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Abstract— The result that a linear multi- approach, and the solution is expressed in terms of
variable system is decouplable with stability the infinite and unstable contents of the system. The
if and only if its associated stable interactor decoupling problem with stability of nonsquare sys-
is diagonal, is proved in this paper using an tems is considered in (Ruiz-León et al., 1995) using
algebraic approach. As it will be shown, this a polynomial equation approach, and a solution to
condition is actually equivalent to the coinci- this problem is reported. However, the necessary
dence between the infinite and unstable global and su cient conditions presented in this reference
structure (infinite and unstable zeros) and the to solve the problem are implicit in the sense that the
row infinite and unstable structure of the sys- existence of a solution is stated in terms of the exis-
tem. Two procedures are presented to com- tence of a biproper and bistable rational matrix with
pute a state feedback which decouples the sys- certain properties, thus restricting a great deal the
tem with stability, the first one based on the applicability of this result. Nevertheless, when these
solution of a polynomial matrix equation, and conditions are particularized to the case of square
the second one based on the static left kernel systems, a solution can be obtained in terms of the
of a strictly proper rational matrix. Illustra- diagonality of the stable interactor of the system.
tive examples are also presented. In this paper, using an algebraic approach, it is

proved that the decoupling problem with stability
Keywords— Linear systems, Decou- has a solution if and only if the stable interactor

pling, Stability, Infinite structure, Algebraic of the system is a diagonal matrix. An important
approach. result, shown in our development, is the fact that

the action of a state feedback on a stable system
which preserves internal stability can be represented

I. INTRODUCTION as a biproper and bistable matrix postmultiplying
the system transfer function matrix. Thus, suitableRoughly speaking, decoupling of dynamic systems
factorizations of the system transfer function overimplies that each input of the system influences one
the ring of proper and stable rational functions willand only one output without a ecting the others.
provide the structural information to state the so-From the practical point of view, it is of interest to
lution to the problem, namely, the global and rowachieve decoupling because it is often desirable to
infinite and unstable structure. It is also shown howcontrol the outputs of the system independently.
the stable interactor of the system displays this in-The decoupling of linear multivariable systems by
formation.static state feedback has been extensively studied

since the 1960’s. In the case of linear systems with This work complements the solution presented in
the same number of inputs and outputs (square sys- (Mart́ınez and Malabre, 1994) using a geometric
tems), this problem was solved by Falb and Wolovich approach. It is also proved here that both solutions
(1967). A structural solution in terms of the infinite are equivalent. Besides being an appealing alterna-
zero structure of the system is presented in (Descusse tive of solution, our approach has the advantage of
and Dion, 1982). providing a method to find a state feedback which
The stability issue has necessarily to be conside- solves the problem. Two procedures are presented to

red in the problem formulation, since stability is a compute a state feedback which achieves decoupling
priority in the performance of any dynamical sys- with stability, the first one based on the solution of
tem. Decoupling with stability of square linear mul- a polynomial matrix equation, and the second one
tivariable systems by static state feedback was solved based on the static left kernel of a strictly proper ra-
by Mart́ınez and Malabre (1994) using a geometric tional matrix.  
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This paper is organized as follows. The problem the eigenvalues of the matrix (A + BF ), which co-
statement is presented in Section II. In Section III rrespond to the modes of the closed-loop system, are
the infinite and unstable zero structure of a linear located in the open left half complex plane C .
system is introduced via suitable factorizations of the From the input-output point of view, the previous
system transfer function matrix, while the stable in- formulation is equivalent to the existence of a state
teractor is presented in Section IV, as well as a result feedback (F,G) such that the transfer function
about feedback realization of precompensators. The T (s) of the closed-loop system (A + BF,BG,C)F,G

main results of this paper and two illustrative exam- is of the form
ples are presented in Section V. We end with some

1T (s)= C(sI A BF ) BGF,Gconclusions. (1)
= diag{w (s), . . . , w (s)} =:W (s)1 p

where w (s) 6= 0, i = 1, . . . , p, are strictly proper andiII. PROBLEM STATEMENT
stable rational functions, and the closed-loop systemWe will first introduce some notation and basic defi-
(A+BF,BG,C) is internally stable.nitions. Through this work, IR will denote the field
We can suppose without loss of generality that theof real numbers, C will stand for the complex plane

system (A,B,C) is internally stable, i.e. the eigen-and C for the open left half complex plane. The set
values of matrix A are located in C . If this wasof polynomials in the variable “s” will be denoted by
not the case, there always exists a preliminary stateIR[s] and IR(s) represents the set of rational functions,
feedback which will make the system stable, since wei.e. rational fractions of the form f(s) = a(s)/b(s),
are considering that (A,B,C) is controllable. Thus,where a(s) and b(s) are coprime polynomials, and
the transfer function matrix of the systemb(s) 6= 0. The rational function f(s) = a(s)/b(s)

is said to be proper if deg b(s) deg a(s), strictly 1T (s) = C(sI A) B
proper if deg b(s) > deg a(s), and proper and sta-
ble if it is proper, and its poles lie in the open left can be considered as a strictly proper and stable ra-
half complex plane C . The set of proper rational tional matrix.
functions will be denoted by IR (s), and the set ofp For simplicity we will consider that (A,B,C) is
proper and stable rational functions will be denoted also observable. This consideration is in order that
by IR (s). The set of matrices of dimensions p × nps all finite zeros of the system appear in the system
with elements in IR, IR (s) and IR (s), will be de-p ps transfer function T (s), and the conditions for de-

p×n p×n p×nnoted, respectively, by IR , IR (s) and IR (s).p ps coupling can be directly tested from T (s). Notice
A unimodular matrix is a nonsingular polynomial that this can always be supposed, since if the system
matrix whose inverse is also polynomial, a biproper is not observable, there always exists a preliminary
matrix is a nonsingular proper rational matrix whose state feedback which will make it observable, again
inverse is also proper, and a biproper and bistable due to the controllability condition of the system.
matrix is a nonsingular proper and stable rational The system (A,B,C) will be supposed to be right
matrix whose inverse is also proper and stable. invertible, which is a necessary condition for decou-
We consider in this work linear multivariable and pling. This implies that the system transfer function

controllable systems with the same number of inputs T (s) is nonsingular.
and outputs, described in state space form by the
equations

III. THE STRUCTURE OF THE SYSTEM½
ẋ(t) = Ax(t) +Bu(t)

(A,B,C) The solution to the decoupling problem with stabi-
y(t) = Cx(t)

lity is related to the infinite and unstable zero struc-
n p p ture of the system. This information can be obtainedwhere x IR , u IR and y IR are, respectively,

from a canonical form of the transfer function T (s)the state, input and output vectors of the system.
over the ring of proper and stable rational functions,The system (A,B,C) is said to be row by row
and it is actually a combination of the finite unsta-decouplable with stability by static state feedback
ble zeros and the infinite zeros of the system. Weif there exists a state feedback
will first recall the finite and infinite structure of the
system, defined here from the Smith-McMillan and(F,G) : u(t) = Fx(t) +Gv(t)
the Smith-McMillan form at infinity of the transfer

p×n p×pwhere F IR and G IR are constant ma- function T (s), and then present the infinite and un-
trices with G nonsingular (regular static state feed- stable structure of the system. For the definition and
back), and v(t) is a new input vector, such that the properties of the Smith-McMillan form, as well as for
input v (t) controls the output y (t), i = 1, . . . , p, basic concepts on algebraic theory of linear systems,i i

without a ecting the other outputs, and the closed- see for instance (Kailath, 1980).
loop system (A+BF,BG,C) is internally stable, i.e.
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III.1 Finite structure Elementary column operations are defined with the

obvious changes.The finite structure of the system (finite poles and
The row infinite zero orders of the systemzeros) can be defined from the Smith-McMillan form

(A,B,C), denoted as {n , · · · , n }, are the infinite1 pof the system transfer function T (s).
zero orders of the subsystems (A,B,C ), where Ci iLet T (s) be the transfer function of the system
is the i-th row of matrix C. Then, n , i = 1, . . . , p,i(A,B,C). Then, there exist unimodular matrices
can be obtained from the Smith-McMillan form atU (s) and U (s) such that1 2
infinity of the i-th row of the system transfer func-
tion T (s).U (s)T (s)U (s) =M(s)1 2
Following (Mart́ınez and Malabre, 1994), the con-

tent at infinity of the system is defined aswhere n op² (s)i pM(s) = diag (2) X(s)i i=1 0C (A,B,C) = ni
is the Smith-McMillan form of T (s), and i=1

{² (s), (s)}, i = 1, . . . , p, are coprime monic poly-i i
and the row content at infinity corresponds to thenomials, uniquely determined by T (s), satisfying the
row infinite zero orders, i.e.divisibility conditions

C (A,B,C ) = n , i = 1, . . . , p.i i² (s) | ² (s), and (s) | (s),i i+1 i+1 i (3)
i = 1, . . . , p 1.

III.3 Infinite and unstable structure
The Smith-McMillan form M(s) reveals the finite

A key role in the decoupling problem with stabilitystructure of the system: the roots of the polynomials
is played by the infinite and unstable zero structure² (s) are the (transmission) finite zeros of the system,i
of the system, introduced below. This informationand the roots of (s) are the finite poles of the sys-i
is displayed by the Smith form of the system trans-tem.
fer matrix over the set of proper and stable rational

III.2 Infinite structure functions IR (s). The set IR (s) is known to be anps ps

Euclidean ring (Vidyasagar, 1985), the degree of aThe infinite structure of the system can be defined
proper and stable rational function f(s) IR (s),psfrom the Smith-McMillan form at infinity of the sys-
hereafter denoted deg f(s), taken as the number ofpstem transfer function T (s) as follows (Vardulakis,
infinite plus unstable zeros of f(s).1991).

Let T (s) be the transfer function of the system Lemma 1 Let T (s) be the transfer function of the
(A,B,C). Then, there exist biproper matrices B (s)1 system (A,B,C). Then, there exist biproper and
and B (s), and a unique matrix M (s), known as2 bistable matrices V (s) and V (s), and a matrix Z(s),1 2
the Smith-McMillan form at infinity of T (s), such unique up to units of IR (s), such thatps
that

pn o V (s)T (s)V (s) = Z(s) = diag{z (s)} (6)p 1 2 i i=11
0B (s)T (s)B (s) =M (s) = diag (4)n1 2
is i=1 and z (s) are proper and stable rational functionsi

0 0 satisfying the divisibility conditions in IR (s),psand {n , · · · , n } are positive integers satisfying1 p

z (s) | z (s), i = 1, . . . , p 1. (7)0 0 i i+1n n , i = 1, . . . , p 1. (5)i i+1

Proof. It follows from the fact that Z(s) is the Smith
The matrix M (s) displays the infinite structure of

form of the proper and stable rational matrix T (s)0 0the system, the integers {n , · · · , n } being the orders1 p over the ring IR (s).psof the infinite zeros of the system.

The biproper matrices B (s) and B (s) in (4) re-1 2 Let M(s) be the Smith-McMillan form of T (s) and
present, respectively, elementary row and column

factorize the polynomials ² (s) asioperations on T (s) over the ring of proper rational
+functions IR (s). Elementary row operations on T (s)p ² (s) = ² (s)² (s), i = 1, . . . , p,i i i

over IR (s) are defined as follows:p
+where ² (s) contains the roots of ² (s) outside theii) changing the i-th and j-th rows of T (s), i

open left-half complex plane C . Then, the properii) multiplying the i-th row of T (s) by a unit of
and stable rational functions z (s) in (6) have theiIR (s),p
form

+iii) adding to the i-th row of T (s), the j-th row (i 6= ² (s)iz (s) = , i = 1, . . . , p, (8)ij) multiplied by an element of IR (s).p i
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where := s + is a stable term (i.e. C ), can be represented in transfer function terms as a

+0 0and := n + deg ² (s), n being the orders of the biproper and bistable matrix postmultiplying thei i ii

infinite zeros of the system. system transfer function T (s).
The presence of some of the elements of M(s) and

This fact, in its turn, establishes a natural restric-M (s) in Z(s) is not at all unexpected. The ma-
tion on the type of feedback we can use while tryingtrix Z(s) contains the information of T (s) concerning
to achieve decoupling with stability: For our pur-the unstable and infinite zeros of the system, which
poses, the state feedback (F,G) will be said to becan be obviously deduced combining the information
an admissible state feedback if its e ect on the sys-about the finite zeros (given by M(s)) and the infi-
tem (A,B,C) can be represented as a biproper andnite zeros (given by M (s)) of the system.
bistable precompensator R(s) acting on the systemThe biproper and bistable matrices V (s) and1
transfer function T (s).V (s) in (6) represent, respectively, elementary row2
This can be considered as the matrix interpreta-and column operations on T (s) over the ring of

tion of the fact that we are neither allowed to intro-proper and stable rational functions IR (s).ps
duce unstable poles nor to cancel out unstable zerosSince we are considering that the system (A,B,C)
in order to keep the internal stability of the closed-is controllable and observable, then the so-called un-
loop system.stable content of the system (Mart́ınez and Malabre,
At this stage, it is important to consider the infor-1994), which is the information related to the unsta-

mation of the system which remains invariant underble zeros of the system, is given by
the action of biproper and bistable compensation,

pX and consequently, invariant under the action of an
++C (A,B,C) = deg ² (s).i admissible state feedback.

i=1

IV.1 The stable interactor
The row unstable content of the system is the infor-

Since the action of an admissible state feedback onmation related to the unstable zeros of the subsys-
(A,B,C) can be represented as multiplication oftems (A,B,C ).i
T (s) on the right by a biproper and bistable ma-
trix, the information of the system that is invariant

IV. DECOUPLING WITH STABILITY under such a feedback is contained in the column
Let (F,G) be a regular static state feedback applied Hermite form of T (s) over the ring IR (s) (Dion andps

on the stable system (A,B,C), such that the closed- Commault, 1988; Ruiz-León et al., 1995).
loop system (A + BF,BG,C) is internally stable.

Lemma 3 Let T (s) be the transfer function ofThe closed-loop transfer function is given by
(A,B,C). Then, there exist a biproper and bistable

1T (s) = C(sI A BF ) BG. matrix V (s) and a nonsingular lower triangular ma-F,G
1 p×ptrix (s) IR (s), unique up to units of the rings ps

After some manipulations on the last equation, we IR (s), such thatps
obtain

(s) (0)1 1 1 11T (s)= C(sI A) B[I F (sI A) B] GF,G . .1 . .T (s)V (s) = (s) = (9)= T (s)R(s) .s .
(s) . . . (s)p1 pp1where T (s) = C(sI A) B is the transfer function

of the system (A,B,C), and where the rational functions (s) IR (s) satisfy,ij ps

for i > j,1 1R(s) := [I F (sI A) B] G.

(s) = 0, or deg (s) < deg (s), (10)ij ps ij ps iiSince the closed-loop system is supposed to be sta-
ble, then R(s) must be clearly a proper and stable and they are of the form
rational matrix. Further, from

(s)ii1 1 1 (s) = (11)R (s) = G [I F (sI A) B] ii kii

1 1= G [det(sI A)I F Adj(sI A)B]det(sI A) (s)ij
(s) = , (12)ij kij

1it can be seen that R (s) is also proper and stable,
where (s) is a polynomial with only unstable rootsiisince (A,B,C) is stable. Then, we have the following
(antistable polynomial), = s + is a stable term,result.
(s) IR[s] is a polynomial, and k , k are posi-ij ii ij

Lemma 2 The e ect of a regular static state tive integers. The matrix V (s) represents elementary
feedback (F,G) which preserves internal stability column operations on T (s) over IR (s). The positiveps
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real number results from the column operations in The following result, used in the proof of Theorem
(9) and it is inherited from T (s), otherwise it is ar- 1, states the conditions for a proper compensator to
bitrary. be realizable.

The rational matrix (s), which is the inverse of Lemma 4 (Hautus and Heymann, 1978) Let the ma-s
1(s), is known as the stable interactor of the sys- trices N (s) andD(s) be a right coprime matrix frac-1s

tem. This matrix is also called generalized interac- tion description (MFD) of the system (A,B, I ), andn

tor because, in some sense, it could be considered let P (s) be a nonsingular compensator. Then P (s)
as a generalization of the classical system interactor is state feedback realizable on (A,B,C) if and only
(s) (Wolovich and Falb, 1976). Notice, as stated in if
Lemma 3, that the matrix (s) is not unique but its

• P (s) is biproper, andis unique up to units of the ring IR (s). For a fixedps

= s+ , the matrix (s) is unique, and considerings 1• P (s)D(s) is a polynomial matrix.
this is why we call it “the” stable interactor of the
system. Actually, the algebraic properties of (s)s

presented afterwards do not depend on the choice of
V. MAIN RESULTS

, nor the results stated in the next sections based
on these properties. V.1 Solution to decoupling with stability
The matrix (s) is in general a rational matrixs

The next result presents the necessary and su cienthaving only unstable poles. This can be seen from
conditions for the decoupling problem with stabilitythe fact that the numerator of the determinant of
to have a solution.1(s) is the product of the antistable polynomialss

(s), i = 1, . . . , p. Observe that if (A,B,C) has noii Theorem 1 The controllable and stable square sys-
unstable zeros, then (s) is a polynomial matrix.s tem (A,B,C) is decouplable with stability if and
While the classical system interactor (s) is a only if its associated stable interactor (s) is a dia-s

polynomial matrix containing the infinite structure gonal matrix.
of the system that can not be modified by a state

Proof. Necessity. Suppose that (A,B,C) is decou-feedback (Wolovich and Falb, 1976), the stable in-
plable with stability. Then there exists a state feed-teractor is a state feedback invariant containing the
back (F,G) such thatinfinite and unstable structural information of the

system. 1T (s)= C(sI A BF ) BGF,G
1 1= T (s)[I F (sI A) B] G =W (s).Remark 1 Let n be the infinite zero order of thei

i-th row of T (s) and let d denotes the number ofi
1 1Since [I F (sI A) B] G is a biproper andunstable zeros (with multiplicities included) of the

bistable matrix, and W (s) = diag{w (s), . . . , w (s)}1 psame row of T (s). Because of property (10), and
is proper and stable, then it follows that (s) is dia-ssince V (s) in (9) is biproper and bistable, it can be
gonal.seen that if the diagonal entry (s) is the only ele-ii

1ment di erent from zero of the i-th row of (s), Su ciency. To prove this part, we will show thats

then the biproper and bistable matrix V (s) in (9) is feed-
n + d = deg (s), back realizable. Let N (s) and D(s) be a righti i ps ii 1

coprime MFD of (A,B, I ) with D(s) column re-n
otherwise duced. According to Lemma 4, V (s) will be proved

1n + d < deg (s).i i ps ii to be feedback realizable if the product V (s)D(s)
is polynomial.The last equation follows from the fact that if (s)ii
From (9) we haveis not the only element di erent from zero of the i-th

1row of (s), then there exists an element (s) inij 1 1s T (s)V (s) = CN (s)D (s)V (s) = (s),1 sthe same row such that

and from this, we get
n + d = deg (s) < deg (s).i i ps ij ps ii

1(s)CN (s) = V (s)D(s). (13)s 1

IV.2 Feedback realization of precompensators Since the left hand side of the last equation has only
unstable poles, and the right hand side has only sta-A given proper compensator P (s) is said to be feed-

1ble poles, then it follows that V (s)D(s) is polyno-back realizable on the system (A,B,C) if there exists
mial.a state feedback (F,G) such that

1Given that V (s)D(s) is polynomial, and taking
1 1P (s) = [I F (sI A) B] G. D(s) column reduced, then there exists a constant
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0solutionX, Y withX nonsingular, to the polynomial where n (n ) are the infinite (row infinite) zero or-ii

matrix equation (Kučera and Zagalak, 1991) ders of the system, d is the number of row unstablei
+ +zeros, and r := deg ² (s) where ² (s) are the anti-i i i1XD(s) + Y N (s) = V (s)D(s). (14)1 stable polynomials in (8).

Since the system is decouplable with stability
Thus, a state feedback (F,G) which decouples the

( (s) is diagonal), then it is also decouplablessystem (A,B,C) and preserves internal stability is
without stability, i.e. (Descusse and Dion, 1982)1 1obtained as F = X Y , G = X .

p pX X
0Remark 2 From the fact that the biproper and n = nii

bistable matrix V (s) in (9) is feedback realizable, i=1 i=1
1then (s) (diagonal or not) can be considered ass and from this and (17), we have

the transfer function of the closed-loop system (A+
p pBF,BG,C), whose stable interactor is (s). Thus,s X X

the matrix V (s) can be regarded as the input-output r = di i

representation of a static state feedback whose e ect i=1 i=1

is a pole assignment, some poles of the system be-
which are respectively equivalent to (15) and (16).ing placed at the positions of stable zeros producing
Su ciency. From (15) and (16) it follows thatcancellation, and the remaining ones being located

1at the stable position s = . In this way, (s) iss p pX Xthe resulting transfer function of (A + BF,BG,C). 0(n + r ) = (n + d ).i i ii1Compare with (s), the inverse of the classic in-
i=1 i=1

teractor, where it can be considered that cancellation
From Remark 1, we have thatof all zeros is produced and the remaining poles are

located at s = 0. From this point of view, the di e-
1 1 n + d deg (s),i i ps iirence between (s) and (s) is that in the pro-s
1cess of obtaining (s) we avoid the cancellation ofs equality holding in the case that (s) is the onlyiiunstable zeros in order not to produce internal insta- 1element di erent from zero in the i-th row of (s).sbility. 1Let us suppose that (s) is not diagonal, thiss

means thatThe following result shows that the conditions pre-
p psented in (Mart́ınez and Malabre, 1994) are equiva- X X

lent to the conditions of Theorem 1. (n + d ) < deg (s)i i ps ii

i=1 i=1
Theorem 2 The stable interactor of the system

i.e.(A,B,C) is diagonal if and only if the following two p pX X
0conditions hold (n + d ) < (n + r )i i ii

p i=1 i=1X
C (A,B,C) = C (A,B,C ), (15)i contradicting our assumption.

i=1

V.2 Computation of the decoupling state feed-and
pX back

+ +C (A,B,C) = C (A,B,C ). (16)i
Considering that the system (A,B,C) is decouplable

i=1
with stability, two methods are presented in this sec-

where C (A,B,C) (C (A,B,C )) is the content ati tion to compute a state feedback which decouples the+infinity (row content at infinity) and C (A,B,C)
system with stability.+(C (A,B,C )) is the unstable content (row unstablei

content) of the system. Method 1. If the stable interactor of the system is
a diagonal matrix, then the su ciency part of The-Proof. Necessity. Let Z(s) be the Smith form of

1 orem 1 provides a procedure to find a state feedbackT (s) over IR (s), and let (s) be the inverse ofps s
1which produces (s) as the transfer function of thethe stable interactor. From (6) and (9) it follows s

closed-loop system for any choice of . Actually, thethat
poles of this diagonal closed-loop transfer function

1deg [det Z(s)] = deg [det (s)]. can be arbitrarily located in C . To obtain the co-ps ps s

rresponding state feedback, find a constant solution
Then, supposing that (s) is diagonal we have thats X, Y with X nonsingular to the polynomial matrix

p p equationX X
0(n + r ) = (n + d ) (17)i i ii 1XD(s) + Y N (s) =W (s)CN (s) (18)1 1i=1 i=1
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whereW (s) is the diagonal closed-loop transfer func- whose transfer function matrix is

1tion with desired poles, obtained from (s), and 1s 02(s+1)C, N (s) and D(s) are as before. Thus, a state feed- 11 T (s) = C(sI A) B = .
1 s 1back (F,G) which decouples the system (A,B,C)

4 3(s+1) (s+1)
with closed-loop transfer function W (s) and pre-

1serves internal stability is obtained as F = X Y , The stable interactor of this system is not a dia-
1G = X . gonal matrix, because the (2, 1) entry of T (s) can

not be cancelled out by an elementary column opera-
Method 2. Let W (s) be the diagonal closed-loop tion over IR (s), thus the system is not decouplableps

transfer function with desired poles, obtained from with stability. The more we can do using elemen-
1(s), and define tary column operations over IR (s) is to obtain thes ps

1Hermite column form (s) of T (s), i.e. to reduces1 ¯Q(s) = T (s)W (s) = Q +Q(s), (19)0 the degree of the (2, 1) entry of T (s) so as to be less
than the degree of the (2, 2) entry, which is equal to¯where Q is a constant matrix, and Q(s) is a strictly0 3. Then, we have

proper rational matrix.
1Then, we search for matrices F and G such that 1 002(s+1)

T (s)V (s) =
1 s 1 s+31 1 1Q(s) = [I F (sI A) B] G. (20) 4 3(s+1) (s+1) 4(s+1)

From the last equation, it can be seen that matrix G 1 02(s+1)
1is given by = = (s)s1 s 1

2 34(s+1) (s+1)
G = lim Q(s) = Q . (21)s 0

1where the last matrix is (s) for = 1.s
To compute matrix F , let [L E ] be a basis for the In terms of the infinite and unstable zeros of the
left constant kernel of the matrix system, and following the notation from Theorem 2,· ¸ we have that1(sI A) B

, (22)1 0 0I GQ (s) n = n = 2, n = n = 21 2 1 2

d = d = 0, r = 0, r = 1.p×n p×p 1 2 1 2where L IR , E IR , and E is nonsingular
(such matrices exist if the system is decouplable with Then, it can be seen that the row infinite zeros co-
stability). incide with the global infinite zeros, but not the un-
Then, matrix F is given by stable zeros, since s = 1 is an unstable global zero

but it is not a row zero of T (s). Thus, this system is
1F = E L. (23) decouplable, but not decouplable with stability. In-

deed, the state feedback
Remark 3 While Method 1 relies on the constant · ¸ · ¸solution to a polynomial matrix equation, Method 2 0 0 0 0 0 1 0

F = , G =uses a constant kernel of a strictly proper rational 0 0 0 1 1 0 1
matrix. Method 2 has the advantage, in compari-
son to Method 1, that it is not necessary to obtain a produces the decoupled system (A + BF,BG,C)
matrix fraction description of the system with D(s) whose transfer function is
column reduced.

1 02(s+1)
T (s) =V.3 Examples F,G

10 2(s+1)The next two examples will illustrate the main re-
sults of this paper. but the closed-loop system is not internally stable.

Example 1 Let the system (A,B,C) be given by Example 2 Let the system (A,B,C) be given by

1 1 1 4 4 1 4 2 1 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 3 3 1 0 1A = , B = , A = , B = ,
1 2 1 4 3 0 2 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0· ¸ · ¸
0 1 1 0 2 0 1 0 0 0

C = , C = ,
0 0 0.5 0 0.5 0 0 0 1 1
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algebraic approach. It has been shown that the pro-
blem has a solution if and only if the stable interactor
is a diagonal matrix. This is a structural condition
which is equivalent to the equality between the global
infinite and unstable structure and the row infinite
and unstable structure of the system. Two methods
were presented to compute a state feedback which
decouples the system with stability.
The assumptions made in this paper that the con-

trollable system (A,B,C) is internally stable and
observable are just in order to define properly the
stable interactor of the system and to check the con-
ditions for decoupling from the system transfer func-
tion T (s), and there is no loss of generality in these
assumptions. The decouplability of non-stable or
non-observable systems can be also easily analyzed.
Indeed, the structural conditions for decoupling with
stability are independent of these properties of the
system.
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