{n-1} + 3ab^2n^2(2n - 1)v^{2n-2}]$$

$$+b^{3}n(2n-1)(3n-2)v^{3n-3}|v'. (8)$$

$$u' = hv^{h-1}v', (9)$$

$$u'' = [h^2 a v^{h-1} + hb(n+h-1)v^{n+h-2}]v', \qquad (10)$$

$$u'''' = \left\{ h^4 a^3 v^{h-1} + h a^2 b(n+h-1) [h^2 + (n+h-1) \cdot \right.$$

$$(n+2h-1)]v^{n+h-2}+3hab^2(n+h-1)^2(2n+h-2)v^{2n+h-3}\\$$

$$+ hb^{3}(n+h-1)(2n+h-2)(3n+h-3)v^{3n+h-4} v'.$$
(11)

Then, by substituting the first formula of (5) and (9)-(11) into (3), one has

$$\{(-ch + \delta h^4 a^3)v^{h-1} + \beta hv^{\alpha h+h-1} + \gamma h^2 av^{\tau h+h-1}\}$$

$$+\gamma hb(n+h-1)v^{n+(\tau+1)h-2} + \delta ha^2b(n+h-1)$$
.

$$[3h^2+3h(n-1)+(n-1)^2]v^{n+h-2}+3\delta hab^2(n+h-1)^2$$

$$(2n+h-2)v^{2n+h-3} + \delta hb^3(n+h-1)(2n+h-2)$$

$$(3n+h-3)v^{3n+h-4} \} v' = 0. (12)$$

By furthermore comparing the same orders of v, one can determine values of the parameters a, b, n and h. However, to consider all possible cases is rather complicated. In order to keep the presentation short, only the following interesting cases with h = 1, n = 0 and n=2 are considered here.

II. CASE h=1

If h = 1, then $u(\xi) = v(\xi)$ and $u' = au + bu^n$, so that (12) is reduced to

$$(\delta a^{3} - c) + \beta u^{\alpha} + \gamma a u^{\tau} + \gamma b n u^{\tau+n-1} + \delta a^{2} b n (n^{2} + n + 1) u^{n-1} + 3\delta a b^{2} n^{2} (2n - 1) u^{2n-2} + \delta b^{3} n (2n - 1) (3n - 2) u^{3n-3} = 0.$$
 (13)

By comparing the same orders of u, one finds the following situations.

(1)
$$n = \frac{1}{2}$$

(1a) $\tau = 0$, $\alpha = -\frac{1}{2}$

$$\delta a^3 - c + \gamma a = 0$$
, $\beta + \frac{1}{2}\gamma b + \frac{7}{8}\delta a^2 b = 0$,

that is,

$$b = -\frac{8\beta}{4\gamma + 7\delta a^2}, \quad c = \delta a^3 + \gamma a. \tag{14}$$

In (14), a is a parameter. One should choose a such that ab < 0. The same should be done for the similar cases below.

(1b)
$$\tau = -\frac{1}{2}$$
, $\alpha = -1$
$$\delta a^3 - c = 0$$
, $\beta + \frac{1}{2}\gamma b = 0$, $\gamma a + \frac{7}{8}\delta a^2 b = 0$,

that is,

$$a = \frac{4\gamma^2}{7\delta\beta}, \quad b = -\frac{2\beta}{\gamma}, \ c = \delta a^3.$$
 (15)

(2)
$$n = \frac{2}{3}$$

If $n = \frac{2}{3}$, then (13) can be translated into

$$(\delta a^3 - c) + \beta u^{\alpha} + \gamma a u^{\tau} + \frac{2}{3} \gamma b u^{\tau - \frac{1}{3}} + \frac{38}{27} \delta a^2 b u^{-\frac{1}{3}} + \frac{4}{9} \delta a b^2 u^{-\frac{2}{3}} = 0.$$

The following results are immediate.

(2a)
$$\tau = 0$$
, $\alpha = -\frac{2}{3}$

$$\delta a^3 - c + \gamma a = 0 \,, \quad \frac{2}{3} \gamma b + \frac{38}{27} \delta a^2 b = 0 \,, \quad \beta + \frac{4}{9} \delta a b^2 = 0 \,. \qquad \text{There exists one and only one sub-case} \quad \tau \neq 0 \text{ for } h = 1 \text{ (Note: } \alpha \neq 0) \text{, as follows.}$$

Therefore, one can easily find that

$$a = \pm 3 \left(-\frac{\gamma}{19\delta} \right)^{\frac{1}{2}} (\gamma \delta < 0), \quad b = \mp \frac{3}{2} \left(-\frac{\beta}{\delta a} \right)^{\frac{1}{2}}$$
$$(\delta \beta \, a < 0), \quad c = \delta a^3 + \gamma a. \tag{16}$$
$$(2b) \, \tau = -\frac{1}{3}, \, \alpha = -\frac{1}{3}$$

$$\delta a^3 - c = 0, \ \beta + \gamma a + \frac{38}{27} \delta a^2 b = 0 \ , \quad \frac{2}{3} \gamma b + \frac{4}{9} \delta a b^2 = 0 \ ,$$

$$a = \frac{9\beta}{10\gamma}, \quad b = -\frac{5\gamma^2}{3\delta\beta}, \quad c = \delta a^3.$$
 (17)
(2c) $\tau = -\frac{1}{2}, \ \alpha = -\frac{2}{3}$

$$\delta a^3 - c = 0$$
, $\gamma a + \frac{38}{27} \delta a^2 b = 0$, $\beta + \frac{2}{3} \gamma b + \frac{4}{9} \delta a b^2 = 0$,

$$a = \frac{90\gamma^2}{361\beta\delta}, \quad b = -\frac{57\beta}{20\gamma}, \quad c = \delta a^3.$$
 (18)

Besides $n = \frac{1}{2}$ and $n = \frac{2}{3}$, one has the following

(3)
$$\tau = n - 1$$
, $\alpha = 3n - 3$

For this case.

$$\delta a^3 - c = 0$$
, $\gamma a + \delta a^2 b n (n^2 + n + 1) = 0$,

$$\gamma bn + 3\delta ab^2 n^2 (2n-1) = 0$$
, $\beta + \delta b^3 n (2n-1)(3n-2) = 0$

From the second and the third equations, it follows that n=4. So, if and only if $n=4, \alpha=3\tau=9$, there exist real number solutions for a, b and c, as

$$a = \frac{\gamma}{6} \left(\frac{5}{49\beta \delta^2} \right)^{\frac{1}{3}}, \quad b = \left(-\frac{\beta}{280\delta} \right)^{\frac{1}{3}}, \quad c = \frac{5\gamma^3}{10584\beta\delta}.$$
(19)

This result is the same as that obtained in Yang (1994).

III. CASE n=0

For n = 0, (12) is reduced to

$$(\delta a^{3}h^{3} - c)v^{h-1} + \beta v^{\alpha h + h - 1} + \gamma ahv^{\tau h + h - 1} + \gamma b(h - 1) \cdot v^{\tau h + h - 2} + \delta a^{2}b(h - 1)(3h^{2} - 3h + 1)v^{h - 2} + 3\delta ab^{2}(h - 1)^{2} \cdot (h - 2)v^{h - 3} + \delta b^{3}(h - 1)(h - 2)(h - 3)v^{h - 4} = 0. (20)$$

After considering the coefficients of some orders of v, one has the following cases, with h = 1, h = 2 and h=3, respectively.

$$(1) h = 1$$

There exists one and only one sub-case with $\alpha =$

(1a)
$$\alpha = \tau \neq 0$$
,
$$a = -\frac{\beta}{\gamma}, \quad c = \delta a^3 \,. \eqno(21)$$

(2)
$$h = 2$$

For h = 2, one also has a sub-case.

(2a)
$$\tau = 0$$
, $\alpha = -\frac{1}{2}$

For this sub-case, one has

$$7\delta a^2 b + \gamma b + \beta = 0$$
, $8\delta a^3 - c + 2\gamma a = 0$.

Thus,

$$b = -\frac{\beta}{7\delta a^2 + \gamma}, \quad c = 8\delta a^3 + 2\gamma a. \tag{22}$$

$$(3) h = 3$$

For h = 3, (20) can be changed to

$$(27\delta a^{3} - c)v^{2} + \beta v^{3\alpha+2} + 3\gamma av^{3\tau+2} + 2\gamma bv^{3\tau+1} + 38\delta a^{2}bv + 12\delta ab^{2} = 0,$$
(23)

and only three cases exist, as follows:

(3a)
$$\tau = -\frac{1}{3}$$
, $\alpha = -\frac{2}{3}$

$$27\delta a^3 - c = 0$$
, $3\gamma a + 38\delta a^2 b = 0$, $\beta + 2\gamma b + 12\delta a b^2 = 0$.

Therefore.

$$a = \frac{30\gamma^2}{361\delta\beta}, \quad b = -\frac{19\beta}{20\gamma}, \quad c = 27\delta a^3.$$
 (24)
(3b) $\tau = -\frac{1}{3}, \alpha = -\frac{1}{3}$

It is clear that

 $27\delta a^3 - c = 0$, $\beta + 3\gamma a + 38\delta a^2 b = 0$, $2\gamma b + 12\delta a b^2 = 0$. Hence,

$$a = \frac{3\beta}{10\gamma}, \quad b = -\frac{5\gamma^2}{9\delta\beta}, \quad c = 27\delta a^3.$$
 (25)
(3c) $\tau = 0, \alpha = -\frac{2}{\pi}$

By the same reasoning, one has

$$27\delta a^3 - c + 3\gamma a = 0$$
, $2\gamma b + 38\delta a^2 b = 0$, $\beta + 12\delta a b^2 = 0$, so a, b, c are as below:

$$a=\pm\left(-rac{\gamma}{19\delta}
ight)^{rac{1}{2}}, \quad \left(rac{\gamma}{\delta}<0
ight), b=\mp\left(-rac{\beta}{12\delta a}
ight)^{rac{1}{2}},$$

$$\left(\frac{\beta}{\delta a} < 0\right), \ c = 27\delta a^3 + 3\gamma a.$$
 (26)

For $h \neq 1$, $h \neq 2$, and $h \neq 3$, a comparison between the corresponding terms in (20) gives only one case, as follows.

(4)
$$\alpha = 3\tau = -\frac{3}{h}$$
.

It follows that

$$\delta a^3 h^3 - c = 0 , \quad \delta a^2 b (h-1) (3h^2 - 3h + 1) + \gamma a h = 0 ,$$

$$3\delta a b^2 (h-1)^2 (h-2) + \gamma b (h-1) = 0 ,$$

$$\delta b^3 (h-1) (h-2) (h-3) + \beta = 0 .$$

The second and the third equations of the above system give $h = -\frac{1}{3}$. So, if and only if $h = -\frac{1}{3}$, $\alpha = 3\tau =$ 9, the above system has real number solutions for a, b

$$b = -\frac{\beta}{7\delta a^2 + \gamma}, \quad c = 8\delta a^3 + 2\gamma a. \tag{22} \qquad a = -\frac{\gamma}{14\delta} \left(\frac{35\delta}{\beta}\right)^{\frac{1}{3}}, \ b = \frac{3}{2} \left(\frac{\beta}{35\delta}\right)^{\frac{1}{3}}, \ c = -\frac{\delta a^3}{27}. \tag{27}$$

IV. CASE n=2

Substituting n = 2 into (12) gives

$$(-c + \delta h^3 a^3) v^{h-1} + \delta a^2 b(h+1) (3h^2 + 3h + 1) v^h$$

$$+3\delta a b^2 (h+1)^2 (h+2) v^{h+1} + \delta b^3 (h+1) (h+2) (h+3) v^{h+2}$$

$$+\gamma h a v^{\tau h+h-1} + \gamma b(h+1) v^{\tau h+h} + \beta v^{\alpha h+h-1} = 0.$$
 (28)
$$(1) h = -1$$

For h = -1, there exist only one sub-case.

(1a)
$$\tau = \alpha \neq 0$$

$$a = \frac{\beta}{\gamma}, \quad c = -\delta a^3.$$
 (29)

(2)
$$h = -2$$

For h = -2, there exist two sub-cases.

(2a)
$$\tau = 0, \ \alpha = -\frac{1}{2}$$

By the same reason, one has

$$-c - 8\delta a^3 - 2\gamma a = 0$$
, $-7\delta a^2 b - \gamma b + \beta = 0$,

50,
$$b = \frac{\beta}{7\delta a^2 + \gamma}, \quad c = -2\gamma a - 8\delta a^3. \tag{30}$$
 (2b) $\tau = -\frac{1}{2}, \ \alpha = -1$

Similarly, one has

$$-c - 8\delta a^3 = 0$$
, $-7\delta a^2 b - 2\gamma a = 0$, $-\gamma b + \beta = 0$,

$$a = -\frac{2\gamma^2}{7\delta\beta}, \quad b = \frac{\beta}{\gamma}, \quad c = -8\delta a^3.$$
 (31)

(3)
$$h = -3$$

For h = -3, there exist three sub-cases.

(3a)
$$\tau = 0, \, \alpha = -\frac{2}{3}$$

For this sub-case,

$$c+27\delta a^3+3\gamma a=0$$
, $38\delta a^2b+2\gamma b=0$, $12\delta ab^2-\beta=0$.

The solutions are

$$a = \pm \left(\frac{-\gamma}{19\delta}\right)^{\frac{1}{2}} \left(\frac{\gamma}{\delta} < 0\right), \ b = \mp \left(\frac{\beta}{12\delta a}\right)^{\frac{1}{2}} \left(\frac{\beta}{\delta a} < 0\right),$$

$$c = -27\delta a^3 - 3\gamma a. \tag{32}$$

(3b)
$$\tau = \alpha = -\frac{1}{3}$$

Similarly,

$$c+27\delta a^3=0$$
, $38\delta a^2b+3\gamma a-\beta=0$, $12\delta ab^2+2\gamma b=0$.

The solutions are

$$a = -\frac{3\beta}{10\gamma}, \quad b = \frac{5\gamma^2}{9\delta\beta}, \quad c = -27\delta a^3.$$
 (33)

(3c)
$$\tau = -\frac{1}{3}$$
, $\alpha = -\frac{2}{3}$

The following system is determined by the same reasoning:

$$c+27\delta a^3=0,\ 38\delta a^2b+3\gamma a=0,\ 12\delta ab^2+2\gamma b-\beta=0$$

so,

$$a = -\frac{30\gamma^2}{361\delta\beta}, \quad b = \frac{19\beta}{20\gamma}, \quad c = -27\delta a^3.$$
 (34)

Besides h = -1, h = -2 and h = -3, there exists only one case, with $h = \frac{1}{\tau}$, $\alpha = 3\tau$.

(4)
$$h = \frac{1}{\pi}, \ \alpha = 3\tau.$$

It follows that

$$-c + \delta h^3 a^3 = 0$$
, $\delta a^2 b(h+1)(3h^2+3h+1) + \gamma ha = 0$,

$$3\delta ab^{2}(h+1)^{2}(h+2) + \gamma b(h+1) = 0$$
,

$$\delta b^3(h+1)(h+2)(h+3) + \beta = 0$$
.

The second and third equations in the above system give $h = \frac{1}{3}$. So, if and only if $h = \frac{1}{3}$ and $\alpha = 3\tau = 9$, parameters a, b and c are given by

$$a = \frac{\gamma}{2} \left(\frac{5}{49\beta \delta^2} \right)^{\frac{1}{3}}, \ b = -3 \left(\frac{\beta}{280\delta} \right)^{\frac{1}{3}}, \ c = \frac{5\gamma^3}{10584\beta\delta}.$$

ACKNOWLEDGEMENTS

This research was supported by the NSF of China (Grant No. 19971057) and the Hong Kong CERG (Grant No. 9040579).

REFERENCES

- Abdel-Gawad, H. I. & Abdusalam, H. A., "Approximate solutions of the Kuramoto-Sivashinsky equation for periodic boundary value problems and chaos," *Chaos, Solitons and Fractals*, **12**, 2039-2050 (2001).
- Kuramoto, Y., "Diffusion-induced chaos in reaction system," Prog. Theor. Phys. Suppl., 64, 346-367 (1978).
- Li, C. P. & Chen, G., "Bifurcation analysis of the Kuramoto-Sivashinsky equation in one spatial dimension," Int. J. Bifurcation and Chaos, 11 (9), 2493-2499 (2001).
- Li, C. P. & Chen, G., "Bifurcation from an equilibrium of the steady state Kuramoto-Sivashinsky equation in two spatial dimensions," *Int. J. Bifurcation and Chaos*, **12** (1), 103-114 (2002).
- Lu, B. Q., Xiu, B. Z., Pang, Z. L. & Jiang, X. F., "Exact traveling wave solutions of one class of non-linear diffusion equations," *Phys. Lett. A*, **175**, 113-115 (1993).
- Sivashinsky, G. I., "Nonlinear analysis of hydrodynamic instability in laminar flames, Part I, derivation of basic equations," *Acta Astronautica*, **4**, 1177-1206 (1977).
- Sivashinsky, G. I., "On flame propagation under conditions of stoichiometry," *SIAM J. Appl. Math.*, **39**, 67-82 (1980).
- Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York (1988).
- Yang, Z. J., "Travelling wave solutions to nonlinear evolution and wave eqations," *J. Phys. A: Math. Gen.*, **27**, 2837-2855 (1994).

Received: April 30, 2002. Accepted for publication: July 25, 2002. Recommended by Subject Editor Jorge L. Moiola.