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Abstract This work is concerned with the 

theoretical estimation of the low-shear viscosity of 

concentrated suspensions of charged-stabilized latex 

particles. Calculations are based on the assumption 

that particles interacting through purely repulsive 

potentials behave as equivalent hard-spheres (HS), 

and suspension viscosity may be analyzed in the 

framework of HS systems. In order to predict 

numerically the HS radius, the pair potential due to 

double-layer interaction, as a function of particle 

concentration, was investigated by using Poisson-

Boltzmann theory and the cell model. Calculations 

explain appropriately experimental data for a wide 

range of particle sizes, volume fractions and salt 

concentrations. The problem concerning the effective 

surface charge of latex particles is also discussed.  

Keywords  Suspension viscosity, hard-sphere 

radius, charged colloids, double-layer interaction.  

I. INTRODUCTION 

The connection between rheological functions and the 
microstructure of colloids is a subject of interest for 
both the basic scientific problem and the industrial 
applications. At present, it is well understood that the 
structure of colloidal dispersions, and hence the flow 
behavior, is determined by the nature of the interaction 
forces (Russel et al., 1991; Hunter, 1992; Tadros, 1996; 
Quemada and Berli, 2002). Nevertheless, appropriate 
modeling is still required to attain quantitative 
predictions of viscosity in terms of physicochemical 
characteristics of the medium. For this purpose, the 
study of particle-particle interactions is a crucial aspect. 
Since rigorous calculations of rheological functions can 
be made mainly in situations where the colloidal 
structure is not affected significantly, the analysis here 
concern viscosity in the limit of very low shear stress.  

The structure of colloidal suspensions of rigid 
spheres strongly resembles that of atomic fluids 
(Hunter, 1992; Tadros, 1996; Arora and Tata, 1998). 
More precisely, dilute suspensions are like a gas, where 
particles move freely throughout the medium, and 
concentrated suspensions are like a liquid, where the 
movement of particles is constrained by the neighbors. 
It is clear that, in colloidal suspensions, the space 
among particles is filled by the suspending fluid, 
particles are driven by Brownian motion and diffusivity 

is controlled by hydrodynamic interactions. In this 
context, significant progress has been made in the 
comprehension of colloidal suspensions composed of 
spherical particles, without surface forces, dispersed in a 
Newtonian fluid of viscosity F (see, for instance, 
Heyes and Sigurgeirsson, 2004). At high particle 
concentration, the low-shear viscosity of the suspension 
( 0) is related to the particle volume fraction ( ) through 
the following equation, 

2
mF0 )/1(/ ,    (1) 

where m is the volume fraction at which the viscosity 
diverges and a fluid-to-solid transition occurs (Krieger, 
1972; Quemada, 1977; Brady, 1993). For monodisperse 
and rigid spheres, m corresponds to the glass transition 
volume fraction, G  0.58 (see Quemada and Berli, 
2002, and references therein).  

An additional contribution to the viscosity arises 
when the suspended particles are electrostatically 
charged and the electrical double-layers (EDL) 
developed. In dilute suspensions, this contribution 
comes into play through the so-called primary and 
secondary electroviscous effects (Russel, 1978; Rubio-
Hernández et al., 2004). In concentrated suspensions, 
the overlapping of EDL yields strong repulsive forces 
that control phase behavior and rheology. In particular, 
the interaction substantially increases suspension 
viscosity and shifts the fluid-to-solid transition to values 
of lower than G. To interpret experimental results, a 
common idea in colloid science is that EDL interaction 
increases the effective radius of particles, and hence the 
effective volume fraction (Russel et al., 1991; Hunter, 
1992; Tadros, 1996; Bergenholtz et al., 1998; Horn et 

al., 2000; Fritz et al., 2002; Philipse and Koenderink, 
2003). The theoretical basis of this idea can be found in 
the approaches used for the treatment of atomic systems 
(McQuarrie, 1976). In fact, the structure of dense fluids 
is determined basically by the repulsive part of the pair 
potential (Chandler et al., 1983). In addition, interaction 
potentials U(R) that decay rapidly with distance R can 
be represented as a cut-off potential at the distance of 
closest approach, Rc = 2aHS. Thus aHS defines the so-
called hard-sphere (HS) radius of molecules. In the 
perturbation theory of Barker and Henderson (1967), 
aHS is given by the following relation,  

a
dRTkRUaa

2 B2
1

HS ])(exp[1 , (2) 
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where a is the actual particle radius, kB is the Boltzmann 
constant, T is the absolute temperature and  is the 
distance at which the interaction vanishes. This 
definition of aHS ensures that the Helmholtz free energy 
of a liquid is equal to that of a HS system to the first 
term in an expansion of the free energy. The successful 
applications of this approach are well described in the 
revision of Chandler et al. (1983). Recently, the same 
formula for aHS was derived from entirely different 
criteria (Rickayzen et al., 2003).  

Therefore, by analogy to the treatment of atomic 
liquids, colloidal particles interacting through purely 
repulsive potentials are considered to have an equivalent 
HS radius, which includes the thickness of an exclusion 
layer due to repulsive forces. One may further assume 
that there exists an equivalent HS system that accounts 
for the suspension viscosity as 2

mHSF0 )/1(/ ,

where 3
HSHS )/( aa  is the HS volume fraction. This 

allows one to use the knowledge gained on HS systems 
to deal with more complex suspensions. Basically, a 
system involving both hydrodynamic and 
thermodynamic interactions is reduced to an equivalent 
system involving only hydrodynamics. Nevertheless, 
the crucial aspect here is the correct determination of 
aHS from U(R). In this sense, when applying the HS 
concept to colloids, it is clear that Eq. (2) must be used 
with steeply decaying potentials, as in the case of 
polimerically stabilized particles (Mewis et al., 1989). 
For EDL interaction, the approach is rigorously valid 
when the range of the interaction is short in relation to 
particle size, a situation reached at high ionic strength 
(Buscall, 1991; Quemada, 1994). At low ionic strength, 
the curve U(R) decays slowly and the exclusion distance 
is more difficult to determine precisely (particles 
interacting through such soft potentials are called soft 
spheres). On the other hand, in relation to the viscosity 
equation, the approach is reliable for aHS slightly higher 
than a. According to Brady (1993), longer ranged 
interactions (soft spheres) could lead to a different 
scaling in the relationship 0( ).

It should be mentioned here that a different model 
has been proposed in the literature to relate EDL 
interaction to suspension viscosity (Goodwin et al., 
1982; Ogawa et al., 1997). In this approach, 0 is 
calculated by adding the contributions from 
hydrodynamic and thermodynamic interactions, the last 
one being estimated from the theory of the activation 
processes. A difficulty found in this model is the 
presence of several unknown proportionality constants.

The aim of the present work is to estimate 
theoretically the low-shear viscosity of aqueous 
suspensions of electrostatically charged latex particles. 
For this purpose, we suggest that the HS concept applies 
for the overall range of particle concentrations and ionic 
strengths, if an appropriate expression of U(R) is 
considered. It is worth noting here that the classical 
calculation of EDL interaction (DLVO theory) is not 
sensitive to . Therefore, we investigated the interaction 

between charged particles in a concentrated state. 
Calculations were made by using linear Poisson-
Boltzmann (PB) theory in the framework of the cell 
model (CM). The pair potential thus obtained describes 
appropriately the low-shear viscosity with the most 
significant parameters of latex suspensions, namely, 
particle volume fraction and salt concentration. Since a 
major problem in the study of charged colloids is the 
determination of the surface charge that enters modeling 
equations, emphasis is placed here in the analysis of the 
effective surface charge displayed by latex particles. 

II. EXPERIMENTAL DATA 

A. Sample characteristics 

Experimental data from aqueous suspensions of 
monodisperse poly-styrene (PS) particles are 
considered. The synthesis and characterization of these 
particles were made by Richtering and co-workers and 
are well described elsewhere (Horn et al., 2000). PS 
particles were obtained by soap-free emulsion 
polymerization, using pure water as the reaction 
medium. Particle size was determined from quasy-
elastic light scattering measurements and titration of the 
acidic surface groups was carried out with a 
conductometric titrator using KOH solutions. Data 
relevant for the purposes of this work are presented in 
Table 1. In addition, here we revise the suspensions
preparation method in order to quantify properly the 
concentration of ions in solution. Concentrated 
suspensions of volume fraction c  were subjected to 

dialysis against KCl solutions of defined ionic strength. 
Thus the average concentration of ions can be calculated 
according to the Donnan equilibrium established 
through the membrane (Bergenholtz et al., 1998), 

2/12
s

2
cpcpc )1(2)1(2 nZnZnn , (3) 

where np = 3 /4 a3 is the number of particles per unit 
volume and ns = 103NA[KCl] is the salt density used as 
dialyzate, NA being the Avogadro's number. After 
dialysis, concentration series were prepared by diluting 
the concentrated suspension with the solution used as 
dialyzate. Therefore, the final concentration of ions in 
suspensions of volume fraction  is given by,  

c

sc

c
c 1

11

1 n
nn .  (4) 

B. The problem of effective charges 

The electrostatic charge of the particles here considered 
is due to dissociation of sulfate groups attached to 
particle surfaces, the number of which is evaluated by 
titration (Zt in Table 1). This number is assumed to 
represent the actual surface charge number Z, also 
designated bare or structural charge, provided the acidic 
groups are fully dissociated. Nevertheless, the dynamics 
of charged colloids, as observed in rheometry, 
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electrophoresis, conductivity and light scattering 
experiments, appears to be governed by an effective 
charge Zeff that is smaller in magnitude than Z (Belloni, 
1998; Hansen and Löwen, 2000; Levin, 2002; Quesada-
Pérez et al., 2002). This is clearly observed in data 
reported in Table 1. The magnitude of Zeff also depends 
on the method of determination due to the role that the 
surrounding double-layer of ions plays under different 
experimental conditions (Attard et al., 2000; Wette et 

al., 2002; Tirao-Miranda et al., 2003). An additional 
feature is that Zeff increases with salt concentration, an 
effect also called atypical electrophoretic mobility 
behavior (Bergenholtz et al., 1998).  

The concept of ion condensation is widely used to 
interpret this phenomenon (Belloni, 1998; Hansen and 
Löwen, 2000; Schmitz, 2000; Levin, 2002; Quesada-
Pérez et al., 2002). In highly charged systems, the 
electrolyte ions are subjected to an electrostatic 
interaction higher than the thermal energy. Hence 
counterions are strongly attracted to the surfaces and 
accumulate in a thin layer around the particle. The result 
is an apparent surface charge that is lower than the bare 
charge. This mechanism also explains the variation of 
Zeff with added salt: at high ionic strength the surface 
charge is well screened by the ionic cloud and 
counterions condensation is relatively less important. 

Although the important efforts made (see, for 
instance, the procedure known as charge 
renormalization proposed by Alexander et al., 1984), an 
accurate estimation of the effective surface charge of 
colloids is still lacking.

Table 1. Main characteristics of the latex suspensions 
studied (Horn et al., 2000). Zt is the number of surface 
charges per particle from conductimetric titration and 
Zeff is the effective number from data of both high 
frequency dynamic modulus ( G ) and -potential.  

ZeffSample a

(nm) 

[KCl] 

(mM) 

Zt

From G From

PS120 60 1 25000 320 1630 
  10 1950/2440 5300 
  50 4800/8360 11870 

PS200 100 0.1 50000 380 1500 
  1 1400/1680 3800 
  10 7350/11700 15300 

PS310 155 0.1 145000 - - 
  1  - - 
  10 - - 

C. Viscosity data and the effective particle radius 

Viscosity measurements were carried out with a RSFII 
rheometer (Rheometrics) using a Couette cell, in steady-
shear conditions, at 20°C (Horn et al., 2000). Figure 1 
shows suspension viscosity as a function of particle 
volume fraction, for different salt concentrations. It is 
observed that, for a given , 0 increase substantially as 
the ionic strength decreases. Accordingly, 0 diverges at 

lower volume fractions as the ionic strength decreases. 
These results are well known for charged colloids. 
Furthermore, at very low ionic strength, repulsive forces 
are long ranged enough to produce order at low , that 
is, particles arrange in crystal-like structures that entail 
elasticity and yield stress (Russel et al., 1991; Arora and 
Tata, 1998). 

To interpret these results, it is considered that 
particles have an effective radius that includes the 
exclusion distance due to repulsive forces, as discussed 
in Section I. Here we define aeff to be the effective 
radius exhibited by particles in experiments, to 
differentiate it from aHS, which is obtained through 
theoretical calculations. Therefore, assuming that 

3
effeff )/( aa  is the effective volume fraction of 

particles, aeff can be obtained from viscosity data by 
using 2

m
3

effF0 ]/)/(1[ aa , with 58.0m .

After inverting this equation, experimental values of 
0( ) are readily converted into values of aeff( ).

Symbols in Fig. 2 represent the results for the samples 
studied. As expected, the ratio aeff/a decreases to 1 with 
the addition of salt. The main feature to be noted in Fig. 
2 is the increase of aeff/a with . Indeed, accounting for 
this effect is the main challenge in this work. 
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Figure 1. Relative viscosity as a function of volume 
fraction for aqueous suspensions of latex particles at 
20°C. Symbols are data from Horn et al. (2000). The 
line is the prediction of Eq. (1) with m = 0.58. 

III. THEORETICAL CONCEPTS 

A. Calculations involving DLVO interaction 

The interaction between charged colloids is normally 
treated in the theoretical framework of Poisson-
Boltzmann model (Russel et al., 1991; Hunter, 1992). 
For the case of spherical particles carrying a surface 
charge Ze, where e is the elementary charge, the pair 
interaction energy is (Verwey and Overbeek, 1948) 

R

aR

a

lZ

Tk

RU ])2(exp[

)1(

)(
2

B
2

B

,  (5) 
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where  is the inverse Debye length and 
Tkel B

2
B 4  is the Bjerrum length,  being the 

permittivity of the medium. This equation constitutes 
the classical Debye-Hückel approximation, on the base 
of which the DLVO theory provides a satisfactory 
description of different phenomena like colloidal 
stability and phase transition (Russel et al., 1991; 
Hunter, 1992). Nevertheless, Eq. (5) is only applicable 
to systems with very low particle concentration. In fact, 
its derivation involves a pair of particles in osmotic 
equilibrium with a large electrolyte reservoir. At high ,
the calculation fails because each particle is surrounded 
by several neighbors and the number of counterions 
takes importance in relation to the added salt.  

Another crucial aspect of Eq. (5) is that it becomes 
inaccurate in systems containing highly charged 
particles, where the electrostatic energy of electrolyte 
ions is higher than the thermal energy. The strategy 
normally followed is to replace the actual number Z by 
an effective charge Zeff and restrict the domain of 
applicability to interparticle separations larger than the 
range of the interaction, i.e., 12aR  (Belloni, 
1998; Hansen and Löwen, 2000; Levin, 2002; Quesada-
Pérez et al., 2002). Indeed, as discussed in Section II.B, 
the determination of Zeff from the characteristics of the 
suspension is still an open problem in colloid science. 
Thus a common practice in the literature is to consider 
Zeff as an adjustable parameter to fit experimental data 
obtained from different techniques (see, for example, 
Arora and Tata, 1998; Bergenholtz et al., 1998; Horn et 
al., 2000; Quesada-Pérez et al., 2002; Wette et al., 
2002; Tirao-Miranda et al., 2003).  

Following this procedure, one may calculate HSa

through Eqs. (2) and (5), adjusting Zeff to match HSa  to 

the values of effa  derived from viscosity. In Eq. (5), we 

included )(4 B
2 nnl , where the average ion 

densities come from Eqs. (3) and (4), for a given salt 
density ns, volume fraction  and charge number Zeff. It 
was observed that Zeff increases several times as 
increases from 0.1 to 0.3. Considering the preparation of 
these suspensions, there are no physical reasons to 
expect such a strongly variation of Zeff with . It should 
be noted that the ionic strength is nearly constant for a 
concentration series (Section II.A) and there is no 
association-dissociation equilibrium (Horn et al., 2000). 
This result is due to the failure of Eq. (5) to describe 
experimental data at high . Under these circumstances, 
Zeff is merely a fitting parameter that compensates the 
shortcomings of the approximate calculation. 

B. Calculation proposed for concentrated systems 

In this context of results, the idea in the present work is 
to derive a -dependent pair potential to be used in Eq. 
(2). For this purpose, one may take advantage of the fact 
that highly repulsive particles form ordered structures, 
hence the CM applies (Alexander et al., 1984; van der 
Vorst et al., 1995; Levin, 2002). In this approach, each  

particle and its related ions are considered to be 
confined to a spherical Wigner-Seitz cell of radius b
a 1/3, as shown in Fig. 3a. Due to the periodicity of the 
system, the calculations carried out in the domain of one 
cell are assumed to be valid for the whole colloid. In 
principle, the Wigner-Seitz cell is a polyhedron that 
represents the space occupied by a single atom in a 
crystal, involving the full symmetry of the lattice. Here 
we use this framework to calculate the pair interaction 
of charged particles in a concentrated environment, thus 
avoiding the many body problem.  
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Figure 2. Effective particle radius as a function of 
volume fraction, for different salt concentrations. The 
actual particle radii are: (a) 60 nm; (b) 100 nm; (c) 155 
nm. Symbols are values calculated from viscosity data. 
The lines are the predictions of Eqs. (2) and (9).  
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The calculation of the EDL interaction involves both 
osmotic pressures and electric stresses (Verwey and 
Overbeek, 1948; Russel et al., 1991; Hunter, 1992). In 
the case of two spherical particles, as a consequence of 
curvature, the algebraic problem cannot be solved 
readily. Thus a procedure frequently used in the 
literature is the Derjaguin approximation (Hunter, 
1992), which requires the calculation of the force 
between flat surfaces. Accordingly, here we consider a 
system of flat cells, i.e., a series of charged plates 
organized in a parallel arrangement perpendicular to the 
x-direction, as shown in Fig. 3b (see also Hansen and 
Löwen, 2000). The size of the plates is very large in 
comparison to the cell width b'. The electrostatic 
potential  in the cell is governed by PB equation,  

k k
b
kk znzl exp4 B

2 ,  (6) 

where Tke B/  is the normalized potential and the 

sub-index k indicates positive (+) or negative ( ) ions. 
Also in this equation, kz  are the ion valences and b

kn

are the ion densities at the cell surface, where the 
potential is defined to be 0)(b .

Because of symmetry, when the surface-to-surface 
separation h is equal to 2b' (Fig. 3b) there is no net force 
on the plates. Instead, when two surfaces approach one 
another (h < 2b') a repulsive force arises due to the 

osmotic pressure p generated by the accumulation of 
ions in the inner region between the plates. At 
equilibrium, the osmotic and electric forces balance 
according to the following expression (Verwey and 
Overbeek, 1948; Russel et al., 1991; Hunter, 1992), 

0expB k k
b
kk znzTkp , (7) 

In the case of flat plates, the electric stress is zero at the 
midplane between the approaching surfaces. Thus Eq. 
(7) can be integrated to obtain the pressure difference 
between the midplane ( 2/hx ) and the plane of 
reference ( bx ), that is,  

2/B2/ h
bb

bh nnTkpp ,   (8) 

where 1/2h  is the midplane potential. For small 

degrees of double-layer overlap, /2h  can be 

approximated by adding the single potentials )(x  due 

to each plate (Hunter, 1992), i.e., )2/(2/2 hxh .

The calculation of )(x  for the flat cells is carried out 

in Appendix A. In particular, instead of the classical 
Debye-Hückel approximation, here PB equation was 
linearized about the average potential  in the cell 
(Deserno and von Grünberg, 2002). The advantage of 
this linearization is that )(x  is written in terms of 

n  and n , hence the calculation of ion densities at 

the cell border is avoided.  
The derivation of the interaction energy between 

curved surfaces, starting from the knowledge of the 
force per unit area between flat surfaces )( 2/ bh pp , is 

presented in Appendix B. The procedure described in 
classical books was followed (Verwey and Overbeek, 
1948; Hunter, 1992), with the additional constraints 
posed by the CM. The pair interaction thus obtained is,  

2

2
B

2
eff

B )](sinh[

2)]2/([)]2/(cosh[2)(

abaa

bRbRlZ

Tk

RU
,

(9) 

where )(4 B
2 nnl  and b is the cell radius 

corresponding to the spherical geometry (Fig. 3a). On 
the base that well-stabilized suspensions form crystal-
like structures, here the cell radius is considered to be 

3/1)/74.0(ab , where 0.74 is the maximum packing 

fraction usually found in concentrated latices at low 
ionic strength (Alexander et al., 1984; van der Vorst et 

al., 1995; Arora and Tata, 1998). Taking into account 
the concepts discussed in Section II.B, the set formed by 
the particle plus condensed counterions is here 
considered as a single entity carrying an effective 
surface charge. Further, Zeff is the only parameter not 
known a priori in the model.  

Therefore, Eq. (9) accounts for the interaction 
energy between charged particles in a concentrated 
environment, as derived in the context of the CM and 
linear PB theory. The most relevant feature of this 

Figure 3. Schematic representations of (a) spherical 
Wigner-Seitz cells and (b) one-dimensional cells. 
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interaction potential, in relation to classical calculations, 
is that it strongly depends on particle concentration 
through the parameter b. In addition, the model captures 
the fact that particles placed at the center of spherical 
cells are in the minimum of potential energy generated 
by the neighbors (the interaction vanishes at R = 2b). 
Because of the approximations made in the calculations 
above, Eq. (9) is limited to situations in which the 
Debye length is smaller in magnitude than the free 
space in the cell, more precisely, )(1 ab . For 

example, for systems with  = 0.1, a must be higher 
than 5, approximately. It is appropriate to remark here 
that also Eq. (2) becomes inaccurate at very low ionic 
strength, due to the smoothness of the potential curve.  

IV. RESULTS AND DISCUSSION 

The numerical predictions of aHS for the latex 
suspensions studied are included in Fig. 2 (solid lines). 
Calculations were carried out through the following 
procedure. First, the values of n  and n  for a 

given suspension were obtained through Eqs. (3) and 
(4), where the input data are a, , ns and Zeff, the last one 
being the only unknown. The interaction U(R) was 
obtained from Eq. (9) and then Eq. (2) was integrated 
numerically to obtain aHS. The value of Zeff was adjusted 
to provide the best fit to experimental data. One may 
observe that the curves of aHS/a as a function of 
present a remarkable agreement with data for different 
particle sizes and salt contents. It should be stressed 
that, for a given ionic strength, the same value of Zeff

(reported in Fig. 2) was found for the whole range of ,
as expected for a consistent modeling of this type of 
suspensions (Quesada-Pérez et al., 2002). Further, the 
values of Zeff compare reasonably well to those obtained 
previously from different techniques (Table 1). Data 
from suspensions with very low salt content (for 
example, PS200, 0.1 mM; Fig. 1) were not included in 
Fig. 2 because they do not satisfy the condition 

)(1 ab  required to apply Eq. (9). 

It should be also mentioned that aHS reaches a 
maximum and then decreases with  (not shown in Fig. 
2). This is a consequence of the variation of U(R) with 
given by Eq. (9). Indeed, since U(2b) = 0, the cell radius 
b sets a boundary marks for aHS. Thus the possible 
situation in which 74.0)/( 3

HS aa  is avoided, in 

contrast to the unphysical results obtained when Eq. (2) 
is integrated with the classical DLVO potential.  

The results of modeling the suspension viscosity are 
summarized in Fig. 4, where it is observed that all 
viscosity data (different particle size and salt content) 
condensate onto a master curve when the volume 
fraction is rescaled with the factor (aHS/a)3, i.e., when 0

is plotted as a function of HS. Therefore, it may be said 
that there exists an equivalent HS system, the viscosity 
of which successfully represents that of the suspensions 
of charge-stabilized latex particles.  
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Figure 4. Viscosity master curve for aqueous 
suspensions of latex particles at 20°C. The equivalent 
HS radius is calculated through Eqs. (2) and (9) with the 
values of Zeff reported in Fig. 2. 

V. CONCLUSIONS AND FURTHER RESEARCH 

In this work, an expression of the pair potential due to 
the EDL interaction in concentrated colloids is 
investigated, in order to interpret theoretically the 
effective radius exhibited by charged latex particles 
suspended in water, as obtained from low-shear 
viscosity data. Calculations were performed by using 
linear PB theory, with the additional feature that 
particles were considered to be placed into spherical 
cells, in contrast to the infinitely large reservoir 
considered in classical DLVO calculations. This 
introduces the effect of particle concentration on EDL 
interaction. With this novel potential, the equation of 
Barker and Henderson predicts appropriately the 
equivalent HS radius for latex particles as a function of 
volume fraction, for different particle sizes and salt 
concentrations. The effective number of surface charges 
per particle, which is in principle unknown in our 
modeling, was adjusted to provide the best fit to 
experimental data. To close the model, one should face 
the problem of predicting Zeff from Zt. Indeed, 
understanding the interplay between the surface charge 
obtained by titration and that governing the physics of 
the system is a challenging task that still deserves 
further efforts in colloid science.  

In a more general context, we are proposing here a 
theoretical connection between the low-shear viscosity 
and the physicochemical parameters of the suspension 
through: (i) the viscosity-volume fraction relation given 
by Eq. (1), (ii) the concept of equivalent HS radius for 
repulsive colloids, quantified with Eq. (2), and (iii) an 
expression of the EDL interaction in concentrated 
systems, such as that given by Eq. (9). The derivation of 
this last equation involves approximations and hence 
several improvements could be made. Nevertheless, one 
may observe that the modeling proposed captures the 
main features underlying the physics of charged colloids 
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in concentrated suspensions and thus gives a 
satisfactory description of the low-shear viscosity for a 
wide range of particle concentrations.  

APPENDIX 

A. Electrostatic potential in one-dimensional cells 

It is known that the linearization of PB equation 
normally used in colloid science (Debye-Hückel 
approximation) works well at large distances from the 
charged surface only. Nevertheless, this approximation 
is not the only one possible to simplify the treatment of 
EDL interaction: the right hand side of Eq. (6) could be 

linearized about any potential  in the cell domain. In 
particular, here we linearize PB equation about the 
average potential , as recently proposed in the 
literature (Deserno and von Grünberg, 2002). One 
benefit of this procedure is that the potential can be 
written in terms of the average ion densities.

Following we consider the system of flat cells 
shown in Fig. 3b ( bx0 , x being the Cartesian 
coordinate) with the boundary conditions: 0)(b

and 0/ x  for bx . The ion density profiles in 

the cell are determined by Boltzmann distribution,  

)exp( k
b
kk znn .       (A1) 

For a given potential , the corresponding density 

values are n  and n . Linearizing Eq. (A1) about 

leads to,

)](1[ kkk znn .      (A2) 

Then including Eq. (A2) into Eq. (6) and considering a 
symmetric electrolyte ( zzz ) yields,  

)(22 ,      (A3) 

with )()( nnnn  and )(4 B
2 nnl .

Solving Eq. (A3) gives the potential for a charged plane, 

)](cosh[1)()( bxx . By averaging 

both sides of Eq. (A2) in the cell domain one obtains, 

)](1[ kkk znn .      (A4) 

Further, selecting , Eq. (A4) yields kk nn

(Deserno and von Grünberg, 2002). Consequently, the 

firstly unspecified values , n  and n  can be taken 

as the respective average values in the cell. Thus the 
potential of each plate is simply, 

)](cosh[1])sinh([)( bxbbx ,    (A5) 

with  and  written n terms of n  and n , which 

are known from the suspension preparation method 
(Section II.A). In addition,  is related to the surface 
charge density q, by including the charge balance 
condition in the cell volume, nnbeq .

B. Interaction energy in spherical cells  

The midplane potential required in Eq. (8) can be 
introduced as )2/(2/2 hxh  (Hunter, 1992), with 

)(x  given by Eq. (A5). Consistently, the densities 
b
kn  in Eq. (8) are introduced in terms of kn . Thus, 

)2/(2])sinh([)/(B2/ hbbbeqTkpp bh .    (A6) 

This pressure difference is directly the force per unit 
area that pushes the charged surfaces apart when h <
2b'. The interaction energy associated to this force is, 

h

b bh dhpphu
2 2/ )()( .      (A7) 

Solving Eq. (A7) after introducing Eq. (A6) yields the 
interaction energy per unit area between the charged 
plates in the array of Fig. 3b. The last step is the 
calculation of the interaction energy between spherical 
particles by using Derjaguin approximation (Hunter, 
1992), that is, 

b

H
dhhuaHU

2
)()( ,       (A8) 

where aRH 2  is the surface-to-surface distance 
between particles. Introducing the result of Eq. (A7) 
into Eq. (A8) leads to the expression of the interaction 
energy reported in Section III.B (Eq. (9)), which 
includes the geometrical conversion )( abb .

Further, since quantitative treatment of experiments 
with linear PB theory requires the use of effective 
charges, the surface charge density was included as 

2
eff 4 aeZq .
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