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Abstract— In this paper we present a brief tuto- (see Gu and Khargonekar (1992), Chetral. (1995) and
rial and a Toolbox for the area of Robust Identification, references therein). Instead, if the available experimen-
i.e. deterministic, worst-case identification of dynamic tal data originate from time domain experime#tsiden-
systems. The uncertain models obtained fit exactly the tification procedures (see Jacobsetnal. (1992) and ref-
framework of Robust control, specially’H ., procedures, erences therein) are used. In Parefoal. (1996, 1998),
if the control of the system is the objective. The use of a new Robust Identification framework that takes into ac-
several of the identification algorithms are illustrated count both time and frequency domain experiments has
by means of a simulated example of a flexible structure. been proposed. Thus, the problem where “good” frequency
response fitting (smafti., error norm) leads to “poor” fit-
ting in the time domain is prevented. Finally, in Parrilo
et al. (1999) an extension of this mixed time/frequency
identification procedure to the case of systems with a para-
metric component is presented.

This paper presents a Robust Identification toolbox
which implements many of the different techniques avail-

. INTRODUCTION able in this framework. As an example there is an appli-

The area of Robust Identification has been originally prosation to the problem of a flexible structure. The tool-
posed by Zames in the Plenary talk at ACC 1988, and tHeox has been developed for MatLab, and is freely avail-
first papers appeared in Gat al. (1989) for approxima- able from the Web Site of GICOR (Robust Identification
tion and in Helmickiet al. (1991) for Identification. This and Control Group) at the University of Buenos Aires:
methodology allows the computation of a family of mod-/www.fi.uba.ar/laboratorios/gicor/ . The
els (the so called uncertain model) from experimental daténcertain models obtained from this methodology are com-
anda priori information, which can be used as a first stegatible with the different synthesis methods available in the
in a Robust Control framework. It is therefore a deterRobust ContrgILMI andu—~Analysistoolboxes.
ministic, worst-case approach which describes families of This toolbox implements almost all the state of the art
models in terms ofH., or ¢; errors. In particular, fre- methods in this area, although it inherits a few practical
quency domain Robust Identification methods produce lamitations from the theory and the algorithms used to im-
set of models with additive dynamic uncertainty (Sancheglement it. In the first place, a common weakness of the
Pefia and Sznaier (1998); Zhet al. (1996)) which can Robust Identification framework is the conservativeness of
be used directly as the representation of a physical sythe error bounds. Better bounds are possible by using op-
tem which may be controlled by aH,, controller. To timization methods, at the expense of a heavier computa-
produce structured dynamic uncertain models, these Rtenal load. Also, the LMI based approach, which is re-
bust identification procedures should be used over differeldted to interpolation methods, is limited by the number
input-output sets. In this case, control design methods a$ experimental data points. A strong research effort is
u—synthesis (Sanchez Pefia and Sznaier (1998); 2halu  devoted to the area of optimization methods, in particular
(1996)) may be used. If time domain Robust identificatiom.MI’s, therefore larger practical problems are expected to
is applied to the physical systerfy, controllers (Sanchez be solved in a reasonable time, in the future.
Pefia and Sznaier (1998)) could be designed. An extense bibliography has been devoted to this subject

In this context model uncertainty stems from two differ-during the last years. A complete survey of the area can be
ent sources: measurement noise and lack of knowledgefound in Makilaet al. (1995); Sanchez Pefia and Sznaier
the system itself due to the limited information supplied by1998) and Chen and Gu (2000). Next section presents a
the experimental data. brief tutorial on this subject, and sections Ill, IV and V

Different types of identification algorithms have beerprovide a more detailed explanation of frequency and time
developed in this framework. The case where the availomain identification algorithms as well as interpolatory
able experimental data are generated by frequency domairocedures, respectively. Section VI details the Toolbox
experiments leads t#(., based identification procedurescommands, and section VIl illustrates the use of all previ-

Keywords— Robust Identification, two stage
algorithms, H., identification, ¢; identification,
Mixed time/frequency identification, parametric/non-
parametric identification.

91


#### ####
Latin American Applied Research

#### ####
 

#### ####
34:91-100(2004)

#### ####
91


Latin American Applied Research 34:91-100(2004)

ous algorithms by means of a flexible structure, from whicland where theV,, components of vecto&(z) are known
(simulated) "experimental" data have been obtained. Hinearly independent functions that satisfy the separation
nally some Conclusions are drawn in section VIII. condition:

Il. ROBUST IDENTIFICATION FRAMEWORK (G2} NS =0 ®)

Each Robust Identification procedure takes as input data . . .
botha priori anda posterioriinformation on the real sys- Which guarantees that the decompostion (5) is unique (Par-
tem. rilo et al. (1999)).

The a priori information characterizes the set of candi- 1hea priori classes of noises that are present during the
date modelss which shouldcontain the system to be iden- frequency and/or time domain experimentg; and.\;,
tified g, and the class of noise¥” that affect the experi- @€
mental data, through the parametéfsp ande.

We consider in this paper the class of discrete time, lin- Ny = {n" ech, \771{\ < e} 9)
ear, sFabIe and cal_Jsa_I systems, whose frequency response N, 4 {nt e RM, |ni| < el
H(z) is related to its impulse responsék) through the
standardz-transform evaluated at= e’*: The a posteriori information is a finite set of data
o y = E(g,n) € CV, obtained from frequency domain
H(z) = Z h(k)z*. (1) ortime domain experiments and corrupted by noise.
o The frequency domain dagd € CV7 consist of a set of

) ) o o Ny samples of the frequency response of the sysiEm),
Therefore, analytic functions inside the unit circle repregith additive noise; e Ny

sent causal and stable systems.
In the case of frequency domain identification, &heri- y£ = H() 4+, k=0,...,N;—1 (10)
ori class of candidate syster§ds defined as:
which satisfy the following relation of complex conjugate

s & {H (z) analytic in |z]| < p | (2) symmetry (forN, even):
sup |H(z)| < K, p>land K < oo}. ¢ f .
lzI<p YNs o1k T (ny/2+1fk) ) 11)

This set contains all exponentially stable systems, i.e., k=0,...,Ns/2 -1

those that satisfy the following time domain restriction: G f
with y{ andny /241 real samples, as they proceed from a

|h(k)| < Kp™*, k=0,1,2,... (3) real rational system.

The time domain data consists of the firgt samples of
with a worst-case gain to complex exponential input&of the time response of the system to a known but otherwise
and a stability margin ofp — 1). arbitrary input,y’ € R"¢, affected by additive noisg ¢

In the case of time domain identification, thepriori ~ MN:

class of model® results:

N yi = (Uh)y +m,, k=0,1,...,N; — 1 (12)
® = {h()[ (k) < (k) < du(k),
k

—0,...,Ny— 1} 4) whereU is the Toeplitz matrix of the input sequence, and

is a column vector with coefficients of the impulse response
which includes the subset of systems satisfying (3) whe®f the system.

po(k) = —Kp~* andg, (k) = Kp~*. As output, a Robust Identification procedure provides a
If it is assumed that the system to be identified has tH&°minal model;, based on tha posterioriexperimental
following structure: data, and a worst-case bouag on the identification er-
ror, defined in an appropriate norm over teriori set of
H(2) = Hyp(z) + Hp(2) (5) candidate models.

Thus, the family of identified models “covers” the set
whereH,(z) andH,,(z) represent its parametric and non-S(y) of all plants in thea priori class, which could have
parametric components respectively, a@riori class of produced thea posteriori information with the class of
modelsT is defined as: noises assumedlpriori:

T = {Hup(2)+ Hy(2) | 6) Sy)2{geS|y=E(gn),neN} (13
H,,(z) €S, Hy(z) € P}

1Al the experiments are in fact performed in the time domain. There-
fore the so called “frequency domain” experiments are carried out using
sinusoidal inputs at different frequencies. A procedure to obtain frequency
measurements and its error bounds from time domain data is explained in
{(pTG(2) | p € RV, p; € [ai,b]}  (7)  Helmickiet al.(1991) in a Robust Identification framework.

with:

1>
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R By repeating and intersecting the experiments it is possi-

——  i~th experiment ble to obtain a smaller region which contains the real value,
30 ~_ Imersedton H(ei%), i.e.,a smaller noise error boung, reducing thus
the worst case identification erref; (nx, K, p).

Figure 1 shows the result of the proposed procedure, for
2or 1 M = 3 experiments in the frequency domain at a generic
i | sample frequency;. Due to the lack of an analytical ex-

pression for the intersection zone, this one is “covered” by
1op ay ] the smallest ball of radius, and center;.. Hence; and

r, are taken as the resulting frequency response sample and
the error bound respectively, at the frequefigy?

35

251

jy

B. Two stage Algorithm

This class of algorithms for identification ifH,, —
developed in Helmicket al. (1991); Gu and Khargonekar
s s SR (1992)- are characterized by a two stage structure.
R S The first stage involves taking the inverse discrete
Fourier transform (DFT) of the frequency response sam-

les:
Figure 1: Intersection of the experiments at a generic sarre—

pling frequencydy,. 1 Ny—1
Com
v, (k) = — e 15
ny () M;%ef (15)

and itshouldcontain the real plant. This fact justifies the
need to defina priori classes of models and noises. Othergonsidering only the firstvV; coefficients of this real and

wise all possible combinations of plants and noises Whiceriodic sequence, which gives a first finite approximation

could have produced the experimental data, would form gir|R) ;LNf (k) to the impulse response of the real system:
unbounded sef(y) and the Robust Identification problem

Vn:%lélgl make no sense, sineg, — oo andg;4 could be any szf(k) _ th(k;) L k=-N;/2,....N;j2—1 (16)

 Finally, due 10 the fact that the assumegriort O™ and muttiplying (16) by a suitable window function()

. P P ¢ q f length2n + 1 with n = n(Ny), in order to establish
the engineering common sense, there is no guarantee tI gtconver ence i - ||, which yields the following pre-
it will be coherent with the experimental posterioriin- g oo y gp

; . i ifi I
formation. Therefore, consistency between both types c|> entified mode

information should be tested, i.e., if the set (13) contains at R n
least one element, before the application of a Robust Iden- Hpia(z) = Z hy, (k)w(k)z*. a7)
tification procedure. Otherwise, the worst-case boeipd k=—n

obtained over the family of identified models would be no
longer valid. A discussion about the selection of éheri-  But due to the presence of measurement noise and to the

ori data can be found in Mazzaet al. (2001). fact that the real impulse response is in general of infi-
nite length (IIR), the approximation obtained above (17)
ll. FREQUENCY DOMAIN IDENTIFICATION has a noncausal portion (negative Fourier coefficients), and

therefore is non analytic inside the unit circle.
The second stage involves solving the Nehari’s problem,
., finding the optimal ir| - ||, analytic approximation

A. Experimental Data
Given an experiment in the frequency domain, (9) and (1(?)e
provide at each sampling freq_uen@ya pall n th? COM-" " for the pre-identified model obtained during the first stage
plex plane of centey; and radius:;, which contains the (Glover (1984))

true frequency response samgde’%=) (Helmicki et al. '

(1991)): As the worst-case identification error after the Nehari's

approximation is at most twice the error obtained in the first
j05, stage, the selected window function determines the type of

lyf = H(e"*)| < ¢ (14) S . > Ine fyp
convergence of the two stage nonlinear algorithm. Note

if the assumea priori bound on the measurement noige that noa priori information is used to obtain a nominal
is “correct”. Moreover, by performing/ identical exper- model, thus this is anntunedidentification procedure.

iments a set of\/ balls centered afy; ); with radii (¢f); — : _ _ _
2The application of this procedure to time domain experiments follows

fori =1,2,..., M will be obtained at each sampling fre-. ; ; )
o . . . in the same manner as in the frequency case. At each discrete time one
quency. Within the intersection of all these balls lies th@as a set ofis real intervals, whose intersection zone can be computed

real frequency response sample. exactly.
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IV. TIME DOMAIN IDENTIFICATION The problem of checking consistency betweepriori

In this section, two time domain identification algorithms:and a posteriori information reduces to finding a model

—developed in Jacobs@hal. (1992)— are presented,whichH(z) - H"’).(Z) + Hy(2) in the a priori clas_s of sys- .
. . o tems7, that interpolates the frequency and time domain
obtain a nominal model with impulse resporisg(k) =

o o . a posteriorisamples within the priori noise levels. To
(A)y. based on both priori anda posterioriinformation, solve this problem, a generalized interpolation framework
and which use thé, norm to quantify the worst-case iden- P ad P

e presented in Balket al. (1990) is used, which reduces to
tification error®. ) . . .
st I o a Nevanlinna-Pick problem in the frequency domain case
15* Algorithm: Given thea priori parametergs, p and

dth teriori . ali | and to a Carathéodory-Fejér problem in the time domain
€, and thea posterioriexperimental IMpUISe reSponse SaMe.,se - The main result of Parrit al. (1999) (see defini-
plesys, define the intervals:

tions and references therein) states thatahwiori infor-
mation is consistent with the posterioriinformation, if it
is possible to find three vectoys, h andp of appropriate

whereh (k) andhy (k) represent the least and the greateS@mensmns, which satisfy the following restrictions:

lho(k), hu (k)] , k=0,1,..., N, —1 (18)

values of the impulse responagk), which are consistent Mg(w,h) >0 (22)
with thea priori information: f £

(wi + (PP —vp) € N (23)

hy(k) = min{y, +¢ Kp~*} (19) (Uh) + (UPp)i —yp) € N° (24)

_ —k
hi(k) = max{ye —e —Kp™"}. (20) whereM g (w, h) depends on both thepriori anda poste-

riori information, and the matricd®; andP, are functions
of the experimental data from the assumed parametric com-
ponent. These restrictions can be rewritten as a set of lin-
ear matrix inequalities (LMI's) in the variables, h andp,
(21) and efficiently solved via convex programming algorithms
(Boydet al. (1994)).

Once consistency betweenpriori information anda

velt . g ) posterioritime/frequency experimental data is established,

andp, and thea posterioriinformationyy, this algorithm

) s i alt " thisidentification procedure provides a set of nominal mod-
A%, (K, p) defines as the identified impulse response: eIng(z) parametrized in terms of a free paramefér)

(see definitions in Parrilet al. (1996, 1998)):
_ Tn(2)Q(2) + Tha(2)

T1(2)Q(2) + To2(2)
If the assumed parametekSandp are consistent with the
experimental datay,, h;q(k) is an interpolating model as If the functionQ(z) is chosen to be constant, the order of
it can generate the time domain data within the noise levéie identified nonparametric model is less than or equal to
assumea priori. (Ny + Ny).

V. INTERPOLATORY LMI BASED VI. ROBUST IDENTIFICATION TOOLBOX -

IDENTIFICATION ROBIT

. e s . Main Functi
This identification framework —developed in Sanchez Per‘él ain Functions

and Sznaier (1995); Parrit al. (1996, 1998, 1999)— com- In thi; section_ we present a brief description of the main
bines both frequency and time domain experimental datf!nctions of this toolbox. The background on these proce-
and can be applied to the case of parametric/nonparametfigres can be found in the selected bibliography.
model structures.

Given thea priori class of system&, thea priori classes
of noisesN; and\V,, and thea posteriorifrequency re-
sponse and impulse response dataandy*, determine:

This algorithm Ay, (K, p, €) selects for eact the center
of these intervals, of length at mastin(2¢, 2K p—*):

Lihg (k) + hp (k)] if k< N,

1 —
(ANt)’“—{ if k> N,.

(e Y}

2nd Algorithm:  Given thea priori information K

(A2 ) = sign(y) min(|yx|, Kp=) if k< Ny
Nk =0 if k> N,. -0

H;5(2)

(25)

e fregsets : Finds the intersection a¥/ sets of ex-
periments of lengthV,, performed in the frequency
domain and corrupted by additive noise (Helmicki
et al.(1991)).

e if the a priori information is consistent with the [yf.efl=fregsets(Y,E)
posteriori information, i.e., if the consistency set Inputs:
T (y’,y") (13) is non empty.
vy (13 Py — Y(Ny,M): experimental data in the frequency do-

¢ anominal model in the consistency set. main.

— E(1,M): bounds on the measurement noise for each

3As the ¢; norm of a system with impulse responiék) bounds experiment.
the Hoo norm of its transfer function (z) (Jacobsoret al. (1992)):
|H(2)|loo < ||h(E)||1, identification in¢y leads to identification ift{ o . Outputs:
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— yf : final data set.
— ef : final error data.

: Finds the intersection af/ sets of ex-
periments of lengthV,, performed in the time do-
main and corrupted by additive noise (Helmiekal.
(1991)).

[yt,et]=timesets(Y,E)

Inputs:

— Y(V¢,M): experimental data in the time domain.
— E(1,M): bounds on the measurement noise for each
experiment.
Outputs:

— yt : final data set.
— et : final error data.

alg2stg : Performs the discrete time “two stage”
identification (Helmickiet al. (1991); Gu and Khar-
gonekar (1992)).
[sysc,sysap,eid]=alg2stg(Hn,en,K,rho,
window,windpar,apptype)

Inputs:

— Hn(Ng,1): Ny noisy experimental frequency re-
sponse data, at discrete frequencigs equally
spaced over the unit disk betwe@@and.

— en(Ny,1): frequency dependent a priori error
bounds, at each frequengy (optional).

— K,rho : a priori information on gain and stability
margins of the real plant (optional).

— window : type of window function (optional). Four
types of windows are available,

x ‘splinwin’ sine window for the spline
based identification,
* ‘trianwin’ : triangular window for the Ce-

saro sum based identification,

x ‘coswin’ : cosine window for the ‘second
Bernstein procedure’ based identification,
* ‘trapwin’  : trapezoidal window, mixture of
rectangular and triangular windows.
— windpar : parameters of the selected window func-
tion [Nwc Mwc] (optional), with:

*x Nwc length of its causal portion,

« Mwc length of its rectangular portion
(only required ifwindow="trapwin’ else
Mwc=[] ).

— apptype : type of analytic approximation to non-
analytic portion of pre-identified model (optional).

x ‘one_step’ : non-analytic portion is zero,
x ‘nehari_ap’  : Nehari’'s approximation,
« ‘fir_ap’ : FIR approximation.

Outputs:

— sysc : discrete transfer function corresponding to
the analytic portion of the pre—identified model, ob-
tained by the first stage of the algorithm.

95

— sysap : discrete transfer function of the analytic
approximation to the non-analytic portion of the
pre-identified model; only ipptype is provided.
Both sysc andsysap are expressed in ascending
powers ofz.

— eid : worst-case identification error; only if a pri-
ori information and window type and parameters are
provided.

discneh : Finds the discrete-time Nehari approxi-
mation, analytic in the open unitary disk, to a non-
analytic (anticausal) system (Glover (1984)).

[sysneh,eneh]=discneh(hac)

Inputs:
— hac: vector with the coefficients of the
non-analytic  (anticausal) impulse response:
hac (1,Nac)=[h(—Nac) ... h(-1)].

Outputs:

— sysneh : transfer function for the discrete-time Ne-
hari approximationjnum;den] in ascending pow-
ers ofz.

— eneh: upper bound on the approximation error.

nehari Finds the continuous time Nehari's ap-
proximation to an unstable system (Glover (1984)).

[sysneh]=nehari(sysunst,tol)
Inputs:
— sysunst : system matrix of the continuous-time
unstable system.
— tol : tolerance used at model balancing step (op-
tional; default:tol =1071).

Outputs:

— sysneh : system matrix of the continuous-time Ne-
hari approximation.

nehshuff : Finds theg-order FIR approximation to
a discrete-time system, analytic in the open unitary
disk (Kootsooko®t al. (1992)).

[sysap,eap]=nehshuff(sys,q,tol,N)

Inputs:

— sys : original system matrix.
— Qq: order of the FIR approximation.

— tol,N : numerical tolerance and number of itera-
tions (optional, both used to stop algorithm; default:
tol =10715, N=30).

Outputs:

— sysap : vector with the coefficients of the FIR ap-
proximation.

— eap: upper bound on the approximation error.
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e err2stg Computes the worst-case error for
the implemented “two-stage” identification algo-
rithm (Helmicki et al. (1991); Gu and Khargonekar
(1992)).

[eid]=err2stg(K,rho,ef,Nf,window,
windpar)
Inputs:
— K,rho : a priori information on gain and stability
margins of the real plant.

— ef (Vy,1):
bounds.

frequency dependent a priori error

— Nf: number of frequency data points considered in
the identification.

— window,windpar : type of window function used
by the first stage of the identification and its param-
eters. See functioalg2stg

Outputs:
— eid : worst-case bound on the identification error.

e |lident : Performs a discrete time identification in
¢, (Jacobsoret al. (1992)).

[hid,eid]=Ilident(data,rho,K,e,type)
Inputs:
— data (V,1): finite and corrupted portion of the im-

pulse response of the system to be identified, of
lenght V.

— rho,K : a priori information on stability margin and
gain of the real plant.

— e(N,1): time dependent a priori error bounds, for
each experimental sample.

— type : type of identification algorithm,

x type=1 :
K,rho,e
* type=2 :tuned only toK,rho .

tuned to all a priori parameters

Outputs:
— hid (V,1): impulse response of the identified sys-
tem.

— eid : worst-case identification error.

e errelll : Computes the worst-case error for the
implemented?; identification algorithm (Jacobson
et al.(1992)).

[eid]=errellL(K,rho,et,Nt,type)
Inputs:
— rho,K : a priori information on stability margin and
gain of the real plant.
— e(V,1): time dependent a priori error bounds.

— Nt: number of data points considered in the identifi-
cation.

— type : type of identification algorithm selected; see
functionllident

96
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Outputs:

— eid : worst-case identification error.

. Checks consistency between theri-

ori information -, p and(ey, ;)— and thea poste-
riori experimental data (Parriket al. (1996, 1999)).
[W,Hn,P]=interpol(rho,K,data_f,data_t)

Inputs:

— rho,K : a priori information on stability margin and
gain of the real plant.
— data_f :frequency domaindaf@ Yf Ef Pf] ,
with:
x Z(Ny,1): discrete sampling frequencies,
* Yf(Ny,1): frequency response measurements,
x Ef (Ny,1): frequency dependent a priori error
bounds,
x Pf(Ny,Np): parametric information matrix,
Pf (1,7)=G:(0;) ,i = 1,..., N, (optional).

— data_t time domain datgUt Yt Et Pt]

with:
x Ut (IVy,1): discrete time input,
* Yt (IV¢,1): discrete time output,

x Et(Ng,1): time dependent a priori error
bounds,

* Pt (V¢,Np): parametric information matrix,
Pt (i,5)=g:(k),i = 1,..., N, (optional).

Outputs :
— WXNy,1): frequency response samples of the inter-
polating functionH (z2), i.e., H(z;) = W;.

— Hn(N,1): impulse response samples of the inter-
polating functionH (z), i.e., H(z) = Hxn(0) +
H’n,(l)z + e + Hn(Nf - 1)ZNt_1.

— P(Np,1): coefficients of the parametric portion of
the identified model.

: Checks consistency between thpréa
ori information K and p— and thea posterioriex-
perimental data, minimizing theepriori error bound
e = sup(ey, &) (Parriloet al. (1996, 1999)).

[W,Hn,e,P]=interp_e(rho,K,data_f,
data_t)

Inputs:
— See functiorinterpol
Outputs :

— e: optimal value ofe.

— See functiorinterpol
interp_k : Checks consistency between thpra
ori information -p and(ey, €;)— and thea posteriori

experimental data, minimizing the worst-case gain
K (Parriloet al. (1996, 1999)).

[W,Hn,K,P]=interp_k(rho,data_f,data_t)
Inputs:
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— See functiorinterpol

B. Demostration Files

The demostration files show how to use the different func-

Outputs:

— K: optimal value ofK.

tions of this toolbox. In all the examples, the “experimental
data” —in the frequency and/or the time domain— proceed

from the stable component of the Euler-Bernoulli model of

— See functiorinterpol

intmodel Finds a nominal model which inter-

polates the frequency and/or time data, found by

any of the functionsinterpol , interp_e or
interp_k  (Parriloet al. (1996, 1999)).

[Sint]=intmodel(K,rho,Z,W,Hn,Q)

Inputs:

— rho,K : a priori information on stability margin and
gain of the real plant.

— Z(Ny,1): discrete sampling frequencies (input to
any of the functionsinterpol , interp_e or
interp_k ).

— WN¢,1): frequency response samples of the inter-

polating function (output from any of the functions
interpol ,interp_e orinterp_k ).

— Hn(N,1): impulse response samples of the inter-
polating function (output from any of the functions
interpol ,interp_e orinterp_k ).

— Q system matrix of the free parameter function

Q(z).

Outputs:
— Sint : system matrix of one possible interpolating
model.
errorint Computes the worst-case identifica-

tion error for the parametric/nonparametric mixed
time/frequency identification algorithm presented in
(Parriloet al. (1999))

[eid]=errorint(K,rho,Z,ef,Ut,et,Pf,Pt,
Ginf)

Inputs :

— rho,K : a priori information on stability margin and
gain of the real plant.

Z(Ny,1): discrete sampling frequencies.

ef : a priori error bound in the frequency domain.

a flexible beam with viscous damping, presented in Egn.
(26), section VIL.

e demballs : Shows a procedure that can be applied

to different sets of noisy data from the repetition of a
single experiment, in order to obtain a smakegpri-

ori error bound, reducing thus the worst-case identi-
fication error.

dem2stg : Shows the discrete time “two stage”
identification, with two options:

1. Uses a trapezoidal window function at the first
stage, and computes the Nehari's approxima-
tion at the second stage.

2. User selection of the window function type,
and the type of approximation to the non-
analytic identified system.

demoelll : Shows the discrete time identification
in /1, using two types of algorithms:

1. Tuned to alb priori information K, p ande;.
2. Tuned only taX andp.

deminter Shows the parametric/nonparametric
mixed time/frequency identification, in the following
cases:

1. Identification in the frequency domain, consid-
ering only frequency response samples and no
parametric component.

2. ldentification in the frequency domain, assum-
ing that the real system has a parametric com-
ponent with uncertain parameters.

3. Mixed time/frequency identification, i.e., tak-
ing into account both frequency and time do-
main data (from the impulse response of the
system), and considering a parametric compo-
nent for the real model.

VII. APPLICATION EXAMPLE

Next we illustrate the procedure explained above on a

Ut (IV¢,1): discrete time input,

— et : a priori error bound in the time domain.

see functiorinterpol ).

Ginf (Np,1): vector with theH., norms of func-
tions that form the a priori parametric information
(optional; only necessary Rf,Pt are provided).
Outputs:

— eid : worst-case identification error.

97

simulated example. The “real” system is an ideal Euler-
Bernoulli beam with viscous damping, which can be de-
PPt : a priori parametric information (optional; SCribed using the following physical model that relates the
vertical displacemenj to the timet and to the longitudinal
coordinater (see Fig. 2):

0%y 00y 0ty
LA ) it AN ) Sl A 7
g + B g ag + Plga = 1))
%y %y
o2 (L) =0, Z5(£1.6) =0

xz € [-1,1]. (26)
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Herea is the cross sectional area,the mass density of x10°
the beam/ the moment of inertiafl the Young modulus

of elasticity andE* the normal strain rate. The dynam-
ics are evaluated at = 0 when a forceF'(t) is applied Al ’ |
at this point. Due to the fact that the above PDE is lin- 3
ear, by using the Laplace transform an infinite dimensionalng

©
T

n —— Obtained samples
| — — Real system
L \ -

(Magnitude)
=

Sp

transfer function can be derived (Klompstra (1987)). The® Lt rmrrnrnirrilll] ‘ | ‘ e . ‘
discrete time model obtained by applying the bilinear trans- 05 b Discrete fequency 25 s
formation to the stable component (no rigid-body modes) 14
has been used to simulate frequency and time domwain _ ! — Obtained error
periments with the following values for the constants of §°8 ~ =~~~ "~~~ """~~~ """~~~ == Ueperbonnd- - -
the modela - p = 46 kgm, E*I = 0.46 kg-m/sec and §0-Bf ]
E - I =55.2 N-kg (Mazzaro (1997)). %o.z:— 1

0 0.5 1 115 é 2‘.5 é

1 Discrete frequency
y(z,1) f
F(t)
Figure 3: Results from the intersection of frequency do-
—1 0 I main experiments.

Figure 2: Application example: flexible structure. -

©
T

T
i
it |— — Pre-identified model

—-- Real system

=)
T

A. Experimental data handling

I
T

N
-

Applying the functionfreqsets to a set ofM = 3
identical experiments in the frequency domain, of length i ‘ ‘ ‘
Ny = 50 and with noise bounded by = 8-10~°, the ob- o " Discets requency “e :
tained frequency response samples and the new error bound -
—variable in frequency— can be seen in Fig. 3.

Freq. Resp. (Magnitude)

T T T
— Nehari's approximation

[
2

N
T

B. Two stage algorithm

=
o
T

Next, we apply this identification procedure to the physical

system (26), using the programs of the Robust Identifica- ‘ ‘ ‘ ‘ ‘ ‘

tion toolbox. We consider20 frequency response samples 05 L et requeny 25 3

equally spaced ifD, ) (which givesN; = 240 samples),

proceeding from the intersection af = 3 experiments

corrupted by noise bounded by = 8 - 1075. During the Figure 4: One or two stage identification.

first stage a trapezoidal window defined in Gu and Khar-

gonekar (1992) as a function of the parametersaindn

was used, with the values+ m = 120 (causal portion) functionalg2stg allows to choose the type and parame-

and2m = 60 (rectangular portion). This class of window ters of the window function.

function reflects through the ratj@ = ™ (3 € [0, 1]) the

trade-off between the approximation and noise errors, a

allows to control its effects on the worst-case identificatioNext, we apply these identification techniques to the phys-

error. ical system (26), using the functions available in the Ro-
The functionalg2stg  performs the identification in bust Identification toolbox. The experimental data proceed

one or two stages, as can be seen in Fig. 4. In the firfibm the repetition and intersection df = 3 experiments,

case, the pre-identified model is taken as the identified onghich consist of the firsiv, = 120 impulse response sam-

which implies that the noncausal identified portion is apples affected by noise boundedpriori by e, = 4 - 1075.

proximated by the null function. Note that ¥, is large The assumed priori information on the class of systems

enough, the pre-identified model results a good approxére K = 4,5-10~* andp = 1.025. Functionllident

mation to the identified model, thus it is reasonable to nggerforms the identification id;. The nominal model ob-

glect the noncausal identified portion. In the second caskined with the first algorithm, tuned to all tlaepriori in-

the Nehari's approximation for the noncausal portion is obformation, is shown in Fig. 5.

tained. It is also possible to compute a FIR approximation The worst-case identification error (Jacobsen al.

for the latter (Kootsookost al. (1992)). In all cases, the (1992)) for this algorithm ig;; = 1.3787 - 10~4, and can

Freq. Resp. (Magnitude)

-
T

|% Time domain algorithms
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be computed using the functi@mrelll . _ x10”
&85 1
2 —— Identified model
x10™ 26} — — Real model i
4 T T =3 *  Samples
[— Identified model g
$4 4
: | ‘ i ge ’
g 0 \\\“‘ ““‘ “ “ ‘“‘“H“H“M“M‘\‘\“M‘MH‘\‘\M‘MMH\_\ LTI s |
(] L Il ¥ L
3 ‘ ‘ ‘ 0 05 1 15 2 25 3
g-2r 4 Discrete frequency
\ s s s ‘ x10™*
0 20 40 60 80 100 4 ‘ 1
% Discrete time ° — Identified model
3 5 2 2>< — Real model il
e 6xlO 3 ‘ ‘ ‘ *  Samples
= r 7
: R O R o e
: g T I eyttt
il RIRRRLLL
8 E-2t :
g 2
L e T
g op!!H I i HTFIT T T R T 0 20 40 60 80 100
= ‘ ‘ ‘ ‘ H ‘ Discrete time
<
-2 | | | | il

L
20 40 60 80 100
Discrete time

o

Figure 7: Mixed time/frequency domain identification with
parametric component.

Figure 5: Identification irf; using the first algorithm.

Figures 6 and 7 show the results of the identification in
D. LMI based algorithm the frequency case without assuming a parametric compo-
nent, and in the mixed time/frequency case with parametric

Next, we apply this identification framework to the phys-Component respectively, using the functidngerp_k

ical system (26), using the different functions of the ROz, jinimodel . The first one finds the least value of the
bust Identification toolbox. We take into accou¥ =9 \orst-case gairk, so that thea priori and thea posteri-
frequency response samples betwéerr], and the first o jytormation are consistent, and provides a set of fre-
Ne = 10 impulse response samples, corrupted by noisg ency and/or time domain values to be interpolated by the

iori f —8.10°° t —4.109 re- . . .
boun<_jeda priori by ¢’ = 8- 107 ande* = 4. 10 ' "€ set of nominal models. It is also possible to check con-
spectively. We also assume that the system to be identifig tency minimizing the priori error bounds, using the

has a parametric component with the following StrUCture:functioninterp e . The second one obtains an identified
system for a given choice @p(z). In both cases a value

D1z + P2 . A :
P(z) = - (27)  of p = 1.25 is assumed aa priori information, and the
224 0.042 4 1.05 .
free parameter is chosen @§z) = 0. In the frequency
wherep; andp, are uncertain parameters. case a value of{f = 3.1465 - 1072 for the worst-case
gain is obtained; in the mixed cask, = 3.8573 - 1074,
) 10° p1 = 4.1419-10~* andp, = —8.0218 - 10~7.
8 [ omiiod model f\ 1 This example illustrates the fact that, by addangriori
L% Sampe® information —a parametric component— angosterioriin-

o | formation —frequencynd time domain data— smaller val-
ues of the gairK can be obtained, and thus, a “smaller” set
of identified models (Parrilet al. (1999)).

o
T

&)
T

VIIl. CONCLUSION

This work presents a Robust Identification toolbox, which
implements the different identification techniques devel-
oped in the deterministic worst case framework, and which
is not available as a commercial version.

As an illustration, different procedures are applied to

‘ ‘ ‘ ‘ ‘ ‘ the problem of identifying a flexible structure of a known

° o8 " Discreto frequency 2e : mathematical model, in order to evaluate the results ob-
tained from the identification.

Freq. Resp. (Magnitude)
S
T

w
T

Figure 6: Frequency domain identification without para- IX. Acknowledgments
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