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Abstract— In this paper we present a brief tuto-
rial and a Toolbox for the area of Robust Identification,
i.e. deterministic, worst-case identification of dynamic
systems. The uncertain models obtained fit exactly the
framework of Robust control, speciallyH∞ procedures,
if the control of the system is the objective. The use of
several of the identification algorithms are illustrated
by means of a simulated example of a flexible structure.
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I. INTRODUCTION

The area of Robust Identification has been originally pro-
posed by Zames in the Plenary talk at ACC 1988, and the
first papers appeared in Guet al. (1989) for approxima-
tion and in Helmickiet al. (1991) for Identification. This
methodology allows the computation of a family of mod-
els (the so called uncertain model) from experimental data
anda priori information, which can be used as a first step
in a Robust Control framework. It is therefore a deter-
ministic, worst-case approach which describes families of
models in terms ofH∞ or `1 errors. In particular, fre-
quency domain Robust Identification methods produce a
set of models with additive dynamic uncertainty (Sánchez
Peña and Sznaier (1998); Zhouet al. (1996)) which can
be used directly as the representation of a physical sys-
tem which may be controlled by anH∞ controller. To
produce structured dynamic uncertain models, these Ro-
bust identification procedures should be used over different
input-output sets. In this case, control design methods as
µ–synthesis (Sánchez Peña and Sznaier (1998); Zhouet al.
(1996)) may be used. If time domain Robust identification
is applied to the physical system,`1 controllers (Sánchez
Peña and Sznaier (1998)) could be designed.

In this context model uncertainty stems from two differ-
ent sources: measurement noise and lack of knowledge ot
the system itself due to the limited information supplied by
the experimental data.

Different types of identification algorithms have been
developed in this framework. The case where the avail-
able experimental data are generated by frequency domain
experiments leads toH∞ based identification procedures

(see Gu and Khargonekar (1992), Chenet al. (1995) and
references therein). Instead, if the available experimen-
tal data originate from time domain experiments`1 iden-
tification procedures (see Jacobsonet al. (1992) and ref-
erences therein) are used. In Parriloet al. (1996, 1998),
a new Robust Identification framework that takes into ac-
count both time and frequency domain experiments has
been proposed. Thus, the problem where “good” frequency
response fitting (smallH∞ error norm) leads to “poor” fit-
ting in the time domain is prevented. Finally, in Parrilo
et al. (1999) an extension of this mixed time/frequency
identification procedure to the case of systems with a para-
metric component is presented.

This paper presents a Robust Identification toolbox
which implements many of the different techniques avail-
able in this framework. As an example there is an appli-
cation to the problem of a flexible structure. The tool-
box has been developed for MatLab, and is freely avail-
able from the Web Site of GICOR (Robust Identification
and Control Group) at the University of Buenos Aires:
//www.fi.uba.ar/laboratorios/gicor/ . The
uncertain models obtained from this methodology are com-
patible with the different synthesis methods available in the
Robust Control, LMI andµ–Analysistoolboxes.

This toolbox implements almost all the state of the art
methods in this area, although it inherits a few practical
limitations from the theory and the algorithms used to im-
plement it. In the first place, a common weakness of the
Robust Identification framework is the conservativeness of
the error bounds. Better bounds are possible by using op-
timization methods, at the expense of a heavier computa-
tional load. Also, the LMI based approach, which is re-
lated to interpolation methods, is limited by the number
of experimental data points. A strong research effort is
devoted to the area of optimization methods, in particular
LMI’s, therefore larger practical problems are expected to
be solved in a reasonable time, in the future.

An extense bibliography has been devoted to this subject
during the last years. A complete survey of the area can be
found in Mäkiläet al. (1995); Sánchez Peña and Sznaier
(1998) and Chen and Gu (2000). Next section presents a
brief tutorial on this subject, and sections III, IV and V
provide a more detailed explanation of frequency and time
domain identification algorithms as well as interpolatory
procedures, respectively. Section VI details the Toolbox
commands, and section VII illustrates the use of all previ-
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ous algorithms by means of a flexible structure, from which
(simulated) "experimental" data have been obtained. Fi-
nally some Conclusions are drawn in section VIII.

II. ROBUST IDENTIFICATION FRAMEWORK

Each Robust Identification procedure takes as input data
botha priori anda posteriori information on the real sys-
tem.

The a priori information characterizes the set of candi-
date modelsS whichshouldcontain the system to be iden-
tified ĝ, and the class of noisesN that affect the experi-
mental data, through the parametersK, ρ andε.

We consider in this paper the class of discrete time, lin-
ear, stable and causal systems, whose frequency response
H(z) is related to its impulse responseh(k) through the
standardZ-transform evaluated atz = eθ:

H(z) =
∞∑

k=0

h(k)zk. (1)

Therefore, analytic functions inside the unit circle repre-
sent causal and stable systems.

In the case of frequency domain identification, thea pri-
ori class of candidate systemsS is defined as:

S 4
= {H(z) analytic in |z| < ρ | (2)

sup
|z|<ρ

|H(z)| ≤ K, ρ > 1 and K < ∞}.

This set contains all exponentially stable systems, i.e.,
those that satisfy the following time domain restriction:

|h(k)| ≤ Kρ−k , k = 0, 1, 2, . . . (3)

with a worst-case gain to complex exponential inputs ofK
and a stability margin of(ρ− 1).

In the case of time domain identification, thea priori
class of modelsΦ results:

Φ
4
= {h(·) |φ`(k) ≤ h(k) ≤ φu(k),

k = 0, . . . , Nφ − 1} (4)

which includes the subset of systems satisfying (3) when
φ`(k) = −Kρ−k andφu(k) = Kρ−k.

If it is assumed that the system to be identified has the
following structure:

H(z) = Hnp(z) + Hp(z) (5)

whereHp(z) andHnp(z) represent its parametric and non-
parametric components respectively, thea priori class of
modelsT is defined as:

T = {Hnp(z) + Hp(z) | (6)

Hnp(z) ∈ S , Hp(z) ∈ P}

with:

P 4
= {pT G(z) | p ∈ RNp , pi ∈ [ai, bi]} (7)

and where theNp components of vectorG(z) are known
linearly independent functions that satisfy the separation
condition:

{Gi(z)} ∩ S = 0 (8)

which guarantees that the decompostion (5) is unique (Par-
rilo et al. (1999)).

Thea priori classes of noises that are present during the
frequency and/or time domain experiments,Nf andNt,
are:

Nf
4
= {ηf ∈ CNf , |ηf

k | ≤ εf} (9)

Nt
4
= {ηt ∈ RNt , |ηt

k| ≤ εt}.

The a posteriori information is a finite set of data
y = E(g, η) ∈ CN , obtained from frequency domain1

or time domain experiments and corrupted by noise.
The frequency domain datayf ∈ CNf consist of a set of

Nf samples of the frequency response of the systemH(z),
with additive noiseη ∈ Nf :

yf
k = H(ejθk) + ηk , k = 0, . . . , Nf − 1 (10)

which satisfy the following relation of complex conjugate
symmetry (forNf even):

yf
Nf /2+1+k = (yf

Nf /2+1−k)∗ , (11)

k = 0, . . . , Nf/2− 1

with yf
1 andyf

Nf /2+1 real samples, as they proceed from a
real rational system.

The time domain data consists of the firstNt samples of
the time response of the system to a known but otherwise
arbitrary input,yt ∈ RNt , affected by additive noiseη ∈
Nt:

yt
k = (Uh)k + ηk , k = 0, 1, . . . , Nt − 1 (12)

whereU is the Toeplitz matrix of the input sequence, andh
is a column vector with coefficients of the impulse response
of the system.

As output, a Robust Identification procedure provides a
nominal modelgid based on thea posterioriexperimental
data, and a worst-case boundeid on the identification er-
ror, defined in an appropriate norm over thea priori set of
candidate models.

Thus, the family of identified models “covers” the set
S(y) of all plants in thea priori class, which could have
produced thea posteriori information with the class of
noises assumeda priori:

S(y)
4
= {g ∈ S | y = E(g, η) , η ∈ N} (13)

1All the experiments are in fact performed in the time domain. There-
fore the so called “frequency domain” experiments are carried out using
sinusoidal inputs at different frequencies. A procedure to obtain frequency
measurements and its error bounds from time domain data is explained in
Helmicki et al. (1991) in a Robust Identification framework.
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Figure 1: Intersection of the experiments at a generic sam-
pling frequencyθk.

and it shouldcontain the real plant. This fact justifies the
need to definea priori classes of models and noises. Other-
wise all possible combinations of plants and noises which
could have produced the experimental data, would form an
unbounded setS(y) and the Robust Identification problem
would make no sense, sinceeid →∞ andgid could be any
model.

Finally, due to the fact that the assumeda priori infor-
mation –the parametersK, ρ andε– is a quantification of
the engineering common sense, there is no guarantee that
it will be coherent with the experimentala posteriori in-
formation. Therefore, consistency between both types of
information should be tested, i.e., if the set (13) contains at
least one element, before the application of a Robust Iden-
tification procedure. Otherwise, the worst-case boundeid

obtained over the family of identified models would be no
longer valid. A discussion about the selection of thea pri-
ori data can be found in Mazzaroet al. (2001).

III. FREQUENCY DOMAIN IDENTIFICATION

A. Experimental Data

Given an experiment in the frequency domain, (9) and (10)
provide at each sampling frequencyθk a ball in the com-
plex plane of centeryf

k and radiusεf , which contains the
true frequency response sampleH(ejθk) (Helmicki et al.
(1991)):

|yf
k −H(ejθk)| ≤ εf (14)

if the assumeda priori bound on the measurement noiseεf

is “correct”. Moreover, by performingM identical exper-
iments a set ofM balls centered at(yf

k )i with radii (εf )i

for i = 1, 2, . . . , M will be obtained at each sampling fre-
quency. Within the intersection of all these balls lies the
real frequency response sample.

By repeating and intersecting the experiments it is possi-
ble to obtain a smaller region which contains the real value,
H(ejθk), i.e.,a smaller noise error boundηk, reducing thus
the worst case identification erroreid(ηk,K, ρ).

Figure 1 shows the result of the proposed procedure, for
M = 3 experiments in the frequency domain at a generic
sample frequencyθk. Due to the lack of an analytical ex-
pression for the intersection zone, this one is “covered” by
the smallest ball of radiusrk and centerck. Hence,ck and
rk are taken as the resulting frequency response sample and
the error bound respectively, at the frequencyθk. 2

B. Two stage Algorithm

This class of algorithms for identification inH∞ –
developed in Helmickiet al. (1991); Gu and Khargonekar
(1992)– are characterized by a two stage structure.

The first stage involves taking the inverse discrete
Fourier transform (DFT) of the frequency response sam-
ples:

hNf
(k) =

1
Nf

Nf−1∑

i=0

yf
i e
−j 2π

Nf
ik

(15)

considering only the firstNf coefficients of this real and
periodic sequence, which gives a first finite approximation
(FIR) ĥNf

(k) to the impulse response of the real system:

ĥNf
(k) = hNf

(k) , k = −Nf/2, . . . , Nf/2− 1 (16)

and multiplying (16) by a suitable window functionw(k)
of length2n + 1 with n = n(Nf ), in order to establish
its convergence in‖ · ‖∞, which yields the following pre-
identified model:

Ĥpid(z) =
n∑

k=−n

ĥNf
(k)w(k)zk. (17)

But due to the presence of measurement noise and to the
fact that the real impulse response is in general of infi-
nite length (IIR), the approximation obtained above (17)
has a noncausal portion (negative Fourier coefficients), and
therefore is non analytic inside the unit circle.

The second stage involves solving the Nehari’s problem,
i.e., finding the optimal in‖ · ‖∞ analytic approximation
for the pre-identified model obtained during the first stage
(Glover (1984)).

As the worst-case identification error after the Nehari’s
approximation is at most twice the error obtained in the first
stage, the selected window function determines the type of
convergence of the two stage nonlinear algorithm. Note
that noa priori information is used to obtain a nominal
model, thus this is anuntunedidentification procedure.

2The application of this procedure to time domain experiments follows
in the same manner as in the frequency case. At each discrete time one
has a set ofM real intervals, whose intersection zone can be computed
exactly.
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IV. TIME DOMAIN IDENTIFICATION

In this section, two time domain identification algorithms
–developed in Jacobsonet al.(1992)– are presented, which
obtain a nominal model with impulse responsehid(k) =
(A)k based on botha priori anda posteriori information,
and which use thè1 norm to quantify the worst-case iden-
tification error3.

1st Algorithm: Given thea priori parametersK, ρ and
ε, and thea posterioriexperimental impulse response sam-
plesyk, define the intervals:

[hL(k), hU (k)] , k = 0, 1, . . . , Nt − 1 (18)

wherehL(k) andhU (k) represent the least and the greatest
values of the impulse responseh(k), which are consistent
with thea priori information:

hU (k) = min{yk + ε,Kρ−k} (19)

hL(k) = max{yk − ε,−Kρ−k}. (20)

This algorithmA1
Nt

(K, ρ, ε) selects for eachk the center
of these intervals, of length at mostmin(2ε, 2Kρ−k):

(A1
Nt

)k =
{

1
2 [hU (k) + hL(k)] if k < Nt

0 if k ≥ Nt.
(21)

2nd Algorithm: Given the a priori information K
andρ, and thea posteriori informationyk, this algorithm
A2

Nt
(K, ρ) defines as the identified impulse response:

(A2
Nt

)k =
{

sign(yk) min(|yk|,Kρ−k) if k < Nt

0 if k ≥ Nt.

If the assumed parametersK andρ are consistent with the
experimental datayk, hid(k) is an interpolating model as
it can generate the time domain data within the noise level
assumeda priori.

V. INTERPOLATORY LMI BASED
IDENTIFICATION

This identification framework –developed in Sánchez Peña
and Sznaier (1995); Parriloet al.(1996, 1998, 1999)– com-
bines both frequency and time domain experimental data,
and can be applied to the case of parametric/nonparametric
model structures.

Given thea priori class of systemsT , thea priori classes
of noisesNf andNt, and thea posteriori frequency re-
sponse and impulse response datayf andyt, determine:

• if the a priori information is consistent with thea
posteriori information, i.e., if the consistency set
T (yf ,yt) (13) is non empty.

• a nominal model in the consistency set.

3As the `1 norm of a system with impulse responseh(k) bounds
theH∞ norm of its transfer functionH(z) (Jacobsonet al. (1992)):
‖H(z)‖∞ ≤ ‖h(k)‖1, identification iǹ 1 leads to identification inH∞.

The problem of checking consistency betweena priori
and a posteriori information reduces to finding a model
H(z) = Hnp(z) + Hp(z) in the a priori class of sys-
temsT , that interpolates the frequency and time domain
a posteriorisamples within thea priori noise levels. To
solve this problem, a generalized interpolation framework
presented in Ballet al. (1990) is used, which reduces to
a Nevanlinna-Pick problem in the frequency domain case
and to a Carathèodory-Fejèr problem in the time domain
case. The main result of Parriloet al. (1999) (see defini-
tions and references therein) states that thea priori infor-
mation is consistent with thea posterioriinformation, if it
is possible to find three vectorsw, h andp of appropriate
dimensions, which satisfy the following restrictions:

MR(w,h) > 0 (22)

(wk + (Pfp)k − yf
k ) ∈ N f (23)

(Uh)k + (UPtp)k − yt
k) ∈ N t (24)

whereMR(w,h) depends on both thea priori anda poste-
riori information, and the matricesPf andPt are functions
of the experimental data from the assumed parametric com-
ponent. These restrictions can be rewritten as a set of lin-
ear matrix inequalities (LMI’s) in the variablesw, h andp,
and efficiently solved via convex programming algorithms
(Boydet al. (1994)).

Once consistency betweena priori information anda
posterioritime/frequency experimental data is established,
this identification procedure provides a set of nominal mod-
elsĤQ

id(z) parametrized in terms of a free parameterQ(z)
(see definitions in Parriloet al. (1996, 1998)):

ĤQ
id(z) =

T11(z)Q(z) + T12(z)
T21(z)Q(z) + T22(z)

. (25)

If the functionQ(z) is chosen to be constant, the order of
the identified nonparametric model is less than or equal to
(Nf + Nt).

VI. ROBUST IDENTIFICATION TOOLBOX -
ROBIT

A. Main Functions

In this section we present a brief description of the main
functions of this toolbox. The background on these proce-
dures can be found in the selected bibliography.

• freqsets : Finds the intersection ofM sets of ex-
periments of lengthNf , performed in the frequency
domain and corrupted by additive noise (Helmicki
et al. (1991)).

[yf,ef]=freqsets(Y,E)

Inputs:

– Y(Nf ,M ): experimental data in the frequency do-
main.

– E(1,M ): bounds on the measurement noise for each
experiment.

Outputs:
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– yf : final data set.

– ef : final error data.

• timesets : Finds the intersection ofM sets of ex-
periments of lengthNt, performed in the time do-
main and corrupted by additive noise (Helmickiet al.
(1991)).

[yt,et]=timesets(Y,E)

Inputs:

– Y(Nt,M ): experimental data in the time domain.

– E(1,M ): bounds on the measurement noise for each
experiment.

Outputs:

– yt : final data set.

– et : final error data.

• alg2stg : Performs the discrete time “two stage”
identification (Helmickiet al. (1991); Gu and Khar-
gonekar (1992)).

[sysc,sysap,eid]=alg2stg(Hn,en,K,rho,
window,windpar,apptype)

Inputs:

– Hn(Nf ,1): Nf noisy experimental frequency re-
sponse data, at discrete frequenciesθk equally
spaced over the unit disk between0 andπ.

– en(Nf ,1): frequency dependent a priori error
bounds, at each frequencyθk (optional).

– K,rho : a priori information on gain and stability
margins of the real plant (optional).

– window : type of window function (optional). Four
types of windows are available,

∗ ‘splinwin’ : sine window for the spline
based identification,

∗ ‘trianwin’ : triangular window for the Ce-
saro sum based identification,

∗ ‘coswin’ : cosine window for the ‘second
Bernstein procedure’ based identification,

∗ ‘trapwin’ : trapezoidal window, mixture of
rectangular and triangular windows.

– windpar : parameters of the selected window func-
tion [Nwc Mwc] (optional), with:

∗ Nwc: length of its causal portion,

∗ Mwc: length of its rectangular portion
(only required ifwindow=‘trapwin’ else
Mwc=[] ).

– apptype : type of analytic approximation to non-
analytic portion of pre-identified model (optional).

∗ ‘one_step’ : non-analytic portion is zero,

∗ ‘nehari_ap’ : Nehari’s approximation,

∗ ‘fir_ap’ : FIR approximation.

Outputs:

– sysc : discrete transfer function corresponding to
the analytic portion of the pre–identified model, ob-
tained by the first stage of the algorithm.

– sysap : discrete transfer function of the analytic
approximation to the non-analytic portion of the
pre-identified model; only ifapptype is provided.
Both sysc andsysap are expressed in ascending
powers ofz.

– eid : worst-case identification error; only if a pri-
ori information and window type and parameters are
provided.

• discneh : Finds the discrete-time Nehari approxi-
mation, analytic in the open unitary disk, to a non-
analytic (anticausal) system (Glover (1984)).

[sysneh,eneh]=discneh(hac)

Inputs:

– hac : vector with the coefficients of the
non-analytic (anticausal) impulse response:
hac (1,Nac)=[h(−Nac) . . . h(−1)].

Outputs:

– sysneh : transfer function for the discrete-time Ne-
hari approximation,[num;den] in ascending pow-
ers ofz.

– eneh : upper bound on the approximation error.

• nehari : Finds the continuous time Nehari’s ap-
proximation to an unstable system (Glover (1984)).

[sysneh]=nehari(sysunst,tol)

Inputs:

– sysunst : system matrix of the continuous-time
unstable system.

– tol : tolerance used at model balancing step (op-
tional; default:tol =10−16).

Outputs:

– sysneh : system matrix of the continuous-time Ne-
hari approximation.

• nehshuff : Finds theq-order FIR approximation to
a discrete-time system, analytic in the open unitary
disk (Kootsookoset al. (1992)).

[sysap,eap]=nehshuff(sys,q,tol,N)

Inputs:

– sys : original system matrix.

– q: order of the FIR approximation.

– tol,N : numerical tolerance and number of itera-
tions (optional, both used to stop algorithm; default:
tol =10−16, N=30).

Outputs:

– sysap : vector with the coefficients of the FIR ap-
proximation.

– eap : upper bound on the approximation error.
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• err2stg : Computes the worst-case error for
the implemented “two-stage” identification algo-
rithm (Helmicki et al. (1991); Gu and Khargonekar
(1992)).

[eid]=err2stg(K,rho,ef,Nf,window,
windpar)

Inputs:

– K,rho : a priori information on gain and stability
margins of the real plant.

– ef (Nf ,1): frequency dependent a priori error
bounds.

– Nf : number of frequency data points considered in
the identification.

– window,windpar : type of window function used
by the first stage of the identification and its param-
eters. See functionalg2stg .

Outputs:

– eid : worst-case bound on the identification error.

• l1ident : Performs a discrete time identification in
`1 (Jacobsonet al. (1992)).

[hid,eid]=l1ident(data,rho,K,e,type)

Inputs:

– data (N ,1): finite and corrupted portion of the im-
pulse response of the system to be identified, of
lenghtN .

– rho,K : a priori information on stability margin and
gain of the real plant.

– e(N ,1): time dependent a priori error bounds, for
each experimental sample.

– type : type of identification algorithm,

∗ type=1 : tuned to all a priori parameters
K,rho,e ,

∗ type=2 : tuned only toK,rho .

Outputs:

– hid (N ,1): impulse response of the identified sys-
tem.

– eid : worst-case identification error.

• errell1 : Computes the worst-case error for the
implemented`1 identification algorithm (Jacobson
et al. (1992)).

[eid]=errell1(K,rho,et,Nt,type)

Inputs:

– rho,K : a priori information on stability margin and
gain of the real plant.

– e(N ,1): time dependent a priori error bounds.

– Nt: number of data points considered in the identifi-
cation.

– type : type of identification algorithm selected; see
function l1ident .

Outputs:

– eid : worst-case identification error.

• interpol : Checks consistency between thea pri-
ori information –K, ρ and(εf , εt)– and thea poste-
riori experimental data (Parriloet al. (1996, 1999)).

[W,Hn,P]=interpol(rho,K,data_f,data_t)

Inputs:

– rho,K : a priori information on stability margin and
gain of the real plant.

– data_f : frequency domain data[Z Yf Ef Pf] ,
with:

∗ Z(Nf ,1): discrete sampling frequencies,

∗ Yf (Nf ,1): frequency response measurements,

∗ Ef (Nf ,1): frequency dependent a priori error
bounds,

∗ Pf (Nf ,Np): parametric information matrix,
Pf (i,j)=Gi(θi) , i = 1, . . . , Np (optional).

– data_t : time domain data[Ut Yt Et Pt] ,
with:

∗ Ut (Nt,1): discrete time input,

∗ Yt (Nt,1): discrete time output,

∗ Et (Nt,1): time dependent a priori error
bounds,

∗ Pt (Nt,Np): parametric information matrix,
Pt (i,j)=gi(k), i = 1, . . . , Np (optional).

Outputs :

– W(Nf ,1): frequency response samples of the inter-
polating functionH(z), i.e.,H(zi) = Wi.

– Hn(Nt,1): impulse response samples of the inter-
polating functionH(z), i.e., H(z) = Hn(0) +
Hn(1)z + · · ·+ Hn(Nt − 1)zNt−1.

– P(Np,1): coefficients of the parametric portion of
the identified model.

• interp_e : Checks consistency between the apri-
ori information –K andρ– and thea posterioriex-
perimental data, minimizing thea priori error bound
ε = sup(εf , εt) (Parriloet al. (1996, 1999)).

[W,Hn,e,P]=interp_e(rho,K,data_f,
data_t)

Inputs:

– See functioninterpol .

Outputs :

– e: optimal value ofε.

– See functioninterpol .

• interp_k : Checks consistency between the apri-
ori information –ρ and(εf , εt)– and thea posteriori
experimental data, minimizing the worst-case gain
K (Parriloet al. (1996, 1999)).

[W,Hn,K,P]=interp_k(rho,data_f,data_t)

Inputs:
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– See functioninterpol .

Outputs:

– K: optimal value ofK.

– See functioninterpol .

• intmodel : Finds a nominal model which inter-
polates the frequency and/or time data, found by
any of the functionsinterpol , interp_e or
interp_k (Parriloet al. (1996, 1999)).

[Sint]=intmodel(K,rho,Z,W,Hn,Q)

Inputs:

– rho,K : a priori information on stability margin and
gain of the real plant.

– Z(Nf ,1): discrete sampling frequencies (input to
any of the functionsinterpol , interp_e or
interp_k ).

– W(Nf ,1): frequency response samples of the inter-
polating function (output from any of the functions
interpol , interp_e or interp_k ).

– Hn(Nt,1): impulse response samples of the inter-
polating function (output from any of the functions
interpol , interp_e or interp_k ).

– Q: system matrix of the free parameter function
Q(z).

Outputs:

– Sint : system matrix of one possible interpolating
model.

• errorint : Computes the worst-case identifica-
tion error for the parametric/nonparametric mixed
time/frequency identification algorithm presented in
(Parriloet al. (1999))

[eid]=errorint(K,rho,Z,ef,Ut,et,Pf,Pt,
Ginf)

Inputs :

– rho,K : a priori information on stability margin and
gain of the real plant.

– Z(Nf ,1): discrete sampling frequencies.

– ef : a priori error bound in the frequency domain.

– Ut (Nt,1): discrete time input,

– et : a priori error bound in the time domain.

– Pf,Pt : a priori parametric information (optional;
see functioninterpol ).

– Ginf (Np,1): vector with theH∞ norms of func-
tions that form the a priori parametric information
(optional; only necessary ifPf,Pt are provided).

Outputs:

– eid : worst-case identification error.

B. Demostration Files

The demostration files show how to use the different func-
tions of this toolbox. In all the examples, the “experimental
data” –in the frequency and/or the time domain– proceed
from the stable component of the Euler-Bernoulli model of
a flexible beam with viscous damping, presented in Eqn.
(26), section VII..

• demballs : Shows a procedure that can be applied
to different sets of noisy data from the repetition of a
single experiment, in order to obtain a smallera pri-
ori error bound, reducing thus the worst-case identi-
fication error.

• dem2stg : Shows the discrete time “two stage”
identification, with two options:

1. Uses a trapezoidal window function at the first
stage, and computes the Nehari’s approxima-
tion at the second stage.

2. User selection of the window function type,
and the type of approximation to the non-
analytic identified system.

• demoell1 : Shows the discrete time identification
in `1, using two types of algorithms:

1. Tuned to alla priori informationK, ρ andεt.

2. Tuned only toK andρ.

• deminter : Shows the parametric/nonparametric
mixed time/frequency identification, in the following
cases:

1. Identification in the frequency domain, consid-
ering only frequency response samples and no
parametric component.

2. Identification in the frequency domain, assum-
ing that the real system has a parametric com-
ponent with uncertain parameters.

3. Mixed time/frequency identification, i.e., tak-
ing into account both frequency and time do-
main data (from the impulse response of the
system), and considering a parametric compo-
nent for the real model.

VII. APPLICATION EXAMPLE

Next we illustrate the procedure explained above on a
simulated example. The “real” system is an ideal Euler-
Bernoulli beam with viscous damping, which can be de-
scribed using the following physical model that relates the
vertical displacementy to the timet and to the longitudinal
coordinatex (see Fig. 2):

aρ
∂2y

∂t2
+ E∗I

∂4∂y

∂x4∂t
+ EI

∂4y

∂x4
= F (t)δ(x)

∂2y

∂x2
(±1, t) = 0 ,

∂3y

∂x3
(±1, t) = 0

x ∈ [−1, 1]. (26)
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Herea is the cross sectional area,ρ the mass density of
the beam,I the moment of inertia,E the Young modulus
of elasticity andE∗ the normal strain rate. The dynam-
ics are evaluated atx = 0 when a forceF (t) is applied
at this point. Due to the fact that the above PDE is lin-
ear, by using the Laplace transform an infinite dimensional
transfer function can be derived (Klompstra (1987)). The
discrete time model obtained by applying the bilinear trans-
formation to the stable component (no rigid-body modes)
has been used to simulate frequency and time domainex-
periments, with the following values for the constants of
the modela · ρ = 46 kg·m, E∗I = 0.46 kg·m/sec and
E · I = 55.2 N·kg (Mazzaro (1997)).

−1 0 1 −→
x

↑
y(x, t)

6F (t)

Figure 2: Application example: flexible structure.

A. Experimental data handling

Applying the functionfreqsets to a set ofM = 3
identical experiments in the frequency domain, of length
Nf = 50 and with noise bounded byεf = 8 ·10−5, the ob-
tained frequency response samples and the new error bound
–variable in frequency– can be seen in Fig. 3.

B. Two stage algorithm

Next, we apply this identification procedure to the physical
system (26), using the programs of the Robust Identifica-
tion toolbox. We consider120 frequency response samples
equally spaced in[0, π) (which givesNf = 240 samples),
proceeding from the intersection ofM = 3 experiments
corrupted by noise bounded byef = 8 · 10−5. During the
first stage a trapezoidal window defined in Gu and Khar-
gonekar (1992) as a function of the parametersm andn
was used, with the valuesn + m = 120 (causal portion)
and2m = 60 (rectangular portion). This class of window
function reflects through the ratioβ = m

n (β ∈ [0, 1]) the
trade-off between the approximation and noise errors, and
allows to control its effects on the worst-case identification
error.

The functionalg2stg performs the identification in
one or two stages, as can be seen in Fig. 4. In the first
case, the pre-identified model is taken as the identified one,
which implies that the noncausal identified portion is ap-
proximated by the null function. Note that ifNf is large
enough, the pre-identified model results a good approxi-
mation to the identified model, thus it is reasonable to ne-
glect the noncausal identified portion. In the second case,
the Nehari’s approximation for the noncausal portion is ob-
tained. It is also possible to compute a FIR approximation
for the latter (Kootsookoset al. (1992)). In all cases, the
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Figure 3: Results from the intersection of frequency do-
main experiments.
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Figure 4: One or two stage identification.

functionalg2stg allows to choose the type and parame-
ters of the window function.

C. Time domain algorithms

Next, we apply these identification techniques to the phys-
ical system (26), using the functions available in the Ro-
bust Identification toolbox. The experimental data proceed
from the repetition and intersection ofM = 3 experiments,
which consist of the firstNt = 120 impulse response sam-
ples affected by noise boundeda priori by εt = 4 · 10−6.
The assumeda priori information on the class of systems
areK = 4, 5 · 10−4 andρ = 1.025. Functionl1ident
performs the identification iǹ1. The nominal model ob-
tained with the first algorithm, tuned to all thea priori in-
formation, is shown in Fig. 5.

The worst-case identification error (Jacobsonet al.
(1992)) for this algorithm iseid = 1.3787 · 10−4, and can
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be computed using the functionerrell1 .
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Figure 5: Identification iǹ1 using the first algorithm.

D. LMI based algorithm

Next, we apply this identification framework to the phys-
ical system (26), using the different functions of the Ro-
bust Identification toolbox. We take into accountNf = 9
frequency response samples between[0, π], and the first
Nt = 10 impulse response samples, corrupted by noise
boundeda priori by εf = 8 · 10−5 andεt = 4 · 10−6, re-
spectively. We also assume that the system to be identified
has a parametric component with the following structure:

P (z) =
p1z + p2

z2 + 0.04z + 1.05
(27)

wherep1 andp2 are uncertain parameters.
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Figure 6: Frequency domain identification without para-
metric component.
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Figure 7: Mixed time/frequency domain identification with
parametric component.

Figures 6 and 7 show the results of the identification in
the frequency case without assuming a parametric compo-
nent, and in the mixed time/frequency case with parametric
component respectively, using the functionsinterp_k
and intmodel . The first one finds the least value of the
worst-case gainK, so that thea priori and thea posteri-
ori information are consistent, and provides a set of fre-
quency and/or time domain values to be interpolated by the
set of nominal models. It is also possible to check con-
sistency minimizing thea priori error bounds, using the
functioninterp_e . The second one obtains an identified
system for a given choice ofQ(z). In both cases a value
of ρ = 1.25 is assumed asa priori information, and the
free parameter is chosen asQ(z) = 0. In the frequency
case a value ofK = 3.1465 · 10−2 for the worst-case
gain is obtained; in the mixed case,K = 3.8573 · 10−4,
p1 = 4.1419 · 10−4 andp2 = −8.0218 · 10−7.

This example illustrates the fact that, by addinga priori
information –a parametric component– anda posterioriin-
formation –frequencyand time domain data– smaller val-
ues of the gainK can be obtained, and thus, a “smaller” set
of identified models (Parriloet al. (1999)).

VIII. CONCLUSION

This work presents a Robust Identification toolbox, which
implements the different identification techniques devel-
oped in the deterministic worst case framework, and which
is not available as a commercial version.

As an illustration, different procedures are applied to
the problem of identifying a flexible structure of a known
mathematical model, in order to evaluate the results ob-
tained from the identification.
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