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Abstract  The classical control theory is based 
on the design of linear controllers for systems de-
scribed by linear models. However, there exist some 
situations where it is not recommended, or even im-
possible, to use a linear controller. One of those 
situations arises when the magnitude of the process 
gain experiences a dramatic variation within the op-
erating range of interest. A classic example of a 
chemical process where this situation occurs is the 
pH control around the neutralization point in a con-
tinuous stirred tank. In this work, the pH control for 
a strong acid – strong base system is addressed. To 
solve this problem, a nonlinear H  control law is de-
rived based on a nonlinear model previously devel-
oped. The attainment of that control law is done with 
the help of recent mathematical results from the au-
thors concerning the solution of Hamilton-Jacobi-
Isaacs inequalities. The nonlinear controller is im-
plemented on an experimental reactor and its per-
formance is compared with a PID control law tuned 
according to the classical minimum error integral 
criteria. The obtained results show that the nonlin-
ear H control theory can be a good alternative to 
solve this difficult SISO (Single Input – Single Out-
put) control problem. 

Keywords  Nonlinear Control, pH control, Non-
linear H-infinity Control. 

I. INTRODUCTION 

The theory of classic control is based on the design of 
linear controllers for systems described by linear models 
or nonlinear models linearized around an operating 
point. However, there exist some situations where it is 
not recommended to use a linear controller. One of 
those situations arises when the magnitude of the proc-
ess gain experiences a dramatic variation within the 
operating range of interest. In this situation, the use of a 
fixed linear controller can lead to a poor performance of 
the closed loop system and even to its loss of stability. 
A classical example of a chemical process where this 
situation happens is the pH control around the neutrali-
zation point in a continuous stirred tank. In this control 
problem, the titration curve – which represents the sys-
tem’s input-output mapping – presents a highly nonlin-

ear behavior in response to addition of acid or base. 
This behavior is amplified even more if the reagents are 
strong acid and/or base.  

In the present work, the objective is to control the 
pH of an experimental system within this difficult range 
of operation. The problem can be stated as to maintain 
the pH in the neutralization point manipulating a strong 
base stream flow rate in response to disturbances on the 
strong acid flow rate. To solve this disturbance attenua-
tion problem, a nonlinear H  controller is designed and 
implemented in a bench-scale plant. This synthesis ap-
proach is possible due to recent mathematical results 
from the authors concerning the solution of Hamilton-
Jacobi-Isaacs inequalities (Longhi et al., 2000). It must 
be emphasized that this control law synthesis is not 
based on any kind of linearization procedure, such as 
multi-linear models (Galán et al., 2000), gain scheduling 
or adaptive schemes (Sung et al., 1998), nor in a change 
of control objective to fit a known solution method (Li 
and Zhang, 1999). 

In the sequence of this work, the relations between 
the disturbance attenuation problem and the nonlinear 
H  control theory are briefly explained in section 2. In 
section 3, the experimental apparatus is described and a 
mathematical phenomenological model is developed 
and compared to the experimental data. The controller 
synthesis and the experimental results are presented in 
section 4. Finally, in section 5, the conclusions are pre-
sented.

II. DISTURBANCE ATTENUATION AND 
NONLINEAR H  CONTROL THEORY 

Consider the IA (Input-Affine) nonlinear system de-
scription of Eq. (1). 

u

)x(h
z

w)x(ku)x(g)x(fx

 (1) 

where x  M (M n) is the vector of the system’s 
state variables defined on a neighborhood of the origin, 
w q is the vector of exogenous inputs, u m is the 
vector of control inputs, and z s is the vector of ex-
ogenous outputs which characterizes the control objec-  
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tive. The mappings f(x), g(x), k(x) and h(x) are assumed 
to be nonlinear smooth functions and, for simplicity, 
f(0) = h(0) = 0. 

The disturbance attenuation problem via state feed-
back is concerned to the construction of a feedback con-
troller, u(x), satisfying two objectives: (1) To asymp-
totically stabilize the resulting closed-loop plant, and (2) 
To minimize the influence of the exogenous inputs, w, 
on the objective variable, z. If the influence from w(t) 
on z(t) is measured as the finite L2-gain between these 
variables, the disturbance attenuation problem can be 
solved by using the results from the nonlinear H  con-
trol theory (Isidori and Astolfi, 1992). Here, the L2-gain 
is defined as in Van der Schaft (1992). 

Definition 1 (Finite L2-gain).  Given any  > 0, the 
mapping from w(t) to z(t) is said to have finite L2-gain 
less than or equal to  if, under the zero initial condition 
x( )0 0 ,

T T
dt)t(wdt)t(z

0 0

222
 (2) 

for all T  0 and all w(.) L2(0,T), where ||  || denotes 
the Euclidean norm, and  L2(0,T) denotes a Hilbert 
space composed by all real variable functions, Lebes-
gue-measurable, defined on the interval [0, T]. 

The finite L2-gain can be viewed simply as the 
maximum amplification, for every time T > 0, on the 
variable z(t), measured in terms of its energy (Euclid-
ean) norm, caused by a energy-limited external input 
w(t). For a linear SISO system, the finite L2-gain turns 
back to be the usual system open-loop gain. 

However, as the minimization of the L2-gain can 
lead to a controller with a very small validity region 
(Yazdanpanah et al., 1999) or very near to the stability 
frontier (Keel and Bhatacharyya, 1997), it is usual in the 
literature to consider only suboptimal solutions to the 
problem. In this case, the minimum of  is replaced by 
the gain attenuation at some acceptable level. The sub-
optimal solution to the nonlinear H  control problem for 
a system described by Eq. (1) can be given by theorem 1 
(Van der Schaft, 1999). 

Theorem 1 (Local sub-optimal solution to the non-
linear H  control problem via state feedback for IA 
systems). Consider the nonlinear system of Eq. (1) and 

a real parameter  > 0. Suppose that exists a smooth 
positive definite solution, V(x) > 0, to the HJI (Hamil-

ton-Jacobi-Isaacs) inequality given by Eq. (3), 

)x(h)x(h)x(f)x(
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then, the closed-loop system with the feedback control 
law of Eq. (4), 

)x(
x

V
)x(g)x(u

T
T

* 2

1
 (4) 

is asymptotically stable at the origin and has locally a 

L2-gain (from w to z) less or equal to .  Moreover, the 

worst-case disturbance is given by Eq. (5). 

)x(
x

V
)x(k)x(w

T
T

* 22

1
 (5) 

It must be noted that Theorem 1 does not give a 
method to solve the problem nor furnishes the size of 
the local state-space region where its solution works. In 
fact, these are the main limitations to apply the results 
from the nonlinear H  theory to real systems. Before to 
state the developed solution, it is necessary to define 
which is the validity region for the nonlinear H  control-
ler. This definition was based on (Yazdanpanah et al., 
1999).

Definition 2 (Nonlinear H-infinity controller validity 
region). The region of the state space of Eq. (1) that, 
subject to the nonlinear state feedback law from theo-
rem 1, simultaneously satisfies the HJI inequality and 
guarantees asymptotic stability of the worst-case distur-
bance of Eq. (5) in closed-loop system, is referred to as 
the validity region corresponding to the controller of Eq. 
(4). Any region that is a subset of this state-space region 
is referred to as an estimate of the validity region. 

In this work, the solution for the nonlinear H  con-
trol problem is found by solving the optimization prob-
lem 1 (Longhi et al., 2000) shown later on. This optimi-
zation problem, based on preliminary results concerning 
the positivity of multivariable scalar functions (Longhi 
et al., 2001), requires the definition 3 and its solution 
furnishes a control law associated with a validity region. 
For more details, it is recommended to read the refer-
ences of this paragraph.

Definition 3 (Real local region). The real local region 
of a multivariable scalar function y(x) is the set com-
posed by the subsets of the real field where each ele-
ment of x can assume values such that y(x) is real and y 

 0 unless x = 0. 

Optimization problem 1 (Nonlinear H  control 
maximizing the size of the validity region). Choose 

the form of function V(x) and substitute in H*(x). Write 

these two functions as quadratic form representations: 

)x(P)x()x(V V
T and ),x(P)x()x(H H

T
* where 

PV and PH are symmetric real matrices obtained directly 

from the coefficients of V(x) and H*(x), respectively. 

Write the time derivative of V(x) as the quadratic form 

representation: )x(P)x()x(V Vd
T , where PVd is a

symmetric real matrix obtained directly from the coeffi-

cients of ( ).V x Let i , i and i be the parameters 

which define the positivity region of V(x) and the nega-
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tivity regions of H*(x) and ( )V x , respectively. Choose 

the parameters of V(x), (x), (x) and (x) in a way to 
maximize the region defined by V(x) = C subject to the 

constraints PV > 0, PH < 0, PVd < 0 and  min <  < max.
The parameter C + is obtained as the minimum 
value of V(x) intersecting the positivity of V(x) and the 

negativity region of ( )V x  and H*(x). The solution, V(x),
solves locally the problem within the validity region 

defined by V(x) < C for the level attenuation. 

Roughly speaking, the optimization problem 1 tries 
to find a solution to the HJI inequality that maximizes 
the size of the validity region associated with that solu-
tion. This is quite different from the usual approach in 
the nonlinear H  control theory where the main objec-
tive is to find a local solution that minimizes  regard-
less to the fact that the resulting controller has a practi-
cal validity region or not. Often, this usual procedure 
leads to a very fragile controller. 

Despite the fact that optimization problem 1 can be 
considered a very general approach to solve the nonlin-
ear H  control problem via state feedback, usually it is a 
very complex one, many times intractable. To reduce its 
dimension, some simplifications can be done. One ex-
pected problem occurs when it is desired to use non-
ellipsoidal (non-quadratic) forms to represent V(x). In 
these cases, it could be very tedious to find an equation 
for the area of V(x) = C. Furthermore, the resulting 
equation can be very complex, thus inadequate for using 
in an optimization problem. So, aiming the simplifica-
tion of the problem, it is recommended to use, when 
possible, quadratic forms to represent V(x). 

Moreover, if the situations 1 and/or 2 below occur, 
the size of the problem can be considerably reduced: 
1. If the condition shown in Eq. (6) is satisfied, then 

the signal of )x(V  does not need to be evaluated. 

0
1
2

)x(k)x(k)x(g)x(g TT  (6) 

In this case, the HJI inequality satisfaction implies the 

negativity of )x(V  in the same state space region. This 

situation occurs when the description of the IA system 
is known and the lower bound of is defined as the 
minimum necessary to assure that the inequality (6) 
holds. 

2. If V(x) is globally positive definite, like quadratic 
forms, for example, then the parameters i are 
eliminated from the optimization problem. 

An additional relationship among the theorem 1 and 
the optimization problem 1 solved for a quadratic V(x), 
as well as a sketch of the proof for the claim of Eq. (6), 
are found in appendix A. 

III. NEUTRALIZATION SYSTEM MODELING 

The experimental apparatus considered in this work is a 
reactor (a two-liters glass reactor) and pH, temperature 
and flow sensors, coupled with a control and monitoring 
unit. The reactor operates at atmospheric pressure and 
environment temperature, being continuously stirred at 
the 500 rpm. The reactor vessel is fed with two input 
streams provided with peristaltic pumps. The acid 
stream contains 0.1 M HCl, and the basic stream 0.1 M 
NaOH. The amount of fluid given by the sum of these 
streams is removed from the reactor. As a consequence, 
the reactor behaves like a typical CSTR (Continuous 
Stirred Tank Reactor) with constant volume. In this 
work, the acid stream flow rate is considered as the dis-
turbance variable and the base stream flow rate as the 
manipulated variable. A sketch of that control system is 
shown in Fig.1. 

Figure 1. The continuous pH neutralization process 
scheme. 

The process model used in this work considers the 
change of coordinate proposed by (Narayanan et al., 
1998):  = [H+] - [OH-]. The relation between the vari-
able  and the original variable (pH) is given by Eq. (7). 
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WpH K
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K   (7) 

The main advantage of using  instead of pH is the 
attainment of a concise IA process model, suitable for 
the synthesis of the disturbance attenuation controller, 
as it can be seen in Eq. (8). 

)FF(CFCF
dt

d

V
BABBAA

R
00

1
 (8)

where VR is the reactor volume, FA is the acid stream 
flow rate, FB is the basic stream flow rate, CA0 is the 
acid concentration in the acid stream, CB0 is the base 
concentration in the basic stream and KW = 10-14 is the 
equilibrium constant of water dissociation. 

Fig. 2 presents the comparison between the phe-
nomenological model of Eqs. (7)-(8) and the experimen-
tal data. The highly nonlinear behavior of the pH system 
can be easily seen in this figure. The modeling error in 
the basic region, due to the acid characteristic of the 
available water used in the experiments (pH ranging 
from 5 to 7), can also be seen in this figure. 
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Figure 2. Comparison between the model of Eq. (8) and 
experimental data. 

IV. NONLINEAR CONTROL SYNTHESIS AND 
EXPERIMENTAL RESULTS 

In order to obtain a description whose steady state of 
interest is the origin, the following new variables were 
defined: RAA V/F , RBB V/F , SSx1 ,

ASSAw  and .BSSB  The sub-index SS 

denotes the steady state values for the variables. For the 
neutral pH considered in this work, the values of these 
variables are: 0SS  and 0ASSBSS .

Furthermore, to assure the off-set elimination, an 
additional state was incorporated to the original control 
variable: 2i xT)x(u)x( , where Ti is a parameter 

to be chosen and the new state, x2, has the dynamics of 
an integrator: .xx 12  So, if instead of u(x), it is im-

plemented the new control law (x), then the term 

2i xT  can be viewed as an integral mode, being suffi-

cient to eliminate the persistent deviations generated by 
modeling errors and non-vanishing perturbations. This 
is important because the nonlinear H  control theory 
was originally developed to deal only with vanishing 
disturbances. 

Now, the control system can be adequately repre-
sented by Eq. (9) and the objective vari-

able
u

x

u

)x(h
z

1 , where
2

1

x

x
x .

w
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u
)xC(

x

xT)xC(
x

ABiB

00
1010

1

210  (9) 

If a simple Lyapunov function 2
2

2
1 bxax)x(V

is considered, the HJI inequality (10) must be solved for 
V(x) > 0. 
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As the LaSalle’s detectability condition is satisfied, 
it is sufficient to find a solution for the non-strict ine-
quality H*(x)  0 to solve the disturbance attenuation 
problem. In order to cancel the quadratic cross product 
(x1x2) from inequality (10), it is assumed that Ti = 10
b/a. So, the HJI inequality can be rewritten as: 

0010120

120

2
1

22
1
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1

24
1

2

x)a.(xxb

xa.xa)x(H*
 (11) 

where 1
1
2

.

A necessary condition for a local solution to inequal-

ity (11) is 0)a01.01( 2 . This situation only occurs 

if  < 0. This implies, equivalently,  > 1. Then, the 
lower bound of  was fixed at 1 in the formulation of the 
optimization problem 1. In addition, as a consequence 
of the non-negativity of the perturbations, the condition 
of Eq. (6) is automatically satisfied, and the searching 
for a local solution to inequality (11) becomes easier. 

To solve the optimization problem 1, the quadratic 
form representation of Eq. (12) was considered. 
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where the Matrix PH* is given by:  

b

)(a.

a

b
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and the parameters 1 e 2 are two positive numbers that 
control the size of the negativity region of H*(x). 

So, the optimization problem 1 can be stated accord-
ing to Eq. (13). 

maxmin

*H

,

0P

0ba,

(a.b)minarg],,,b,a[

0

21

21

 (13)

In order to simplify the shape of the controller valid-
ity region, it was assumed that 1 = 2. In addition, it 
was arbitrarily chosen that the maximum and minimum 
levels of attenuation ( ) are 1.0 and 1.5, respectively. 
The solution for the problem of Eq. (13) is given by: 
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Finally, from the sub-optimal control law, 

1102

1
xxCBa)x(

x

V
)x(g)x(u

T
T

* , one can 

construct the nonlinear H  controller, 

2112 101012837 xxx..xT)x(u)x( i* , as a 

function of the original control variable 

RB Vx)(F . This results in Eq. (15). 
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x

x..x.)(F

2

2
23 1012837712831051

 (15) 

This control law has a validity region given by: 

112837 2
2

2
1 )xx(.)x(V . This validity region is 

equivalent to the pH region given by: 2 < pH < 12. 
Since the disturbance attenuation problem solved by the 
nonlinear H  control theory only considers vanishing 
perturbations, for the more realistic case of persistent 
disturbances, it is hoped that the controller validity re-
gion is sufficiently big to support large disturbances on 
w(t). 

To implement the controller of Eq. (15) in the ex-
perimental plant described in section 3, it was devel-
oped an interface to connect the plant to a remote com-
puter. This interface was written using the Mat-
lab/Simulink environment. 

In Fig. 3, the nonlinear H  controller performance is 
shown in response to some disturbances on the acid 
stream (see Table 1). In the same figure, it is plotted the 
performance of a usual PI controller tuned according to 
the classical minimum integral error criteria. The PI 
tuning was made using the ITAE parameters for the 
disturbance attenuation case and an experimentally 
identified FOPDT (First Order Plus Dead Time) model 
(Seborg et al., 1989). More details concerning the model 
identification and the PI tuning are found in Appendix 
B.

Table 1 - Disturbance applied on the acid stream

Time [s] Acid flow rate [ml/min] 
0 0 
0+ 2.40 
500 3.52 
1000 4.80 
1300 1.28 

In Figure 4, the responses of both controllers are 
shown for set-point changes. It can be noted that the 
good properties of the nonlinear H  controller do not 
hold. In fact, as distant from the neutralization point, 
worst is the nonlinear H  controller performance. One 

should suspect that this is because the nonlinear control-
ler was not designed to face the set-point tracking prob-
lem. However, this can be refused because dynamic 
simulations, not shown here, for the closed-loop system 
present the same good behavior for different set-points. 
This fact makes clear that there are other sources for the 
weak controller performance at high pH values, one of 
these being the model mismatch at basic pH values. 

However, not only the model mismatch affects the 
performance in those conditions but, mainly, the input 
constraints (magnitude and speed saturation) also 
worsen the performance at high pH values. This is an 
experimental drawback that does not occur in the simu-
lations. This could be explained because the control law 
was obtained without considering the input saturation. 
Thus, the control law will only have a valid association 
with the controller within a range where these con-
straints are not violated. Regarding the experimental 
system of this work, this valid region is constrained to 
pH values ranging from approximately 6 to 8. 

Furthermore, because of the input saturation (in 
magnitude) it is not possible any kind of implementation 
for pH above 9.5 and below 4.5. In these regions, other 
more conservative control laws should be used. This is 
why no experimental tests for pH higher than 9 or lower 
than 5 were considered. A possible ad-hoc solution for 
this problem could be found by choosing different con-
troller’s settings for each operating condition, character-
izing a gain scheduling procedure. However, this ap-
proach was not considered here because it implies loss 
of optimality. 

V. CONCLUSIONS 

The pH control of a continuous stirred tank by a distur-
bance attenuating controller using the nonlinear H  con-
trol theory results was presented. Based on previous 
results from the authors concerning the solution of 
Hamilton-Jacobi-Isaacs inequalities, a synthesis ap-
proach to solve quantitatively the nonlinear H  control 
was developed. A quantitative solution means a control 
law associated with its validity region. The validity re-
gion is the state-space region where the stability and 
performance requirements are satisfied. To solve the 
problem realistically, instead of looking for the best 
possible performance, the developed procedure aims the 
maximization of the validity region while guaranteeing 
a minimal performance. This is important because the 
optimal controller is usually a fragile one. Some alterna-
tives to simplify the optimization problem were also 
discussed. The developed methodology was applied to 
control a strong acid - strong base pH continuous sys-
tem using the base stream flow rate as the manipulated 
variable and the acid stream flow rate as the disturbance 
variable. To make the process model an input-affine 
one, a change of variable was performed. The resulting 
nonlinear controller was implemented in an experimen-
tal two-liter bench-scale plant and its responses for dis-
turbances on the acid stream flow rate and set-point 
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changes were compared to a well-tuned PI controller subject to the same operating conditions.
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Figure 3 - Performance comparison between the nonlinear H  controller and an ITAE-tuned PI controller for distur-
bance attenuation. 
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Figure 4- Comparison between the nonlinear H  controller and the PI controller for set-point changes. 
(The solid line steps represent the set-points) 
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APPENDIX A: OPTIMIZATION PROBLEM 1 
SOLVED FOR A QUADRATIC FORM 

LYAPUNOV FUNCTION 

This section shows the relation between the solution of 
the optimization problem 1, solved for a quadratic form, 
and the theorem 1. To make this relation clear, the op-
timization problem is simplified and applied to design a 
disturbance attenuation controller for an IA system. 

Consider the IA nonlinear system of Eq. (1) and the 
optimization problem 1 solved for a positive definite 
function V(x). If this Lyapunov function is considered 

to be a quadratic form, xPx)x(V T , the solution of the 

optimization problem will furnish not only the elements 
of the matrix P and the -level attenuation, but an asso-
ciated ellipsoidal estimate for the DA (Domain of At-

traction), given by CxPx)x(V T , where C +.

According to the theory of quadratic forms (Lam, 1973), 
if V(x) is a homogeneous positive definite form, it will 
be not only locally positive but globally, too. Thus, as 
pointed in section 3, there is no need for choosing a pa-
rameter to control the size of its positivity region. Only 
the Sylvester’s criteria conditions for positivity should 
be appended to the inequality constraints set. 

Besides this simplification, by noting that the HJI 
inequality from theorem 1, given by Eq. (3), can be re-
written according to Eq. (16), 
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)x(w)x(k)x(u)x(g)x(fV)x(H

 (16) 

it can be observed that the first term of the right side is 
the time derivative of V(x) for IA systems fed with the 
optimal feedback, u*(x), and perturbed by the worst dis-
turbance, w*(x).  

Consequently, if this time derivative is denoted by 

)x(w)x(k)x(u)x(g)x(fV)x(V **x , Eq. 

(16) can be rewritten as Eq. (17): 

)x(V)x(k)x(k)x(g)x(g)x(V

)x(h)x(V

x
TTT

x 2

2

1

4

1 (17) 

Now, it is easy to see that, if 

0
1
2

)x(k)x(k)x(g)x(g TT , then the HJI ine-

quality, H*(x) < 0, implies 0)x(V  in the same state 

space region. As a consequence, the optimization prob-
lem 1 is greatly simplified, because it is not necessary 
anymore to verify the negativity of the time derivative 
to assure the asymptotic stability for the worst case dis-
turbance, w*(t). 

Now, the resulting optimization problem is reduced 
to the choice of the quadratic form representation for the 
HJI inequality containing a parameter set ( i) which 
controls the size of its negativity region. Besides the i

parameters, before going to the solution of the problem 
itself, it is necessary to find some extra conditions con-
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straining the size of the validity region to be within a 
feasible region. This equality constraint can be written 
according to V(x) = C , where C + can be obtained 
by solving the equation H*(x) = H*(x, i) = 0 for x and 
substituting the obtained values, x = x( i), in V(x). 

After a suitable choice for the quadratic form repre-
sentation, the optimization problem searches for a ma-
trix P (from the quadratic form V(x) = xT P x ) and the 
-level of attenuation. If a solution (P > 0 and 0 ) for 

the remaining problem is found, according to theorem 1, 
within its associated ellipsoidal validity region, V(x) = 
C, both performance – given by V(x)  0 and H*(x) < 0 
– and asymptotic stability (given by the domain of at-

traction – the region where V(x) > 0 and 0)x(V )

requirements are simultaneously satisfied. 
As pointed out in section 2, the main difference be-

tween the approach of optimization problem 1 and the 
usual approach to solve the nonlinear H  control prob-
lem is that, instead of trying to find a local solution that 
minimizes , the former one tries to find a solution that 
maximizes the controller validity region. Despite the 
simplifications to the optimization problem 1, the result-
ing problem is still a nonconvex one, being necessary to 
use global optimization techniques to find less conser-
vative solutions. 

APPENDIX B: FOPDT MODEL 
IDENTIFICATION AND PI-ITAE TUNING 

As the experimental pH system was designed to work 
near to neutral values, the PI controller was tuned to 
work well at the same conditions. Thus, it was consid-
ered a PRC (Process Reaction Curve) approach to iden-
tify the process parameters of a FOPDT model near to 
this range. Thus, a 10 seconds pulse on the acid stream 
at its maximum flow rate (8 mL/s  1.33 x 10-3 L/s) was 
implemented and the pH response was plotted from an 
initial value of 7.8 until the new steady state be reached. 
As the acid and base stream are both 0.1 M and have the 
same dissociation constant, the acid pulse effect is 
equivalent to a base pulse with the same duration. This 
plot is shown in Figure 5. Then, the usual hand-made 
procedure, as described in Seborg et al. (1989) and other 
classical control books, was performed. The FOPDT 
model approximation found is presented in Eq. (19). 
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where K represents the gain (pH units per liters of acid), 
 is the first order time constant (seconds), and is  the 

dead-time (seconds). Based on these parameters, the PI 
parameters were computed according to the classical 
minimum integral error criteria for load rejection 
(Seborg et al., 1989), Eqs.(20)-(21). 
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Figure 5. Response of the experimental pH system for a 
10 seconds pulse on the acid stream. 

The resulting PI controller, Eq. (22), was imple-
mented and compared to the disturbance attenuation 
controller of section 4 for the same experimental situa-
tions. 
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 (22) 

Note that the huge difference among the gain of the 
controller of Eq. (22) and Eq.(15) is due to the different 
magnitude between pH and . Also observe that equa-
tion set (22) furnishes the amount of base to be fed in-
side the reactor on each sample time by the peristaltic 
pump. The base stream flow rate, FB(t), may be obtained 
by dividing VB(pH) by 5 seconds (the sample time used 
in the experimental coupled unit). 
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