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Abstract  Only ten years were enough for 
hybrid neural network-first principle models (HNM) 
reach a status of a standard industrial tool. This 
modeling strategy is employed here to represent the 
production of sorbitol and gluconic acid from 
glucose and fructose, using permeabilized and 
immobilized Zymomonas mobilis cells. Mass 
component balances are derived for the substrate 
concentrations. A multilayered neural network is 
used to represent the reaction rate. Experimental 
results were used to develop and validate the model. 
The HNM allows the elucidation of the phenomena 
involved in the process. It is observed from the 
results that the resistance for mass transfer from the 
liquid to the particles is increased at higher substrate 
concentrations and that the reaction rate depends on 
the concentrations of substrate and product in the 
particles. Additionally, it may be stated that the 
flexibility of the HNM allows the development of a 
model that would otherwise be difficult, if based 
solely on phenomenological principles. 

Keywords  hybrid modeling methods, neural 
networks, enzymatic reaction, basket reactor. 

I. INTRODUCTION 

The limitations of neural networks (e.g. extrapolation 
difficulties) naturally led to the development of hybrid 
models in which they were integrated with other knowl-
edge representations of the process.  

A decade ago, Psichogios and Ungar (1992) pro-
posed a hybrid neural network-first principle modeling 
strategy (HNM) by the insertion of neural networks into 
phenomenological models to represent parameters of 
difficult description. Since then, this kind of HNM was 
adopted for several applications, such as:  

bioreactors (Thompson and Kramer, 1994; Schubert 
et al., 1994; Fu and Baford, 1996; Van Can et al., 1997; 
Tholodur and Ramirez, 1996; De Azevedo et al., 1997; 
Costa et al., 1999; Henriques et al., 1999); 

chemical reactors (Martinez and Wilson, 1998; 
Molga and Cherbanski, 1999); 

polymerization reactors (Vega et al., 1997; Nasci-

mento et al., 1999); 
metallurgic reactors (Reuter et al., 1993); 
dryers (Cubillos et al, 1996; Zbicinski et al., 1996; 

Mateo et al., 1999); 
flotation plants (Cubillos and Lima, 1997; Gupta et

al., 1999); 
pressure vessels (Van Can et al., 1996); 
distillation column (Safavi et al., 1999) etc.  
Nowadays, the hybrid neural strategy has evolved 

into a standard industrial technique (Mogk et al., 2002). 
In the present work, modeling is used to aid in the 

development of a new process: the enzymatic produc-
tion of sorbitol and gluconic acid using permeabilized 
and immobilized cells of Zymomonas mobilis in a spin-
ning basket reactor.  

The objective is that the model helps in the under-
standing of the phenomena that happen in the process 
and also provides inferences of variables in the particles 
of immobilized cells. 

With that purpose, a hybrid model is introduced 
here. This model explicitly considers mass transfer of 
the substrate from the liquid medium to the immobilized 
cells as well as the reaction rates, under different opera-
tional conditions.  

It is expected that the resulting model will allow the 
optimization of the process. 

II. METHODS 

A. Zymomonas mobilis

Glucose Gluconolactone Gluconic acid

Sorbitol

GL

GFOR

Fructose

The enzymatic mechanism for Zymomonas mobilis is 
sketched above. The enzymes GFOR (glucose-fructose 
oxidoreductase) and GL (gluconolactonase) are present 
in Zymomonas mobilis cells. GFOR is capable of 
converting glucose and fructose mixtures, oxidizing the 
first to gluconolactone and simultaneously reducing the  
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second to sorbitol. GL converts the gluconolactone 
produced to gluconic acid.  

Microorganism and Growth Conditions. The ex-
periments were performed with Zymomonas mobilis

CP4 (ATCC 31821), cultivated anaerobically in a me-
dium containing 100 g/L glucose and 5 g/L yeast ex-
tract, under controlled temperature of 30 oC.

Cell Permeabilization: CTAB (cetyltrime-
thylammonium bromide) was added and the cells were 
agitated during 30 minutes, centrifuged at 5500 rpm 
during 30 minutes and then washed (Chun and Rogers, 
1988). Permeabilization allows the introduction of ex-
trinsic molecules and the release of some compounds, 
while the enzymes GFOR and GL are retained.  

Immobilization: the permeabilized cells were
immobilized with -carrageenan gel at 4 %. The 
particles were treated with polyethyleneimine at 1 % 
(v/v), glutaraldehyde at 0.5 % (v/v) and KCl 0.3 N 
(Rehr et al., 1991, Fonseca, 2003). Immobilization was 
adopted because preliminary investigations indicated 
that this operation improves the stability of the 
permeabilized cells (Fonseca, 2003). 

B. Experimental Set-up 

The reactions with immobilized cells were carried in a 1 
L bioreactor, with a 0.5 L working volume, in batch 
mode. The particles were put in three cylindrical baskets 
(3 cm diameter, 6 cm height) attached to the stirrer. 
Temperature was controlled at 39 oC. A pHmeter 
(Chemcadec model 565200), which added a KOH 3N 
solution to the medium through a peristaltic pump (Mas-
terflex model 77120-60), controlled pH at 5.5. A mx cell 
mass was employed (Table 1). 

Figure 1 exhibits the experimental apparatus. The 
electronic balance was interfaced with a computer and 
sent signals corresponding to the amount of alkali added 
to the reactor.  These signals had to be treated by digital 
low-pass filters, because high frequency noise was pre-
sent.

Balance

Stirrer

Pump

Alkali

Baskets

Reactor

pH electrode

Figure 1: Experimental apparatus. 

C. Analytical Methods 

Cell concentration was determined by dry weight. 
As the enzymatic reaction is equimolar, the concen-

tration of the substrates and products were inferred, dur-
ing the course of reaction, by on-line monitoring of the 
alkali, of known concentration, that was added to the 
medium to neutralize the gluconic acid formed. These 
inferences were validated by HPLC measurements 
(Fonseca, 2003). 

D. Proposed Model 

A model was derived to represent the process. It consid-
ers that the substrate in the liquid medium is transferred 
to the immobilized cell particles, where the reaction 
happens. 

Equation (1) describes the variation of the volume of 
liquid V that occurs due to the flow rate F of alkali, 
added to control the pH. Equation (2) models the varia-
tion of the number of moles of glucose in the liquid, 
given by the product GV, where G is the glucose con-
centration. Equation (3) represents the variation of glu-
cose concentration Gp in the particles, where G’p is the 
concentration on the surface of the particles. 

F
dt

dV
 (1) 

'
pGG

dt

)GV(d
 (2) 

s
'
p

S

P rGG
Vdt

dG
 (3) 

In these equations 
    klan p

where a is the interfacial particle area; np the number of 
particles and kl the mass-transfer coefficient. The mass 
transfer by diffusion inside the particles is considered 
very fast, when compared to the reaction rate. Hence, 
the concentration gradient inside the particles is as-
sumed negligible, so that: 

p
'
p GG . (4) 

 Equations (1) and (2) may be combined to give the 
variation of glucose concentration in the liquid: 

G
V

F
GG

Vdt

dG
p . (5) 

The fact that the reaction is equimolar is used to 
calculate the concentrations of the two substrates and 
two products based on the equations above (written for 
glucose). For each mole of glucose consumed, one mole 
of fructose is also consumed and one mole of gluconic 
acid and one mole of sorbitol are produced. 

III. EXPERIMENTAL RESULTS 

The four experimental conditions chosen for this study 
are shown in Table 1. Equimolar initial concentrations 
of glucose and fructose were employed. 
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TABLE 1: Experimental Conditions. 

Exp Glucose 
G0(mol/) 

Fructose
F0 (mol/)

Cells
mX (g) 

Agitation 
frequency  

 (rpm)

1 0.498 0.498 2.44 180 

2 0.846 0.844 2.48 200 

3 1.307 1.309 2.25 200 

4 1.872 1.867 2.30 210 

TABLE 2: Parameters of the polynomial fit for the 
Flow.

Exp f0x103 f1 x105 f2 x108

1 2.659 -3.248 -6.978 

2 2.889 -2.619 -1.972 

3 3.318 -1.811 -13.260 

4 2.580 0.690 -16.645 

The number of particles np put in the basket was 
200. This renders the following volume of solids Vs:

3
p R

3

4
V  (6) 

pps VnV  (7) 

where Vp is the volume of each particle, with radio R = 
0.03 dm. The area is a = 2.8 x 10-3 dm2.

The results of four batches runs are shown in Figs. 2, 
3 and 4. The experimental points are plotted by the use 
of symbols. In this paper only model curves are repre-
sented by continuous lines. 

Figure 2 shows the volume variation for each ex-
periment. The flow of alkali to the reactor is not con-
tinuous, due to the on-off nature of the pHmeter. In or-
der to facilitate the development of the simulations, 
polynomial approximations were obtained for the flow 
in each case. Quadratic equations in the form of Equa-
tion (8) were developed for each experiment. 

 F = f0 + f1 t + f2 t
2 (8) 

Table 2 gives the coefficients of Equation (8) for 
each experiment. Figures 3 and 4 show the transient 
behavior for the glucose and sorbitol concentrations for 
the four batches.  

IV. HYBRID NEURAL MODEL 

A. Development of the model 
In the usual HNM strategy, a neural network is used to 
represent the reaction rate. The mass balance equation is 
then rewritten in order to put the reaction part in terms 
of other known factors, as follows: 

Reaction rate = accumulation + transport rate (9) 

So an approximation for the derivative (accumula-
tion) term is necessary. It is possible to use polynomial 
approximation to fit the curves and then calculate the 
derivative of the polynomials. However, this strategy 
may lead to oscillation of the fitted curve. 
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Figure 2:  Medium volume increase. 
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Figure 3: Temporal profile of glucose concentration. 
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Figure 4: Temporal profile of sorbitol concentration.
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TABLE 3:  Parameters of Eq. (10). 

Exp k a

1 -0.283 7.775 19.321 

2    -0.425 10.327 26.397 

3 -0.599 11.024 29.719 

4 -0.922 48.668 14.693 

An alternative strategy was adopted here. It was 
considered that the curves for glucose moles (GV) ex-
hibit a similar behavior to the step response of a criti-
cally damped (damping factor,  = 1) second order with 
zero process, given by (Seborg et al., 1989): 

2

t

a

t

' etkt
1e1kGV (10) 

where Eq. (10) gives the deviation from the initial value 
of GV and , a and k are parameters of the model 
(Seborg et al., 1989). Under this assumption, Eq. (10) 
was used to adjust the experimental data instead of a 
polynomial one. 

Non linear regression (Quasi-Newton) was applied 
The parameters of Eq. (10) were obtained, as Table 3 
summarizes, with coefficients of determination R2

approximately equal to 1. Figure 5 shows that the curves 
fit exactly the experimental data. 

Other difficulties arise when trying to solve 
equations (1) to (3). As it is assumed that the reaction 
happens in the particles and only bulk concentrations 
are measured (that is, GP is not measured), the 
accumulation term in Eq. (9) is not known (dGp/dt).  

In the following, the manipulations necessary to ob-
tain the reaction rate in terms of known variables are 
presented.

First, an expression for GP in terms of kl is obtained 
from equation (2):  

G
dt

GVd1
GP  (11) 

where G is known and the first derivative of GV may be 
obtained by taking the first derivative of equation (10):  

t

3
a

t

2
a

t

2
et

k
e

k
et

k

dt

GVd
  (12) 

 Now, deriving Eq. (2) and using Eq. (4) and Eq. (3), 
subsequently, to substitute respectively '

PdG dt  and 

PdG dt , the following equation is obtained: 

sp
s

2

2

2

rGG
V

dt

)(d

dt

)GV(d1

dt

dG

dt

)GV(d

       (13) 

An expression for the reaction rate may be obttained 
from the previous equation: 
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Figure 5: Fit of GV curves using temporal linear 
models. 
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s
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where G is known, Gp is given by equation (11) and the 
second derivative of GV may be calculated from Eq. 
(10): 

t

4
a

33
a

22

2

et
k

t
kk2k

dt

GVd
   (15) 

Based on experimental evidences that kl depended 
both on  and G, a variable representation for the mass 
transfer coefficient was assumed: 

)GG(cbkl 0iiii                           (16) 

where bi and ci are constants for each experiment.

The derivative of   is then given by: 

dt

dG
ca-n

dt

d
ip

.                             (17) 

Equation (14) together with Eqs. (11), (15) and 
(17)  provides a way to calculate the reaction rate. 
These values will be necessary to obtain the kinetic 
description of the process as presented in next item.

B. Training of the net 
A multilayered neural network was trained to represent 
the reaction rate.  

After some preliminary tests, a configuration was 
chosen in which the inputs consisted of concentration of 
glucose in the particles, initial concentration of glucose 
in the medium and concentration of sorbitol (Gp; G0 and 
P, respectively). The output corresponded to the specific 
reaction rate , being the target values obtained from 
Eq. (14). 
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Figure 6: Trained multilayer neural net. 

The data for training and validation were taken from 
the experimental batches, consisting of 1106 patterns. 
Aditionally, 100 patterns were built in order to show to 
the net that the reaction rate was null if Gp = 0. Two 
thirds of the resulting patterns were randomly selected 
for training and one third for validation. 

 The STATISTICA™ Neural network module was 
used in order to select the nets. The chosen one is shown 
in Figure 6. A total of 7 hidden hyperbolic neurons was 
used. The output neuron was sigmoidal.  

In the training, a total of 100 epochs was carried us-
ing backpropagation and 19 epochs using conjugate 
gradient. The correlation coefficient between the pre-
dicted and observed data was 0.999. 

V. RESULTS 

The hybrid model given by Eqs. (1) to (3)  with the 
neural net describing the reaction rate  was used to 
simulate the batch experiments. A numerical solver 
from MATLAB™ (ode15s) was used to integrate the 
equations from the initial values for G (experimental) 
and GP (GP(0)=0). It must be emphasized that these two 
data are the only ones necessary to run the model. 

Figure 7 shows the experimental curves and the 
results of the HNM. A good agreement is observed for 
the four experiments, showing that the model was able 
to generalize from the presented data. 

 The model also provides profiles for GP, a variable 
that is not measured. It can be seen in Figure 8 that the 
GP and G curves are more detached when the initial 
concentration of glucose in the medium is higher. It can 
also be noticed that the concentration gradients last 
longer in the experiment with the highest initial 
concentration of substrate (Exp. 4).  

 The values assumed for the mass transfer coefficient 
depend on the agitation frequency of the stirrer and on 
the glucose molar concentration, being empirically ad-
justed by the linear multiple model given by Eq. (16). 

 Table 4 presents the parameters of Eq.(16). These 
parameters were calculated in order to satisfy the condi-
tion that, in t = 0, both glucose concentration and spe-
cific reaction rate in the particles must equal zero. 
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Figure 7: Results of the HNM model.
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Figure 8: Results of the HNM model. 

TABLE 4: Parameters of the Mass Transfer Coefficient 
Equation.

Exp bi x 105

dm (h rpm)-1
ci,

dm4 (h mol)-1

1 11.6 0.833 

2 6.6 0.278 

3 4.8 0.125 

4 2.6 0.044 

The conditions were chosen so that higher agitation 
frequencies were imposed ( 1 = 180; 2 = 200 and 3 = 
210 rpm) at higher initial substrate concentrations. 
These operational procedures took into account the fact 
that, with low concentrations, a high agitation frequency 
could disrupt the particles of the immobilized cells. 



Latin American Applied Research 34:187-193 (2004) 

 192 

 
 

VI. CONCLUSIONS 

A new process is being presently developed using 
immobilized Zymomonas mobilis cells to produce sorbi-
tol and gluconic acid from glucose and frutose. 

A model was introduced here which include mass 
transfer and reaction terms. The problem of deriving a 
model for this process is difficult because the reaction 
happens in the particles.  

A hybrid phenomenological-neural model was 
developed. Specifically, the neural network describes 
the kinetic terms. As the diffusion in the particles was 
not explicitly taken into account, it can be considered 
that the neural network models an apparent (nor 
intrinsic) kinetic rate in the particles. 

It was shown that the HNM fits the experimental 
data used in the development and was able to generalize 
from the training data. The model also provides infer-
ences of variables that are not actually measured (GP)
and allows the verification of the importance of a mass 
transfer coefficient for higher substrate concentrations. 

Additionally, the use of linear temporal auxiliary 
equations to describe the profiles of the variables 
appears as an interesting alternative, as they do not 
oscillate (as polynomial equations may) and are easily 
differentiated. The application of these equations to 
calculate the derivatives needed by the HNM approach 
is innovative, to the knowledge of the authors. 
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