
Latin American Applied Research 35:129-133 (2005)

129

DIGITAL COMMUNICATION INTERFACE
FOR AN AUTOMOTIVE APPLICATION

M.O. SONNAILLON1,2, G. BISHEIMER1, C.H. DE ANGELO1, R. LEIDHOLD1,

G.O. GARCÍA1, J.C. BALDA3 and F.D. BARLOW3

1Grupo de Electrónica Aplicada (GEA), Universidad Nacional de Río Cuarto, Ruta Nac. #36 Km. 601, X5804BYA
Río Cuarto, Argentina Argentina

msonnaillon@ing.unrc.edu.ar , gbisheimer@ing.unrc.edu.ar, cdeangelo@ieee.org, rleidhold@ieee.org,
g.garcia@ieee.org

2Laboratorio de Cavitación y Biotecnología, Centro Atómico Bariloche - Instituto Balseiro, Av. Bustillo 9500,
San Carlos de Bariloche, Argentina

3Laboratory for Agile Motion Prototyping, University of Arkansas, 3217 Bell Engineering Center, Fayetteville
72701, AR, EEUU - jbalda@uark.edu

 Abstract− This paper presents the design and

implementation of a digital communication interface
between a Motor Drive Controller (MDC) and a
digital network supervisor. This work is part of the
DOE/CARAT project “Integrated Controllers for
Automotive Auxiliary Electric Motors”, being
performed between the University of Arkansas and
at GEA (Applied Electronics Group), National
University of Rio Cuarto. The Controller Area
Network (CAN) is the digital communication
protocol of choice for automotive applications. The
MDC was implemented using a Digital Signal
Processor (DSP) and the network supervisor using a
standard personal computer (PC) with a CAN
communication board.
Keywords− CAN Communication Protocol, Motor

Drive Controller, Automotive Applications.

I. INTRODUCTION
The automotive industry is facing nowadays new
challenges regarding the reduction of fuel consumption,
because of economic and ecological reasons. Demands
for increasing comfort, safety, flexibility and reliability
are the motivations for new developments in the
automotive industry. Replacing a car’s hydraulic system
with wires, microcontrollers, and computers promises
better safety and handling capabilities (Bretz, 2001). In
order to reach these goals, some conventional
hydraulics, pneumatic and even mechanical systems are
expected to be replaced by x-by-wire systems
(electromechanical actuators electronically controlled
by-wire, without mechanical links). Therefore, the on-
board vehicle electric power needs are increasing, and
the on-board electric currents are increasing too. In turn,
with the increase in the number of electronic and
electrical devices used in modern cars, the following
two problems should be addressed,

• boost of power consumption,
• needs to handle the communication between many

devices.

M.Sonnaillon, G. Bisheimer, C. De Angelo, R.Leidhold and G.García
are with CONICET.

The increase in power consumption means higher
on-board currents, therefore, thick, heavy and bulky
wires. Increasing the voltage reduces the current
required for the same amount of power consumption. A
reduction in current is of particular advantage for the
use of power electronics modules. Higher currents
require a larger silicon area, and since the formula "chip
area ∝ cost" applies in the semiconductor industry,
current reduction means cheaper power electronics
devices. For this reason, the Vehicle Electrical System
Architecture Forum, in conjunction with the MIT
Industry Consortium, have proposed a new 42V supply
voltage standard for the automotive industry. The
proposal of this Forum has achieved international
acceptance and the decision of several companies to
begin developing components for this new generation of
vehicles (Vehicle Electrical Systems Architecture
Forum, 2002).

As mentioned previously, another need is to handle
the communication between a growing number of
devices, using the minimum numbers of wires (i.e.
occupying the minimum space). There are many
alternatives to implement a digital communication
network to interconnect the on-board devices. Several
different digital protocols have been proposed in the
literature. As examples, can be cited D2B (Domestic
Data Bus), Bluetooth, MOST (Media-Oriented Systems
Transport), MML (Mobile Media Link), TTP (Time-
Triggered Protocol), LIN (Local Interconnect Network),
ByteFlight, Flexray, TTCAN and CAN (Controller Area
Network) (Leen and Heffernan, 2002).

The University of Arkansas, Fayetteville, USA and
GEA (Applied Electronics Group), National University
of Rio Cuarto, Argentina, are collaborating on the
project “Integrated Controllers for Automotive
Auxiliary Electric Motors”. The main motivation of
this project is to overcome existing technical and
economical barriers in the implementation of auxiliary
42V electric motor systems for automotive applications.
The main objective of this effort is to develop optimally
integrated, energy-efficient PM brushless motor
systems, utilizing high-efficiency motors and advanced
microelectronic manufacturing and power packaging

Latin American Applied Research 35:129-133 (2005)

130

technologies. The research activity comprises of four
strategic tasks: (1) Design of the Motor Controller; (2)
Motor Controller Layout and Package Design; (3)
Development of a Prototype Smart Monolithic Power
Module and Optimally Integrated Motor System; and
(4) Economic Viability Assessment.

The GEA is working on the first part of the project,
Task 1, specifying, designing and implementing a
discrete prototype for a brushless motor controller. This
prototype includes a discrete power electronics module
and a digital controller with digital communication
capabilities.

This paper describes the design and implementation
of the digital communication interface between a PC,
working as the motor drive supervisor, and a Digital
Signal Processor, running as the Motor Drive
Controller. CAN protocol was used in this application,
since it is the most used protocol in the automotive
industry.

The rest of this paper is organized as follows.
Section II presents the system specifications. Section III
discusses the selection of the digital communication
protocol. Sections IV and V provide the design of the
digital communication hardware and software,
respectively. Finally, Section VI draws some
conclusions.

II. SYSTEM SPECIFICATIONS
The main motor drive specifications are the following:

• DC link voltage: 42 V under no load (36 V under
load conditions);

• power-module average power: 2.2 kW at rated
speed;

• power-module peak power: 4.5 kW at rated speed
during 10-sec pulses with 100-sec periods;

• modulation switching frequency: 40 kHz;
• power-module working maximum ambient

temperature: 40ºC;
• heat-sink-air thermal resistance: 0.6ºC/W;
• diagnose and protection capabilities: needed;
• digital network communication capability: needed.

The average and peak powers correspond to an
example of air conditioning compressor for heavy truck
and bus applications. The research ideas are
independent of these power levels and application,
which were selected to simply demonstrate the
feasibility of the proposed ideas and concepts.

The digital controller should be configurable on-line
from a PC in order to test the system under different
conditions and operating modes.

The PC should be capable of sending the following
commands and parameters to the MDC:

• operating mode command (speed controlled mode,
current controlled mode, duty cycle controlled
mode);

• set points (speed, current or duty cycle references,
depending on the selected operating mode);

• parameters (coefficients of the digital controller
compensators).

The MDC should be capable of sending the
following messages and data to the PC, to be shown on
its screen,

• faults messages;
• motor speed, current and PWM duty cycle.

III. DIGITAL COMMUNICATION PROTOCOL
As specified, the MDC should be linked to a supervisor
through a bi-directional digital communication
interface. The digital protocol that best fit the
requirements of this application is CAN (Controller
Area Network). It is standard and open for automotive
applications. In the today’s market different CAN
devices can be purchased from different suppliers.

CAN is a serial multi-master communication
protocol that efficiently supports distributed real-time
control with very high level of data integrity, and
communication speeds up to 1 Mbps. The CAN bus is
ideal for applications operating in noisy and harsh
environments, such as in the automotive and industrial
fields that require reliable communication.

Messages with priorities of up to eight bytes in data
length can be sent on a multi-master serial bus using
arbitration protocol and error-detection mechanism for a
high level data integrity.

CAN protocol does not address nodes with physical
addresses but instead sends messages with an identifier
(ID) that can be recognized by the different network
nodes. This identifier has the following two functions:

• message filtering;
• determine message priority.

The ID defines if a transmitted message should be
received by any particular CAN node, and also defines
the priority of the message when two or more nodes
attempt to transmit at the same time. In this case a non-
destructive bus arbitration is used to decide which node
gets access to transmit its message. The message with
the highest priority is transmitted first, followed by the
next highest priority message. When one message frame
is transmitted, a new round of arbitration begins
(Lawrenz, 1997).

The CAN protocol provides the following
advantages that make it suitable for this application,

• it is a mature standard (it has existed for more than
14 years);

• there are numerous CAN products and tools on the
market;

• it has a combination of error handling and fault
confinement with high transmission speed;

• although its physical lair is not defined by the
standard, there exist several application examples
that use simple transmission medium like twisted
pair of wires, optical fivers, etc.;

• it has excellent error handling capabilities;
• it has fine fault confinement;

M.O. SONNAILLON, G. BISHEIMER, C.H. DE ANGELO, R. LEIDHOLD, G.O. GARCÍA, J.C. BALDA,
F.D. BARLOW

131

• it is the most used protocol in automotive
applications;

• it has the best performance/price ratio.

IV. DESIGN OF THE DIGITAL
COMMUNICATION HARDWARE

The MDC is implemented using a TMS320LF2403 DSP
(member of the C2000 Texas Instruments DSP family),
which has several on-chip peripherals that make it
suitable for the application target of this work.

This DSP has a full-CAN on-chip controller. It
contains a message handler (for transmission and
reception management, and frames storage) and needs
less CPU overhead than with a conventional out-of-
chip CAN controller. This on-chip controller fulfills the
CAN 2.0B active specification, meaning that the
module can send and accept the standard 11-bit
identifier and the extended frames 29-bit identifier
(Texas Instruments, 1998).

The CAN controller needs a transceiver, according
to the adopted physical layer protocol, in order to be
connected to the CAN bus. For this application it was
chosen the SN65HVD230 transceiver. Designed to
interface the Texas Instruments TMS320Lx240x 3.3-V
DSP family (Texas Instruments, 2001) with a CAN bus.
It is intended for applications employing the CAN serial
communication physical layer in accordance with the
ISO 11898 standard. This transceiver has differential
transmit and receive capability between the DSP and the
bus, with speeds up to 1 Mbps. It operates in a −2V to
7V common-mode range on the bus, and it can
withstand common-mode transients of ±25 V (Texas
Instruments, 2001). It was designed for operation in
especially-harsh environments, features cross-wire
protection, loss-of-ground and over-voltage protection,
over-temperature protection, as well as wide common-
mode range.

The supervisor node was implemented with a
standard PC holding a National Instruments PCI-CAN
board. This board has 2 CAN ports that can be used
independently, and supports a wide variety of transfer
rates up to 1 Mb/s (National Instruments, 2002).

Inside the board, the CAN bus hardware interfacing
is accomplished using the Intel 82527 CAN controller
chip. The high-speed CAN physical layer fulfills the
ISO 11898 physical layer CAN specification. The
physical layer is optically isolated up to 500V, and can
be powered either internally (from the card) or
externally (by the bus cable).

In the present application, the physical medium that
links the digital MDC with the PC is a twisted pair of
copper wires, that are connected between MDC and the
PC board by standard DB-9 connectors. If it is desired,
other CAN nodes (PCs, DSPs, etc.) can be connected to
the same network without any hardware change.

The twisted wires constitutes a transmission line. If
the transmission line is not adequately terminated,
signal can be reflected producing communication
failures. Because signals flow both ways, the CAN bus

requires that both ends of the cable be terminated.
However, this requirement does not mean that every
device should have a termination resistor. If multiple
devices are placed along the cable, only the devices on
the ends of the cable should have termination resistors.

The termination resistors on a cable should match
the nominal impedance of the cable. ISO 11898 requires
a cable with a nominal impedance of 120Ω (Philips,
2003). Therefore, a 120Ω resistor should be used at
each end of the cable. Each termination resistor should
be capable of dissipating 0.25 W of power (National
Instruments, 2002).

Figure 1 shows a block diagram of the implemented
CAN bus.

Figure 1: Block diagram of the implemented CAN bus.

The maximum transmission rate depends on the bus
length, for a bus shorter than 40 meters the transmission
rate is up to 1 Mbit/s. Table 1 shows typical values for
thick and thin cable (National Instrument, 2002).

Table 1: Maximum transmission rate and length vs. the cable
size.

Bit Rate Thick Cable Thin Cable
500 kbps 100 m 100 m
250 kbps 200 m 100 m
100 kbps 500 m 100 m

V. DESIGN OF THE DIGITAL
COMMUNICATION SOFTWARE

The design of the digital communication software can
be divided in the following three parts:

• Message definitions;
• DSP communication software;
• PC supervisory software.

A. Message data structure
In this application, the supervisory node (the PC) must
be able to parameterize and configure the MDC.
Moreover, the MDC should report its status when the
supervisory ask for it.

The following 4 messages that can be transmitted
from the PC to the DSP were defined:

Latin American Applied Research 35:129-133 (2005)

132

ID: 0.
Function: Defines the working mode.
Size: 1 word (2 bytes).
Data:

Word 0 is interpreted by the controller software
as sixteen bits unsigned integer,

= 0, all MOSFETs are turned Off and the
compensators (current and speed) are
reset,

= 1, ask the MDC go to the Speed Controlled
mode,

= 2, ask the MDC go to the Duty Cycle
controlled mode,

= 3, ask the MDC go to the Motor Current
controlled mode,

= other value, same as 0.

ID: 1.
Function: Defines set-points.
Size: 2 words.
Data:

Word 0 is interpreted by the controller software
as 16-bit signed integer, Q15 scaled variable
(Lapsley et. al., 1997),

= indicate the value of the speed, duty cycle
or motor phase current reference,
depending on the present working mode;

Word 1 is interpreted by the controller software
as sixteen bits unsigned integer,

= 0, indicate to the DSP that the control
algorithm has to use the sextant value
read by the rotor position sensor,

= 1 to 6, indicates that the control algorithm
has to use a constant sextant value from
1 to 6,

= other value, it is ignored.

ID: 2.
Function: Configures the speed PI compensator

parameters for the speed control loop.
Size: 3 words.
Data: Word 0 to Word 3 are interpreted by the controller

software as a sixteen bits signed integer, Q15 scaled
variables;

Word 0,
 = kpw, is the speed PI proportional constant;

Word 1,
 = kiw, is the speed PI integral constant;

Word 2,
 = kcw, is the speed PI anti-reset windup

constant.

ID: 3
Function: Configures the current PI compensator

parameters for the current control loop.
Size: 3 words

Data: Word 0 to Word 3 are interpreted by the controller
software as a sixteen bits signed integer, Q15 scaled
variables;

Word 0,
= kpi, is the current PI proportional constant;

word 1,
 = kii, is the current PI integral constant;

word 2,
 = kci, is the current PI anti-reset windup

constant.

The MDC uses the DSP’s "automatic replay to a remote
request" (ARRR) or “auto-answer” feature that is a
standard in CAN controllers (Texas Instruments, 1998).
This feature allows the DSP to answer a data request
without interrupting the task it is being run. When the
DSP CAN controller receives an auto-answering
request, identified with ID 4, it sends, automatically
through the CAN bus the actual values of rotor speed,
phase current, PWM duty cycle and fault status, with
the following format:

ID: 4
Function: Informs the actual speed, duty cycle and

phase current.
Size: 4 words
Data: Word 0 to Word 2 are interpreted by the

supervisor software as a sixteen bits signed integer,
Q15 scaled variables;

Word 0,
= speed;

word 1,
 = duty cycle;

word 2,
 = phase current;

word 3, is interpreted by the supervisor software
as a sixteen bits unsigned integer,

 = 1, fault, otherwise normal.
B. DSP node CAN software
The DSP CAN module has six mailboxes that are used
to send and receive messages. For each mailbox, the
user must configure the ID number, the mode (input,
output or auto-answer) and some other parameters. The
basic block diagram is shown in Fig. 2 (Texas
Instrument, 1998).

CPU
CPU Interface/

Memory management
unit

Control/Status registers
interrupt logic

CAN Core

Transmit Buffer

Temporary receive buffer

Data ID

Acceptance
filter

Control
logic

Mailbox 0 (R)
Mailbox 1 (R)

Mailbox 2 (T/R)
Mailbox 3 (T/R)
Mailbox 4 (T)
Mailbox 5 (T)

Control
bus

CANTX

CANRX

RAM 48x16
Figure 2: TMS320x240x CAN module block diagram

M.O. SONNAILLON, G. BISHEIMER, C.H. DE ANGELO, R. LEIDHOLD, G.O. GARCÍA, J.C. BALDA,
F.D. BARLOW

133

Each receiving mailbox has an acceptance filter that
determines which ID messages will receive. Each time
the CAN module receives a message with an ID that
corresponds to the previously configured in any of its
receiving mailboxes, an interrupt is generated to let the
DSP process the recently received data.

When the CAN module sends a message to the CAN
bus and no CAN node sends back the acknowledgement
signal, an interrupt is generated to alert that nobody is
receiving the outgoing messages (probably because of a
bus fault).
C. PC node CAN software
The software implemented in the PC runs under
Windows and was programmed using C++. The
National Instruments PCI-CAN board has its own
libraries that can be used in any C++ program (National
Instruments, 2002). The PCI-CAN board has the
following main functions:

• ncConfig: creates an object and defines its
parameters (like the ID, mode, sample rate, type
and size of data, maximum and minimum values);

• ncOpenObject: this function is necessary to start
using a message;

• ncRead: reads a particularly message from the
CAN input buffer;

• ncWrite: sends a message through CAN bus;
• ncWaitForState: waits until the board

completes an operation;
• ncCloseObject: clears a message previously

opened with the nctOpenObject command.

All functions return a status variable that indicates that
the operation was performed successfully or an error has
occurred. The implemented software makes use of these
six functions to carry out the communication with the
CAN bus.

The user interface has some protections to prevent a
MDC damage, in the motor or in the power stage. The
user is not allowed to change the operation mode
without first turning off the system. All the references
are initialized to zero when the system is turned on. The
main window has also an easy-to-find button that stops
the system instantaneously, if an emergency occurs.

When the software is started, it loads some
parameters from a file, like the default controller’s
parameters, the maximum and minimum values of
current and some conversion constants.

The software running in the PC requests the MDC
its working status every 500ms, and displays this
information in the PC window. Figure 3 shows the
supervisory window.

Figure 3: Screen-shot of the PC supervisory software

V. CONCLUSIONS
This paper illustrated a communication interface for
automotive applications, including hardware and
software.

Different digital network protocols have been
considered. It was concluded that the Controller Area
Network (CAN) protocol best fits the requirements of
the proposed application.

The system has been tested in a harsh environment
(power electronics switches devices commutating at
100A and 40kHz), over a 30m cable with a transfer rate
of 100 kbps. The implemented prototype demonstrated
excellent performance and data integrity, as expected.

REFERENCES
Bretz, E. A., "By-Wire Cars Turn the Corner". IEEE

Spectrum, 38, 4, 68-73 (2001).
Lapsley, P., J. Bier, A. Shoham and E. A. Lee, DSP

Processor Fundamentals, IEEE Press, New York (1997).
Lawrenz, W., CAN System Engineering, Springer (1997).
Leen, G. and D. Heffernan, "Expanding Automotive

Electronic Sysytems", IEEE Computer 35, 88-93 (2002).
National Instruments, NI-CAN Hardware and Software

Manual, B8-B10 (2002).
Philips, “TJA1040 CAN High-Speed Transceiver”,

Application Note 10211, 22-23 (2003).
Texas Instruments, “SN65HVD230 Datasheet” (2001)
Texas Instruments, TMS320F240x DSP Controllers

Reference Guide, 10.1-10.37 (2000).
Texas Instruments, “Understanding the CAN Controller on

the TMS320C24x DSP Controller”, Application Report
SPRA500 (1998).

Vehicle Electrical Systems Architecture Forum, “Why 42
Volts in Motor Vehicles?”, www.bordnetzforum-
42v.de/bordnetz/42v_e.html (2002).

Received: October 8, 2003.
Accepted: October 27, 2004.
Recommended by Guest Editor O. Crisalle.

