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 Abstract− This paper presents the design and 

implementation of a digital communication interface 
between a Motor Drive Controller (MDC) and a 
digital network supervisor.  This work is part of the 
DOE/CARAT project “Integrated Controllers for 
Automotive Auxiliary Electric Motors”, being 
performed between the University of Arkansas and 
at GEA (Applied Electronics Group), National 
University of Rio Cuarto.  The Controller Area 
Network (CAN) is the digital communication 
protocol  of choice for automotive applications.  The 
MDC was implemented using a Digital Signal 
Processor (DSP) and the network supervisor using a 
standard personal computer (PC) with a CAN 
communication board. 
Keywords− CAN Communication Protocol, Motor 

Drive Controller, Automotive Applications. 

I. INTRODUCTION 
The automotive industry is facing nowadays new 
challenges regarding the reduction of fuel consumption, 
because of economic and ecological reasons. Demands 
for increasing comfort, safety, flexibility and reliability 
are the motivations for new developments in the 
automotive industry. Replacing a car’s hydraulic system 
with wires, microcontrollers, and computers promises 
better safety and handling capabilities (Bretz, 2001).  In 
order to reach these goals, some conventional 
hydraulics, pneumatic and even mechanical systems are 
expected to be replaced by x-by-wire systems 
(electromechanical actuators electronically controlled 
by-wire, without mechanical links).  Therefore, the on-
board vehicle electric power needs are increasing, and 
the on-board electric currents are increasing too. In turn, 
with the increase in the number of electronic and 
electrical devices used in modern cars, the following 
two problems should be addressed, 

• boost of power consumption, 
• needs to handle the communication between many 

devices. 
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The increase in power consumption means higher 
on-board currents, therefore, thick, heavy and bulky 
wires. Increasing the voltage reduces the current 
required for the same amount of power consumption. A 
reduction in current is of particular advantage for the 
use of power electronics modules. Higher currents 
require a larger silicon area, and since the formula "chip 
area ∝ cost" applies in the semiconductor industry, 
current reduction means cheaper power electronics 
devices.  For this reason, the Vehicle Electrical System 
Architecture Forum, in conjunction with the MIT 
Industry Consortium, have proposed a new 42V supply 
voltage standard for the automotive industry.  The 
proposal of this Forum has achieved international 
acceptance and the decision of several companies to 
begin developing components for this new generation of 
vehicles (Vehicle Electrical Systems Architecture 
Forum, 2002). 

As mentioned previously, another need is to handle 
the communication between a growing number of 
devices, using the minimum numbers of wires (i.e. 
occupying the minimum space).  There are many 
alternatives to implement a digital communication 
network to interconnect the on-board devices.  Several 
different digital protocols have been proposed in the 
literature.  As examples, can be cited D2B (Domestic 
Data Bus), Bluetooth, MOST (Media-Oriented Systems 
Transport), MML (Mobile Media Link), TTP (Time-
Triggered Protocol), LIN (Local Interconnect Network), 
ByteFlight, Flexray, TTCAN and CAN (Controller Area 
Network) (Leen and Heffernan, 2002). 

The University of Arkansas, Fayetteville, USA and 
GEA (Applied Electronics Group), National University 
of Rio Cuarto, Argentina, are collaborating on the 
project “Integrated Controllers for Automotive 
Auxiliary Electric Motors”.  The main motivation of 
this project is to overcome existing technical and 
economical barriers in the implementation of auxiliary 
42V electric motor systems for automotive applications.  
The main objective of this effort is to develop optimally 
integrated, energy-efficient PM brushless motor 
systems, utilizing high-efficiency motors and advanced 
microelectronic manufacturing and power packaging 
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technologies. The research activity comprises of four 
strategic tasks: (1) Design of the Motor Controller; (2) 
Motor Controller Layout and Package Design; (3) 
Development of a Prototype Smart Monolithic Power 
Module and Optimally Integrated Motor System; and 
(4) Economic Viability Assessment. 

The GEA is working on the first part of the project, 
Task 1, specifying, designing and implementing a 
discrete prototype for a brushless motor controller. This 
prototype includes a discrete power electronics module 
and a digital controller with digital communication 
capabilities. 

This paper describes the design and implementation 
of the digital communication interface between a PC, 
working as the motor drive supervisor, and a Digital 
Signal Processor, running as the Motor Drive 
Controller. CAN protocol was used in this application, 
since it is the most used protocol in the automotive 
industry. 

The rest of this paper is organized as follows. 
Section II presents the system specifications. Section III 
discusses the selection of the digital communication 
protocol. Sections IV and V provide the design of the 
digital communication hardware and software, 
respectively. Finally, Section VI draws some 
conclusions. 

II. SYSTEM SPECIFICATIONS 
The main motor drive specifications are the following: 

• DC link voltage: 42 V under no load (36 V under 
load conditions); 

• power-module average power: 2.2 kW at rated 
speed; 

• power-module peak power: 4.5 kW at rated speed 
during 10-sec pulses with 100-sec periods; 

• modulation switching frequency: 40 kHz; 
• power-module working maximum ambient 

temperature: 40ºC; 
• heat-sink-air thermal resistance: 0.6ºC/W; 
• diagnose and protection capabilities: needed; 
• digital network communication capability: needed. 

The average and peak powers correspond to an 
example of air conditioning compressor for heavy truck 
and bus applications. The research ideas are 
independent of these power levels and application, 
which were selected to simply demonstrate the 
feasibility of the proposed ideas and concepts. 

The digital controller should be configurable on-line 
from a PC in order to test the system under different 
conditions and operating modes. 

The PC should be capable of sending the following 
commands and parameters to the MDC: 

• operating mode command (speed controlled mode, 
current controlled mode, duty cycle controlled 
mode); 

• set points (speed, current or duty cycle references, 
depending on the selected operating mode); 

• parameters (coefficients of the digital controller 
compensators). 

The MDC should be capable of sending the 
following messages and data to the PC, to be shown on 
its screen, 

• faults messages; 
• motor speed, current and PWM duty cycle. 

III. DIGITAL COMMUNICATION PROTOCOL 
As specified, the MDC should be linked to a supervisor 
through a bi-directional digital communication 
interface. The digital protocol that best fit the 
requirements of this application is CAN (Controller 
Area Network). It is standard and open for automotive 
applications. In the today’s market different CAN 
devices can be purchased from different suppliers. 

CAN is a serial multi-master communication 
protocol that efficiently supports distributed real-time 
control with very high level of data integrity, and 
communication speeds up to 1 Mbps. The CAN bus is 
ideal for applications operating in noisy and harsh 
environments, such as in the automotive and industrial 
fields that require reliable communication. 

Messages with priorities of up to eight bytes in data 
length can be sent on a multi-master serial bus using 
arbitration protocol and error-detection mechanism for a 
high level data integrity. 

CAN protocol does not address nodes with physical 
addresses but instead sends messages with an identifier 
(ID) that can be recognized by the different network 
nodes. This identifier has the following two functions: 

• message filtering; 
• determine message priority. 

The ID defines if a transmitted message should be 
received by any particular CAN node, and also defines 
the priority of the message when two or more nodes 
attempt to transmit at the same time. In this case a non-
destructive bus arbitration is used to decide which node 
gets access to transmit its message. The message with 
the highest priority is transmitted first, followed by the 
next highest priority message. When one message frame 
is transmitted, a new round of arbitration begins 
(Lawrenz, 1997). 

The CAN protocol provides the following 
advantages that make it suitable for this application, 

• it is a mature standard (it has existed for more than 
14 years); 

• there are numerous CAN products and tools on the 
market; 

• it has a combination of error handling and fault 
confinement with high transmission speed; 

• although its physical lair is not defined by the 
standard, there exist several application examples 
that use simple transmission medium like twisted 
pair of wires, optical fivers, etc.; 

• it has excellent error handling capabilities; 
• it has fine fault confinement; 
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• it is the most used protocol in automotive 
applications; 

• it has the best performance/price ratio. 

IV. DESIGN OF THE DIGITAL 
COMMUNICATION HARDWARE 

The MDC is implemented using a TMS320LF2403 DSP 
(member of the C2000 Texas Instruments DSP family), 
which has several on-chip peripherals that make it 
suitable for the application target of this work. 

This DSP has a full-CAN on-chip controller. It 
contains a message handler (for transmission and 
reception management, and frames storage) and needs 
less CPU overhead than with a conventional out-of- 
chip CAN controller. This on-chip controller fulfills the 
CAN 2.0B active specification, meaning that the 
module can send and accept the standard 11-bit 
identifier and the extended frames 29-bit identifier 
(Texas Instruments, 1998). 

The CAN controller needs a transceiver, according 
to the adopted physical layer protocol, in order to be 
connected to the CAN bus. For this application it was 
chosen the SN65HVD230 transceiver. Designed to 
interface the Texas Instruments TMS320Lx240x 3.3-V 
DSP family (Texas Instruments, 2001) with a CAN bus. 
It is intended for applications employing the CAN serial 
communication physical layer in accordance with the 
ISO 11898 standard. This transceiver has differential 
transmit and receive capability between the DSP and the 
bus, with speeds up to 1 Mbps. It operates in a −2V to 
7V common-mode range on the bus, and it can 
withstand common-mode transients of ±25 V (Texas 
Instruments, 2001). It was designed for operation in 
especially-harsh environments, features cross-wire 
protection, loss-of-ground and over-voltage protection, 
over-temperature protection, as well as wide common-
mode range. 

The supervisor node was implemented with a 
standard PC holding a National Instruments PCI-CAN 
board. This board has 2 CAN ports that can be used 
independently, and supports a wide variety of transfer 
rates up to 1 Mb/s (National Instruments, 2002). 

Inside the board, the CAN bus hardware interfacing 
is accomplished using the Intel 82527 CAN controller 
chip. The high-speed CAN physical layer fulfills the 
ISO 11898 physical layer CAN specification. The 
physical layer is optically isolated up to 500V, and can 
be powered either internally (from the card) or 
externally (by the bus cable). 

In the present application, the physical medium that 
links the digital MDC with the PC is a twisted pair of 
copper wires, that are connected between MDC and the 
PC board by standard DB-9 connectors. If it is desired, 
other CAN nodes (PCs, DSPs, etc.) can be connected to 
the same network without any hardware change. 

The twisted wires constitutes a transmission line. If 
the transmission line is not adequately terminated, 
signal can be reflected producing communication 
failures. Because signals flow both ways, the CAN bus 

requires that both ends of the cable be terminated. 
However, this requirement does not mean that every 
device should have a termination resistor. If multiple 
devices are placed along the cable, only the devices on 
the ends of the cable should have termination resistors. 

The termination resistors on a cable should match 
the nominal impedance of the cable. ISO 11898 requires 
a cable with a nominal impedance of 120Ω (Philips, 
2003). Therefore, a 120Ω resistor should be used at 
each end of the cable. Each termination resistor should 
be capable of dissipating 0.25 W of power (National 
Instruments, 2002). 

Figure 1 shows a block diagram of the implemented 
CAN bus. 

 
Figure 1: Block diagram of the implemented CAN bus. 

 
The maximum transmission rate depends on the bus 
length, for a bus shorter than 40 meters the transmission 
rate is up to 1 Mbit/s. Table 1 shows typical values for 
thick and thin cable (National Instrument, 2002). 

 
Table 1: Maximum transmission rate and length vs. the cable 
size. 

Bit Rate Thick Cable Thin Cable 
500 kbps 100 m 100 m 
250 kbps 200 m 100 m 
100 kbps 500 m 100 m 

V. DESIGN OF THE DIGITAL 
COMMUNICATION SOFTWARE 

The design of the digital communication software can 
be divided in the following three parts: 

• Message definitions; 
• DSP communication software; 
• PC supervisory software. 

A. Message data structure 
In this application, the supervisory node (the PC) must 
be able to parameterize and configure the MDC. 
Moreover, the MDC should report its status when the 
supervisory ask for it. 

The following 4 messages that can be transmitted 
from the PC to the DSP were defined: 
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ID: 0. 
Function: Defines the working mode. 
Size: 1 word (2 bytes). 
Data: 

Word 0 is interpreted by the controller software 
as sixteen bits unsigned integer, 

= 0, all MOSFETs are turned Off and the 
compensators (current and speed) are 
reset, 

= 1, ask the MDC go to the Speed Controlled 
mode, 

= 2, ask the MDC go to the Duty Cycle 
controlled mode, 

= 3, ask the MDC go to the Motor Current 
controlled mode, 

= other value, same as 0. 
 
ID: 1. 
Function: Defines set-points. 
Size: 2 words. 
Data: 

Word 0 is interpreted by the controller software 
as 16-bit signed integer, Q15 scaled variable 
(Lapsley et. al., 1997), 

= indicate the value of the speed, duty cycle 
or motor phase current reference, 
depending on the present working mode; 

Word 1 is interpreted by the controller software 
as sixteen bits unsigned integer, 

= 0, indicate to the DSP that the control 
algorithm has to use the sextant value 
read by the rotor position sensor, 

= 1 to 6, indicates that the control algorithm 
has to use a constant sextant value from 
1 to 6, 

= other value, it is ignored. 
 

ID: 2. 
Function: Configures the speed PI compensator 

parameters for the speed control loop. 
Size: 3 words. 
Data: Word 0 to Word 3 are interpreted by the controller 

software as a sixteen bits signed integer, Q15 scaled 
variables; 

Word 0, 
 = kpw, is the speed PI proportional constant; 

Word 1, 
 = kiw, is the speed PI integral constant; 

Word 2, 
 = kcw, is the speed PI anti-reset windup 

constant. 
 

ID: 3 
Function: Configures the current PI compensator 

parameters for the current control loop. 
Size: 3 words 

Data: Word 0 to Word 3 are interpreted by the controller 
software as a sixteen bits signed integer, Q15 scaled 
variables; 

Word 0, 
= kpi, is the current PI proportional constant; 

word 1, 
 = kii, is the current PI integral constant; 

word 2, 
 = kci, is the current PI anti-reset windup 

constant. 
 

The MDC uses the DSP’s "automatic replay to a remote 
request" (ARRR) or “auto-answer” feature that is a 
standard in CAN controllers (Texas Instruments, 1998). 
This feature allows the DSP to answer a data request 
without interrupting the task it is being run. When the 
DSP CAN controller receives an auto-answering 
request, identified with ID 4, it sends, automatically 
through the CAN bus the actual values of rotor speed, 
phase current, PWM duty cycle and fault status, with 
the following format: 
 
ID: 4 
Function: Informs the actual speed, duty cycle and 

phase current. 
Size: 4 words 
Data: Word 0 to Word 2 are interpreted by the 

supervisor software as a sixteen bits signed integer, 
Q15 scaled variables; 

Word 0, 
= speed; 

word 1, 
 = duty cycle; 

word 2, 
 = phase current; 

word 3, is interpreted by the supervisor software 
as a sixteen bits unsigned integer, 

 = 1, fault, otherwise normal. 
B. DSP node CAN software 
The DSP CAN module has six mailboxes that are used 
to send and receive messages. For each mailbox, the 
user must configure the ID number, the mode (input, 
output or auto-answer) and some other parameters. The 
basic block diagram is shown in Fig. 2 (Texas 
Instrument, 1998). 

CPU
CPU Interface/

Memory management
unit

Control/Status registers
interrupt logic

CAN Core

Transmit Buffer

Temporary receive buffer

Data ID

Acceptance
filter

Control
logic

Mailbox 0 (R)
Mailbox 1 (R)

Mailbox 2 (T/R)
Mailbox 3 (T/R)
Mailbox 4 (T)
Mailbox 5 (T)

Control
bus

CANTX

CANRX

RAM 48x16  
Figure 2: TMS320x240x CAN module block diagram 
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Each receiving mailbox has an acceptance filter that 
determines which ID messages will receive. Each time 
the CAN module receives a message with an ID that 
corresponds to the previously configured in any of its 
receiving mailboxes, an interrupt is generated to let the 
DSP process the recently received data. 

When the CAN module sends a message to the CAN 
bus and no CAN node sends back the acknowledgement 
signal, an interrupt is generated to alert that nobody is 
receiving the outgoing messages (probably because of a 
bus fault). 
C. PC node CAN software 
The software implemented in the PC runs under 
Windows and was programmed using C++. The 
National Instruments PCI-CAN board has its own 
libraries that can be used in any C++ program (National 
Instruments, 2002). The PCI-CAN board has the 
following main functions: 

• ncConfig: creates an object and defines its 
parameters (like the ID, mode, sample rate, type 
and size of data, maximum and minimum values); 

• ncOpenObject: this function is necessary to start 
using a message; 

• ncRead: reads a particularly message from the 
CAN input buffer; 

• ncWrite: sends a message through CAN bus; 
• ncWaitForState: waits until the board 

completes an operation; 
• ncCloseObject: clears a message previously 

opened with the nctOpenObject command. 
 

All functions return a status variable that indicates that 
the operation was performed successfully or an error has 
occurred. The implemented software makes use of these 
six functions to carry out the communication with the 
CAN bus. 

The user interface has some protections to prevent a 
MDC damage, in the motor or in the power stage. The 
user is not allowed to change the operation mode 
without first turning off the system. All the references 
are initialized to zero when the system is turned on. The 
main window has also an easy-to-find button that stops 
the system instantaneously, if an emergency occurs. 

When the software is started, it loads some 
parameters from a file, like the default controller’s 
parameters, the maximum and minimum values of 
current and some conversion constants. 

The software running in the PC requests the MDC 
its working status every 500ms, and displays this 
information in the PC window. Figure 3 shows the 
supervisory window. 

 

 
Figure 3: Screen-shot of the PC supervisory software 

V. CONCLUSIONS 
This paper illustrated a communication interface for 
automotive applications, including hardware and 
software. 

Different digital network protocols have been 
considered. It was concluded that the Controller Area 
Network (CAN) protocol best fits the requirements of 
the proposed application. 

The system has been tested in a harsh environment 
(power electronics switches devices commutating at 
100A and 40kHz), over a 30m cable with a transfer rate 
of 100 kbps. The implemented prototype demonstrated 
excellent performance and data integrity, as expected. 
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