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Abstract— The well-known micro plane
theory is extended to account for micro ro-
tations and couple stresses in the framework
of the micro polar Cosserat continua. The
main purpose is to obtain reliable macro-
scopic constitutive equations and models for
engineering materials like concrete and other
composites based on available and precise in-
formation of their complex microstructure.
The proposed macroscopic descriptions ac-
count also for anisotropic material response
behavior by means of the well-developed mi-
cro plane concept applied within a micro po-
lar continuum setting. For the formulation
of the micro polar-based micro plane theory
a thermodynamically consistent approach is
considered, whereby the main assumption is
the integral relation between the macroscopic
and the microscopic free energy as advocated
by Carol et al. (2001) and Kuhl et al. (2001).
Thereby, the micro plane laws are chosen
such that the macroscopic Clausius-Duhem
inequality is fully satisfied. This theoretical
framework is considered to derive both elas-
tic and elastoplastic micro polar micro plane
models. Numerical predictions of the uniaxial
tensile and simple shear tests in plane strain
conditions obtained with a micro polar micro
plane elastoplastic model are also presented
and contrasted to the corresponding predic-
tions of the classical micro polar elastoplastic
model.

Keywords— plasticity, micropolar, micro-
plane, localized failure.

I. INTRODUCTION

One of the most successful constitutive theo-
ries for the analysis of the engineering mate-
rials is the micro plane theory which is char-
acterized by three relevant features. On one
hand, it incorporates microscopic information
in the macroscopic material formulation in a
natural way. On the other hand, very sim-

ple constitutive equations at the micro plane
level lead to highly accurate macroscopic pre-
dictions of material behaviors. The third rel-
evant aspect of the micro plane theory is its
capacity to model anisotropic material behav-
iors. Actually, this was one of the most im-
portant objectives of the original proposal by
Taylor (1938) which is based on the definition
of fully independent uniaxial stress-strain re-
lations on several planes of the material.

Based on Taylor’s idea the micro plane the-
ory was then pioneered by Bazant and Gam-
barova (1984), Bazant (1984) and Bazant and
Oh (1985, 1986).

For the formulation of the uniaxial stress-
strain relations on the micro planes, two
different approaches may be considered,
whereby the static or the kinematic constraint
require that either the stresses or the strains
on each micro plane are the resolved compo-
nents of their macroscopic counterparts. The
static constraint was extensively used until
the first application of the micro plane the-
ory to continuum damage mechanics and to
cohesive-frictional materials by Bazant and
Gambarova (1984) and Bazant (1984). It was
in those works were the name micro plane ap-
peared for the first time instead of the original
terminology slip theory which was related to
the plastic behavior assumption on slip planes
by Taylor and other authors like Batdorf and
Budianski (1949). The potentials of the mi-
cro plane theory for describing non linear
response behaviors of engineering cohesive-
frictional materials like concrete were exten-
sively demonstrated in the first contributions
by Bazant and coauthors related with the mi-
cro plane theory and, more recently, in the
works by Bazant and Prat (1988), Carol et
al. (1991, 1992) and Carol and Bazant (1997),

among many others.

Recently, the lack of a thermodynamically
consistent approach for deriving micro plane-
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based constitutive formulations was advo-
cated by Carol et al. (2001) who demonstrated
that the satisfaction of the second law of ther-
modynamics could generally not be guaran-
teed. To solve this fundamental shortcom-
ing they proposed a method for deriving mi-
cro plane constitutive formulations within a
thermodynamically consistent framework by
means of the incorporation of a microscopic
free Helmholtz energy on every micro plane.
This concept was successfully extended for in-
elastic material behavior such as damage and
plasticity by Kuhl et al. (2001). However,
both this work as well as the previous one
by Carol et al. (2001) were concerned with
classical Boltzmann continua (elastic and in-
elastic).

Despite the advantages of the micro plane
theory and the considerable progress of the
related models since the original Taylor’s pro-
posal, it still has open questions and the most
relevant one is how to incorporate more de-
tailed microscopic information in the global
constitutive equations to be able to reproduce
particular material behaviors.

In this work the thermodynamically consis-
tent approach to derive micro plane models
is further extended for micro polar continua
in the spirit of Cosserat and Cosserat (1909).
The main aim is to enrich the microscopic
kinematic and strength features of the micro
plane formulation so as to reproduce particu-
lar and more complex behaviors of the inter-
nal structure of composite quasi-brittle mate-
rials like concrete whereby the presence of ag-
gregates may contribute to the development
of microrotations in characteristic planes dur-
ing load histories beyond the elastic limit.

The second motivation of the micro polar
micro plane theory in this work is related to
the regularization of the post peak predictions
of the smeared crack concept. In this sense,
the incorporation of the micro polar length
scale at the microscopic level leads to an in-
trinsically non local micro plane constitutive
relation when the additional degrees of free-
dom of micro polar continua are activated.
This characteristic length accounts for mesh
objectivity during FE simulations of soften-
ing behaviors.

After revising the most relevant equations
of the Cosserat continuum in the next section,
the micro plane theory is extended to the mi-
cro polar continuum in section 3. Thereby,
both the static and the kinematic constraint
are redefined to include the macroscopic cou-
ple stress and the macroscopic curvature pro-
jections at micro planes, respectively. Sec-
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tion 4 is concerned with the hemispherical in-
tegrations which are required for the closed
form formulation of some micro polar micro
plane models. In section 5 the attention fo-
cuses on the method for deriving micro polar
micro plane constitutive equations. Section 6
refers to the application of the proposed ther-
modynamically consistent method to the for-
mulation of general 3D linear elastic models.
In section 7, elastoplastic constitutive equa-
tions are derived both for the general case
and for the von Mises type model. Finally, in
section 8 the numerical predictions of the mi-
cro polar micro plane elastoplastic von Mises
model for the uniaxial tensile and simple shear
tests are presented and compared with those
of the classical micro polar elastoplastic von
Mises model. The comparative results illus-
trate the fundamental differences between the
predictions of the micro polar micro plane and
the classical micro polar models. Moreover,
the results also demonstrate the potentials of
the proposed thermodynamically consistent
approach to derive constitutive models based
on enriched kinematic and strength proper-
ties at the microscopic level and thus allow-
ing for computational simulations of complex
anisotropic response behavior of engineering
materials.

II. FUNDAMENTALS OF COSSERAT
THEORY

In this section the relevant equations of the
micro polar Cosserat theory are presented.
This theory was proposed by Cosserat and
Cosserat(1909) at the beginning of the twenty
century. However, it was only in the last
decades that a revival of this theory took
place through the contributions of many dif-
ferent authors who analyzed the benefits of
the micro polar theory from different points
of view. Among others, the most promi-
nent work in this regard was made by Erin-
gen (1968) who presented a detailed analysis
of elastic micro polar continua and of their
mechanical features. The first application of
the micro polar continuum in non-linear com-
putational solid mechanics took place at the
end of the 1980°’s in the works by Miihlhaus
(1989) and de Borst (1991) who analyzed the
potentials of the elastoplastic micro polar con-
stitutive theory to regularize the predictions
of post-peak response behaviors of structural
systems within the theoretical framework of
the smeared-crack approach. In the same line,
Steinmann and Willam (1991), Willam and
Dietsche (1992), Sluys (1992) and Willam et
al. (1995) analyzed the localization indicators
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and localization properties of nonlinear micro
polar continua.

A. Stresses at Macro Level

The stress components in micro polar con-
tinua defined in the general 3D domain B
follow from the quasi-static form of linear
and angular momentum which reads (omit-
ting body forces and body couples for sim-

plicity)

dive! = 0 (1)
divp' +e:0 = 0

whereby p is a non symmetric second order
tensor which represents the couple stresses
of the micro polar continuum. The local
equilibrium equations of the classical contin-
uum and the corresponding typical symmetric
form of the stress tensor o are restored when
divu! = 0 — e : 0 = 0. Here e denotes the
third order permutation tensor.

B. Strain and Curvature at Macro Level

The deformation of the micro polar contin-
uum is a consequence of the simultaneous ac-
tion of two types of local or micro motions:
the classical or translatory ones, represented
by the displacement field u, and the pointwise
rotations characterized by the first order ten-
sor w. This enriched motion field leads to the
following strain measures

e = Vyu—Q (2)
k = Vw
with @ = —e - w. Here € represents the non-

symmetric micro polar strain tensor and k is
the micro curvature tensor which takes into
account the differential changes of the micro
rotations in the neighborhood of a point.
The second order strain tensor may finally
be decomposed into a symmetric and skew-
symmetric contribution € = €™ + €°** with

1

VM — §[VIu + V;u] (3)
1

et = i[ku —Viul+e w

III. THE MICRO PLANE THEORY

In the micro plane theory the macro-
mechanical response behavior of materials is
controlled by constitutive equations of char-
acteristic planes or micro planes by means of
the static or the kinematic constraint, requir-
ing that either the stresses or the strains on
each micro plane, respectively, can be derived
by projections of their macroscopic counter-
parts.

Figure 1: Micro plane normal and tangent
components of the strain and curvature ten-
sors

A. Stresses and Couple Stresses at Micro
Planes

For the case of the static constraint the stress
and couple stress (traction) vectors on each
micro plane, see Fig. 1, are given by pre-
multiplication with the micro plane normal
vector n, i.e.

t,=n-o t,=n-p (4)

The micro plane stresses and couple stresses
follow as their normal and tangential compo-
nents

ﬁT:z/t_ﬂN (5)
or=1t,—onN

oON = ONT
By = [INT
and are obtained as projections of their
macroscopic counterparts to the micro planes

on=N:o

pn =N :p

or=T:0o (6)
pr=T:p
Here, the second and third order projection
tensors N and T are defined with [I];;5; = ;10
the fourth order identity tensor and n the mi-
cro plane normal vector as
N =
T =

nen (7)
n-l-nenen
Thus, 6y and [y represent the normal

projected stress and normal projected cou-
ple stress, respectively, while 6+ and pp
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denote the tangential projected stress and
tangential projected couple stress vectors.
Note however that these projected compo-
nents of the macroscopic stress and couple
stress tensors are in general different from
those derived from constitutive equations at
the micro planes, that we shall denote as
ON, OT, N, B in the sequel.

The micro plane normal and tangential
stresses and couple stresses may be fur-
ther decomposed into symmetric and skew-
symmetric parts according to the usual de-
composition strategy in a micro polar contin-
uum. Nevertheless, since we shall not use ex-
plicitly the static constraint in the sequel, we
refrain from doing so.

B. Strains and Curvatures at Micro Planes

For the case of the kinematic constraint the
strain and curvature vectors on each micro
plane, compare Fig. 1, are given by post-
multiplication with the micro plane normal
vector n, i.e.

tt=e-n=Vyu—-wxn; t,=k-n=Vyw (8)

The micro plane strains and curvatures fol-
low as their normal and tangential compo-
nents

EN = ENT Ky =t, — KN 9)

KN = RNV ET:te—EN

These equations are valid both for the sym-
metric as well as for the skew-symmetric parts
of the strain and curvature measures. Taking
into account the following properties

sym

eV .n=n-eY" rY".n= n-g¥Y" (10)

the symmetric and skew-symmetric micro
plane strain components in the normal and
tangential directions of micro planes are then
defined by

ey = N:e®'m= N € (11)
el = T:eV" = T :¢€
e%kw - _T- 6skw _ _Tskw €

while the corresponding micro plane curva-
ture components in the normal and tangential
directions of micro planes are given by

kN = N:k%¥"= N 'k (12)
I‘L;ym — T - K’sym — Tsym ‘K
F.)?}kw - _T- K/skw _ _Tskw -

34:229-24

Here, in addition to the projection tensor
T the symmetric and skew-symmetric projec-
tion tensors T°Y™ and T**" with T = T°Y™ +
T** are defined as

79" = n " -—nenen (13)
Tskw n- Iskw
whereby “Sym]ijkl = [(51‘}953‘1 + 5il5jk]/2 and

[ISkw]ijkl = [0ix0,; — 0;10,%])/2 are the symmetric

and skew-symmetric parts of the fourth order
identity tensor | = [*V™ 4 [*F®,

IV. HEMISPHERICAL INTEGRATIONS

The integration properties of the micro plane
normal vector n are documented e.g. in
the works of by Bazant and Oh (1986) and
Lubarda and Krajcinovic (1993) are applied
to perform analytical integrations over the
hemisphere 2

/ dQ =27 (14)
Q
/ nen dQ) = 2—WI

Q 3

2 2
/n®n®n®n dQ W{Ivol—i-lfizgl}
Q 3 5 4
with [I];; = §;; the second order identity tensor
and the volumetric and symmetric deviatoric
fourth order projection tensors defined as

[S¥m _ [sym |
dev — vol

1
lyor = §I ®I (15)
For later use the relevant products of the
projection tensors T' and N are given as

[TT : T} L=
ikl
[N® Nl =

ToijTart = ningbj — nynngny
NN NNy (16)
and thus integrate over the hemisphere into

3

3 T k

= [ T7.Td0 skw 4 ZSjsym

27T/Q + 5 dev
3/N®Nd9 oot + 212V (17)
At o vol 5 dev

Accordingly, the relevant products of T°Y™
and T**" are given as

[[Tsym]T . Tsym] [ninkéjl + niTLl(Sjk‘i’

1
igkl — 4
dunng + digning] — niningng  (18)

. 1
[orem ] gy - o

ijkl 4
—5ilnjnk + 5iknjnl]

1
== [n,-nk.(Sjl + ninlc?kj

ikl 4
—5ilnjnk — 5iknjnl]

[[Tskw]T . Tsym:|
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and thus integrate over the hemisphere into

3 3
o [TV TmAe = S (19)
;/[TS}“”]T 'TSkwdQ Isk’w
T Jo
;/[Tsk:w]T LTSI IO = 0
T Ja

V. THERMODYNAMICALLY
CONSISTENT MICRO PLANE
MODELLING

Based on the proposal by Carol et al. (2001)
and Kuhl et al. (2001) we develop here a gen-
eral formulation for thermodynamically con-
sistent micro polar micro plane constitutive
laws. The macroscopic Clausius-Duhem in-
equality for isothermal processes reads
DM = glietpulik—PmC >0 (20)
Next, the main assumption is given by a
relation between the microscopic and macro-
scopic free energy, compare Carol et al. (2001)

and Kuhl et al. (2001)

3

v :27r

™A (21)
Moreover we consider the convenient uncou-
pled format of the microscopic free energy de-
pendent on strain and curvatures components
eny €77, €8 and ky, k'™, K, respectively,
as well as on the sets of internal variables q,,,
q,, related with the translatory motions and

rotations, respectively
qpmic — wmzc(

membrane energy

VI kv, k" KT, Q)

bending energy

Sym skw ) qu) +

(22)

Thus an additive decomposition of the to-
tal microscopic free energy into a mem-
brane energy and a bending energy was as-
sumed. This corresponds to the particular
case of micro polar response behavior where
the membrane-bending coupling diminishes
to zero.

The evolution law of the microscopic free
energy follows from the kinematic constraint
relations in Egs.(11) to (13)

wmzc _ |:O'NN + o_;;ym L Tsym o,%ku: . Tskw} €

|:/J/NN + Hsym Tsym _ u%kw . Tskw} s
~Dpie - Dpic (23)

M. NIETO

with oy, o7'™ and o5 the microscopic con-

stitutive stresses

S 3wmic. sym _ awmia
N ey T TT T 9
awmic
skw
= —— 24

and uy, p’™ and pi** the microscopic con-
stitutive couple stresses

- 8,(/)7711'(:' Nsym _ awmvc
N7 ey T PT o™
awmic
skw
= 25

and D™, DM the microscopic dissipation
rate of membrane and bending type, respec-
tively,

8,(/)mic
dq

mic
mic ,__ _61/)

DZLZC = *qu7 w T B

*q,, (26)

u w

whereby *x indicates the appropriate contrac-
tion. Recall however, that the constitutive
stresses and couple stresses on the micro
planes are in general different from the pro-
jected micro plane stress and couple stress
components gy, a"ST’“” and fiy, gy’ 7uka“’
obtained by means of the static constraint.

Due to the membrane-bending decoupling
assumption, the stress tensor components can
be derived from that portion of the total mi-
croscopic energy which is only related with
the translatory motion ™ while the compo-
nents of the couple stress tensor follow from
the other portion of the total microscopic en-
ergy, related with micro rotations .

The evolution of the macroscopic free en-
ergy can then be obtained applying the inte-
gral Eq.(21) to the evolution law of the mi-
croscopic free energy Eq.(23) as

: 3 ,
¢mac _ %/Q ([Tsym]T . O.;ym _ [Tskw]T . O_%kw 4
> 3 sym sym
—&—NUN)dQ:e—&—% Q(NMN+[T R TS
_[Tsk'w] 5kw) dQ : k+
3 mic mic
“gr | (DI DL (27)

The macroscopic stress tensor and couple
stress tensor are thus obtained from the mi-
croscopic constitutive stress and couple stress
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components as follows

O't —_ %fsz ([NO’N =+ [Tsym]T.o.;ym
_[Tskw}T ekw]) a0 (28)

Ht — % fQ ([NKN + [Tsym,] n;ym
—[TSkw}T 9kw]> do

In order to satisfy the macroscopic dissipa-
tion inequality
3

Dm(l(l —

ml(/ ml(/ >
QW/[D LD >0 (29)

we will require that the total microscopic en-
ergy dissipation on every micro plane is non-
negative

D™ =Dy + D > 0 (30)
which is a stronger requirement than that of
Eq.(29) and therefore represents a sufficient
condition to fulfill the second law of thermo-
dynamics.

The evolution law of the microscopic free
energy in Eq.(23) can be understood as the
microscopic form of the Clausius-Duhem in-
equality for the isothermal case, which can be
now rewritten as

Dmic _ DTZC + fDZch _ rPZu'c . wrunw_’_
+HPLC =g 2 0 (31)

with the microscopic stress and couple stress
power

sym skw  .skw

PC = gnén + o™ X" + a5 (32)

. sym skw sk:w

PMC = ki + p™ K +pur Ky

VI. MICRO POLAR-BASED MICRO
PLANE ELASTICITY

In case of hiper-elasticity the free energy
agrees with the stored energy which is as-
sumed here to be composed by uncoupled
membrane and bending contributions in the
form

Ve = Wivaen)+ WL () + W3S () (33)
¢Zzic _ WNW(KJN) + W]sg}m (F\‘,;ym) Wskw( akw)
whereby for linear elasticity the elastic mod-

uli By, BY™, B, By, B3V and ESF were

introduced into the microscopic energy func-
tions as

1 1
WNuw= §€NENu€N; WNe = iﬁNENw/fN

sym/skw __ 1 sym/skw sym/skw _sym/skw
Wi = 5¢r "B, “er (34)

sym/skw 1 sym/skw sym/skw sym/skw
Wrs = 5fr B, “Rr

34:229-24

Hyper-elastic behavior of both the mem-
brane and bending stiffness components is
characterized by zero internal variables (q, =
g, = 0). Therefore, the microscopic free en-
ergy reduces to

wmic _ wzm’c(eN e}ym e%kw)_’_

_i_wmzc( m;yrrz7 Iﬂ',?}kw) (35)

The previous definition of the microscopic
Clausius-Duhem inequality in Eq.(31) then
leads to the microscopic constitutive stresses
and couple stresses as thermodynamically
conjugate variables to the strain and micro
curvature components, respectively

o mic aqpmzc
u w
ON = — = Enuen; pn = e Enwkn
N N
o_sym/skw o 81/}77”6 o Esym/skw . esym/skw (36)
T - 9 sym/skw ~ —Twu T
€r
sym/skw awl;nw o Esym/skw . Hsym/skw
T - ) sym/skw ~ T Tw T
Kkt
From the macroscopic version of the

Clausius-Duhem inequality the macroscopic
stress and couple stress tensors follow as func-
tions of the microscopic components

o = L [INBuen + T
e By - efvlan

W= 2 [N B+ B
_[Tékw] Esk:w A }kw]dQ

The last equation can alternatively be
rewritten as

t

o' = E,:€ (37)

ut = E,:k
whereby the macroscopic membrane and

bending constitutive moduli are defined as fol-
lows

3
Ei = [ENZN ® N dQ+
o2
3 sym1T sym sym
+— [ [Tv™" - BT - TH™] dQ+
2 Q
3 skw1T skw skw
o | TR B T e (38)

with the subscript i = u,w.

Next, under the common assumption of mi-
cro plane isotropy the tangential strain and
curvature vectors and the tangential stress
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and couple stress vectors remain parallel dur-
ing the entire load history. Consequently, we
consider the following simplification

o — BN (30
skw skw __ skw
|| U - ETu Tu I
sym sym sym __ psym
H KT - ETw - ETw I
sk'w ” ‘:kw N Eskw _ Esk:w I
Tw — HTw

Assuming further that the constitutive
moduli are independent from the orientation
of the micro planes we arrive at

3
o

E, — {EM / N @ NdQ+ (40)

E%liw / [Tskw]T A TskwdQ}
Q

The integration formulae (14) to (20) allow
an analytical evaluation of the integrals in
Eq.(41) to render

Ei = |:§ENL - quymil I'Uol +
2 3 sym | jsym skw |skw
+ 3ENz‘gETi [Y™ + B3I 15 (41)

The comparison of Eq. (41) with the gen-
eral isotropic non symmetric elastic tensors
for decoupled membrane-bending behavior

E, = ailye + [042 + Oég]lSym + [012 — ag]ISk“’ (42)
w = Bilvor + [B2 + B3IV + [B2 — B
then leads finally to the identifications
3 3 _sum shw
alngNungTi;a — a3 = B3
2 3 - 3
g+ a3 = 5ENu+ 5E6y b= ENw - gE;%um

B2 + f3 = %ENUJ + gE;Spﬁ,m; B2 — 3
whereby a; := L and as + a3 := 2G are recog-
nized as the common Lamé parameters, while
ag — a3 := 2G,. is the micro polar shear modu-
lus which couples the skew-symmetric stress-
strain components.

VII. MICRO POLAR-BASED MICRO
PLANE ELASTOPLASTICITY

In this section the thermodynamically con-
sistent formulation of the micro plane-based
micro polar elastoplastic model is presented
both for the general case and for the von
Mises type model.

= EftY (43)

M. NIETO

A. General Case

The elastoplastic type of micro polar contin-
uum response behavior is characterized by the
additive decomposition of the macroscopic to-
tal strain and curvature tensors into elastic
and plastic contributions
€ = € +e€ (44)
K = K¢+ Ky
The kinematic constraint assumption ex-
tends the applicability of the additive decom-
position to the microscopic level. As a con-
sequence, the total strain and curvature com-
ponents at micro planes can be expressed as

sym sym sym _
€y —€n,. TEN KN =KN et ENp (45)
sym sym sym sym sym sym
€r =€r, teEp Ky =Ky, tRp

skw skw sk:w skw skw skw

€p =€r. ter, Ky =Kpe K,

In the most general case the tensor of inter-
nal variables includes the plastic contributions
of all the strain and curvature components at
the micro planes

a=qley, ery" €1y knp, ki K €M) (46)
whereby the scalar internal variable {™¢ ac-
counts for the simplest isotropic harden-
ing/softening response.

The microscopic free energy follows from
the definition of the elastic free energy and of

the microscopic free energy functions in equa-
tions (35), (34) and (34) as

P = Wiu(en — enp) + Wil (€™ — e )+
skw ( _skw skw
+Wih (67 — e7,)) + Wrw(kn — kv p)+

+W;gz)m(’§;ym . n;y;n) Wskw( skw H%k;u)+

gmie o o
+ / (j)mlc(fmlC)dé'm’LC
0

(47)

whereby the restricted form of isotropic hard-
ening/softening behavior is taken into account
by means of the term fo’fmc prmic(gmic)ggmic,
The constitutive
stresses and couple stresses at micro planes
are then obtained from the evaluation of the

microscopic Clausius-Duhem inequality

awmic a,l/}mic

oN = = ENueénNe, N = =ENwkNe
86]\]6 (‘3/@1\[6
Usym/skw _ &WW‘ _ Esym/skw_esym/skw (48)
T o sym/skw Tu Te
€Te
sym/skw __ azpmzc _ Esym/skw .sym/skw
T - ) sym/skw — T Tw Te
Krpe
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The evolution of the internal variables is re-
stricted by the inequality of the microscopic
dissipation

sym

; . .sym k . sk
szzc:O,NeNp+a.T Yy skw :skw

"€pp TOT €7, TUNKNpT

sym skw

g tur

Thus, the yield function on each micro plane
can be defined in the form

..sym

. K’Tp . K%k;)u o ¢mic émic >0 (49)

cI)rnic _ (P(UNy G;Q7TL7 o.;}kw’ LN, u;ym’ N;}kw)_’_
_(bmzc(gmzc) S O (50)

whereby the function ¢ of the microscopic
constitutive stresses and couple stresses is
characterized by the gradients

UNw = 0p/Oun (51)
vt = 0p/op™

Vit = O Ot

VN = Op/Oon
vt = 0p /0o ™

vty = 00 /005

For the associated case the plastic strain
and curvature evolution laws are obtained
from the variational problem defined by the
dissipation inequality (49) under considera-
tion of the convexity condition and of the con-
straint (50). For the general non-associated
case we postulate instead

. _ smic .sym/skw __ . mic.qsym/skw
ENp =7 19Nu> €ryp =7 ,"9Tu
. _ mic .sym/skw __ < mic.qsym/skw
RNp =7 ﬁNuv K’Tp =7 19Tw

émi(z _ ;ymi,c (52)

with the flow directions at each micro plane
Ing = 0D/doN

I = 0D /0ol
I = 00 ook

INw = 0D/Oun
O = 0B /o™
0L = 0@ /0pst

(53)

in terms of the plastic multiplier 4 and of
the gradients to the microscopic plastic po-
tentials .

The Kuhn-Tucker loading-unloading condi-
tions as well as the consistency condition can
be defined on each micro plane as

(I)mic <0 ,-ymic >0 q)mic ,ymic =0 (i)mic ;y'mic =0
— k) — ) i
(54)
An explicit solution for the plastic multi-
plier can be obtained from the consistency
condition

1

cmic sym.  gasym  gnsym
Y = h[VNuENuN + vy, ETu T

1
LA - L P E[VNUJENUJN

skw

FUST BT T ke peke ke g (55)
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whereby

_ rrmic sym sym sym
h = H + VNuENuﬂNU + VTU : ETU : ﬂT'LL

—vi - ER 97 + vNwEnwONe
SO B0 — vk B 93 (56)
and
Hme =225/ 57
agmzc ( )

Finally, the macroscopic elastoplastic con-
stitutive equations can be expressed as

o' Es Eue é
= : (58)
i Eo EZY I3
with the elastoplastic operators
ELY = E 5 / L ® M, dS2 (59)
e pre e M
3 1
EXY = E,— — [ —7i, @ m,dQ
ep 2 /Q n ©m
3 1
EVY = —— [ —n, ® m,dS)
°p 2 O hn ©m
3 1
EXY = —— [ —n, @ m,d}
°p 2 O hn ®m

whereby the modified gradients are defined as

TR (B v (60)
i = EniOniN + T - [BY™ - 95

—T - (B - 97" (61)
with the subscript i = u,w.

Remark: the resulting format of the micro
polar micro plane elastoplastic tangent op-
erator is quite similar to that of the classi-
cal micro polar model (compare Willam et al.
(1995)) with exception of the integrals which
account for the microscopic contribution to
the macroscopic operator in case of the micro
polar micro plane formulation.

B. Von Mises Type Model

The classical micro polar elastoplastic von
Mises type model, see e.g. de Borst (1991), is
characterized by the yield condition

pmac \/@ _ ¢mac =0 (62)
1 1 ¢ 1
Jy = 13'8+ZS'S —&-ﬁgu.u (63)

with s the deviator of o and with yield stress
with linear hardening

(b’l')'b(lc — ¢8LGC + H’mac&-’mac (64)
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(a) Simple Shear Test

— A=15mm —
e
B=15mm
(b) Uniaxial Tensile Test
B=15mm

A =15mm —

A Nodal rotation restraint

Figure 2: Boundary conditions. Plane strain
axial extension and simple shear tests.

Here the evolution of the hardening-
softening parameter is given by
gmae — (Z& i+ 36 é
2.5, . .
5k Ry =400 (65)
Assuming that the second invariant of the
stress deviator tensor s is a function of the
tangential stress vectors and of the tangential
couple stress vectors of the micro planes, the
von Mises yield condition at the micro plane
level can be expressed in the format

i sym sym skw skw 1
pmic  — {O.Tl/ X O.TZ/ + O.Tk . O-Tk ﬁ +
(™ - p ™+ g

with the yield stress with linear hardening

¢mic — ¢6nzc 4 Hmicgmic (67)

Here the evolution of the hardening-
softening parameter is given by

émic _ { sym  .sym

-skw  .skw 2r..8ym . sym
6Tp .eTp +lc[ +

+€r, €, Krp By

RS RN = qmie (68)
which, similarly to the macroscopic descrip-

tion, coincides with the plastic multiplier.

VIII. NUMERICAL ANALYSIS

In this section we analyze the predictions of
the micro polar micro plane elastoplastic von
Mises model for the uniaxial tensile and sim-
ple shear tests. Fig. 2 illustrates the bound-
ary conditions of these tests which were ana-
lyzed under plane strain constraints. In both
one element meshes of Fig. 2 the standard
bilinear quadrilateral finite element with four
integraion points was used. This finite ele-
ment formulation of micro polar continuum
problems is obtained by means of discretiza-
tions of the weak form of the balance equa-
tions in the spirit of the Dirichlet variational
principle, see Willam et al. (1995). Thereby
the displacements and rotations (and their
variations) are approximated by the same
shape functions according to the Galerkin-
Bubnov method.

In the simple shear test, full displacement
and rotation restraint were considered on the
nodes located on the bottom of the quadrilat-
eral element while only the vertical displace-
ments were restrained on the other element
nodes. On the other hand, in case of the ax-
ial extension test, the full displacement and
rotation restraint were assumed only in one
element node as indicated in Fig. 2 while in
other two nodes one displacement possibility
together with the in plane rotation were re-
strained according to the double symmetry of
the problem. Both, the yield condition and
hardening/softening evolution law are those
indicated in section VII.B. The micro polar
elastic parameters at micro planes for the nu-
merical analysis were obtained according to
the equations in section 6 so that the over-
all Young’s modulus is E = 30000 N/mm?, the
Poisson’s ratio v = 0.2, the micro polar shear
modulus G, = G and the characteristic length
lc = lmm. Following the equations (43) we
obtain: Ey, = 33333.33, G = 12500, E}/" =
1944445, E3Fv = 25000, En, = Ej/" = B3 =
25000.

The non-symmetric stress field in the case
of a micro polar continuum and the resulting
complex form of the second invariant J; avoids
an analytical procedure to obtain the rela-
tionship between the microscopic and macro-
scopic von Mises stresses ¢7'¢ and ¢7'%¢, re-
spectively. As a consequence and for the pur-
pose of the numerical analyses in this work,
these stresses were chosen so that similar pre-
dictions of the J,; type maximum strength cor-
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1200.0 .
1
800.0
z
o Classical Micropolar, linear softening
400.0 o Classical Micropolar, perfect plastic
»  Classical Micropolar, linear hardening
—*— Micropolar Microplane, linear softening
---=-Micropolar Microplane, perfect plastic
—— Micropolar Microplane, linear hardening
0.0 T T T .
0.0 0.1 02 [mm] 03 0.4
Figure 3: Prediction of the axial extension
test.

MO0

3) @)
Figure 4: Plastic process evolution in micro
planes. Axial extension test

responding to both the uniaxial tensile and
simple shear tests are obtained with the mi-
croscopic and the macroscopic micro polar
models. From this numerical calibration the
resulting values are ¢J'‘ = 23.5 N/mm? and
¢prac = 50.0 N/mm? for the axial extension test
while these stresses are ¢ = 29.0 N/mm? and
¢prac = 50.0 N/mm? for the simple shear test.

A. Axial Extension Test

Fig. 3 illustrates the numerical predictions of
the uniaxial tensile test with the micro po-
lar micro plane elastoplastic model and with
the classical micro polar elastoplastic model.
Three different types of evolution laws of the
stress functions ¢ and ¢™° were considered
for these models, corresponding to perfect
plasticity, linear hardening and linear soft-

34:229-240 (;

80.00

—e— Tensile stress. Classical Micropolar Model
2000 ~-&--J2. Classical Micropolar Model
—— Tensile stress. Micropolar Microplane Model

------"J2. Micropolar Microplane Model"

0.00 T T T T T 1
0.000 0.002 0.004 0.006 0.008 0.010 0.012

Figure 5: Stress-strain prediction of the axial
extension test.

ening behavior. The first observation from
the comparison between the predictions of
both types of micro polar models is that their
response behaviors during the elastic range
agree very well. Also the overall predictions of
both models in the plastic range under linear
softening and perfect plasticity are very simi-
lar. However, under linear hardening assump-
tion the classical micro plane model leads to
a much more ductile response behavior indi-
cating that this formulation is more sensitive
to variations of the hardening evolution law.
The microscopic model allows a much more
detailed analysis of the failure mechanism and
evolution as can be observed in Fig. 4 which
shows the spatial development of the plas-
tic process in the case of the axial extension
test predicted by the micro polar micro plane
model with linear hardening. Each diagram
in this figure corresponds to the load step in-
dicated in the load-displacement curve (com-
pare Fig. 3). During the load history, a ten-
dency towards texture evolution can be rec-
ognized. Under uniaxial tension, the plastic
behavior develops in the planes located un-
der an angle of about 45° towards the loading
axis in the loading plane. Similar effects were
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1600.0 -

1200.0 -

800.0

[N]

""" Classical Micropolar, perfect plastic

400.0 A
- =- Classical Micropolar, linear hard.

—— Micropolar Microplane, perfect plastic

—=— Micropolar Microplane, linear hard.

0.0

0.0 0.2 [mm] 0.4 0.6

Figure 6: Prediction of the simple shear test.

observed by Kuhl et al. (2001) in the uniax-
ial tensile test’s predictions obtained with the
micro plane elastoplastic model for the clas-
sical Boltzmann continuum. We analyze now
the fundamental differences between the nu-
merical predictions of the micro polar micro
plane and of the classical micro polar model
with perfect plasticity in Fig. 3. In the case
of the classical micro polar model with perfect
plasticity the requirement for constant values
of J; due to the yield condition

pmac _ \/:E

is responsible for the plateau in the J; evo-
lution which immediately follows the elastic
response, as indicated in Fig. 5. On the other
hand, the evolution of the the axial tensile
force as well as that of the vertical tensile
stress in Fig. 3 and Fig. 5, respectively, show
a smooth transition from the elastic to the
perfect plastic regime.

The micro polar micro plane model with
perfect plasticity leads to a macroscopic stress
tensor’s evolution during the axial extension
test characterized by an initial smooth soft-
ening response of J, and subsequent plateau.

mac _

(69)

Q0

Flgure 7: Plastlc process evolutlon 1n micro
planes. Simple shear test.

The same response behavior is observed in the
evolutions of the vertical tensile stress in Fig.
5 and of the axial force in Fig. 3.

B. Simple Shear Test

The numerical predictions of the micro polar
micro plane model for the simple shear test
and the comparison with the corresponding
predictions of the classical micro polar model
are indicated in Fig. 6. Both a linear harden-
ing and a perfect plastic evolution laws were
assumed for ¢"° and ¢’ in equations (64)
and (67), corresponding to the micro plane
model and to the macroscopic model, respec-
tively. It is important to note that in the sim-
ple shear test, contrarily to the axial exten-
sion test, the microrotations are activated.
Fig. 7 illustrates the development of fail-
ure predicted by the micro polar micro plane
model with linear hardening. Again, a ten-
dency towards texture evolution can be rec-
ognized. However, in the case of the sim-
ple shear test, the inelastic deformation pro-
cess takes place in the upper, lower, left and
right micro plane. This strong failure dis-
tribution in micro planes explains the more
ductile behavior of the simple shear test pre-
dicted by the micro plane micro polar model
when compared to the corresponding predic-
tions of the uniaxial tensile test. The results
in Fig. 6 also indicate that the micro polar mi-
cro plane model with perfect plasticity leads,
as expected, to a plateau of the external shear
force. However, this is not the case of the clas-
sical Cosserat model which leads to continu-
ous hardening of the external shear force al-
though perfect plasticity was considered. This
is due to the evolution of the nonuniform mi-
crorotations which are activated in this test.

IX. CONCLUSIONS

In this work the thermodynamically consis-
tent approach for deriving micro plane consti-
tutive formulations by Carol et al. (2001) and
Kuhl et al. (2001) was reformulated for elastic
and inelastic micro polar continua. As in the
previous work, the main assumption is the in-
corporation of a microscopic free Helmholtz
energy on every micro plane, which in the
present case includes the contributions of the
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additional degree of freedom and stiffness of
the micro polar continuum, represented by
the micro rotations and the couple stresses.
Moreover, an uncoupled format of the free en-
ergy in terms of the membrane and bending
contributions is considered.

From the resulting constitutive equations
for the micro polar micro plane elastic model
an explicit solution for the characteristic
length was obtained in terms of the ratio
between the bending elastic moduli and the
micro polar shear modulus. The solutions
for the micro polar micro plane elastoplastic
model include the macroscopic explicit formu-
lation of the constitutive tangential moduli in
terms of the microscopic contributions. The
general elastoplastic formulation for the mi-
cro polar micro plane model was particular-
ized for von Mises type elastoplasticity.

The numerical results in this work show the
predictions of the J, elastoplastic model for
the uniaxial tensile and simple shear tests.
Also the main differences with the corre-
sponding predictions of the classical micro po-
lar elastoplastic model were highlighted.

The proposed constitutive theory allows the
formulation of models based on relevant as-
pects of the material microstructure which
exceeds the capacity of the theoretical frame-
work developed so far for the prediction of
anisotropic response behaviors.
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