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Abstract— In this paper, we propose a new
formulation of the classical Good-Turing esti-
mator for n-gram language models. The new
approach is based on defining a dynamic model
for language production. Instead of assuming a
fixed probability distribution of occurrence of
an n-gram on the whole text, we propose a max-
imum entropy approximation of a time varying
distribution. This approximation led us to a
new distribution, which in turn is used to cal-
culate expectations of the Good-Turing estima-
tor. This defines a new estimator that we call
Maximum Entropy Good-Turing estimator. In
contrast to the classical Good-Turing estima-
tor, the new formulation needs neither expec-
tations approximations nor windowing or other
smoothing techniques. It also contains the well
known discounting estimators as special cases.
Performance is evaluated both in terms of per-
plexity and word error rate in an N-best re-
scoring task. Also comparison to other classical
estimators is performed. In all cases our ap-
proach performs significantly better than clas-
sical estimators.

Keywords— Languaje Models, Maximum
Entropy, Good-Turing estimation.

I. INTRODUCTION

It is a well known fact that state-of-the-art speech
recognition systems use n-gram models in their lan-
guage models. In order to estimate such models, it is
necessary to use probability estimators which assign
a probability to each n-gram. Because of the sparse
characteristic of language two problems often arise.
On the one hand the number of samples of a particular
event is often inadequate to obtain robust estimators of
such event. On the other hand, even when the amount
of available training data is huge, many events do not
occur at all, but this does not mean they have zero
probability of occurrence, it just means they did not
occur in the training set. As a consequence, the max-
imum likelihood estimator of the probability given by
the quotient 7/N where r is the frequency of occur-
rence of an event (n-gram) and N is the total number
of events, will not be in general a good estimator of the

probability. On one hand it will assign null probability
to non zero occurrence events, and on the other hand it
can be shown (Lindsey and Denne, 2000) that it tends
to over-estimate events which have low frequency of
occurrence in a text. In order to deal with the prob-
lem of sparseness of data, many probabiliy estimators
have been proposed on the literature. Two of the most
popular are the Good-Turing estimator (Good, 1953;
Nadas, 1985) and discounting estimators (Katz, 1987;
Ney et al., 1995).

In this work we take a different approach. We as-
sume a dynamic language model for speech produc-
tion in the sense that the frequency of occurrence of an
event is not fixed on the text, but is a random variable.
Even when this view requires a careful mathematical
treatment, it is possible using maximum-entropy mod-
els to obtain an approximation which requires an esti-
mator which just depends on r. Starting with classical
Good-Turing estimator, we will re-formulate it in or-
der to meet our model requirements. As a result a new
estimator called maximum entropy Good-Turing esti-
mator will be obtained. This new estimator does not
need approximations or empirical formulations as in
the case of the classical Good-Turing estimator (Good,
1953; Gale, 2000).

In the next section we briefly describe classical
Good-Turing estimation and maximum-entropy mod-
els. In Section III we formally state our Good-Turing
maximum entropy model and we discuss some issues
of relevance. Experimental results are shown in Sec-
tion IV. Finally some concluding remarks are given in
Section V.

II. CLASSICAL GOOD-TURING
ESTIMATOR AND MAXIMUM
ENTROPY MODELS

A. Good-Turing estimator

Classical Good-Turing estimator (Good, 1953) can be
stated as a formal model (Good, 1953; Nadas, 1985) in
which the probability of an event o (an n-gram) whose
frequency of occurrence r is given by P(o) = ¢, with

qr =

(1)
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where r is the frequency of repetition of an event, N
is the total number of events, and ¢, corresponds to
the number of events whose frequency of occurrence is
r. A fundamental hypothesis of the model is the sym-
metry requirement which states that any two events
having the same frequency in the text must also have
the same probability estimate (Nadas, 1985). Equa-
tions (2) and (3) are difficult to determine and they
are not used in practical implementations of the Good-
Turing estimator, instead they are approximated with
training data. As a consequence, many values of ¢,
are zero, and there exists an unacceptable dispersion
between values of ¢, and ¢,1. These problems make
necessary the use of windowing techniques, or non con-
tinuous ¢, in order to smooth such dispersions (Gale,
2000). Even though smoothing is necessary, in practi-
cal implementations, not only mathematical formality
is lost with this approximation, but also empirical ad-
justments are necessary for each kind of text.

B. Maximum entropy models

Maximum-entropy models have been used in language
model contexts to estimate n-grams (see for example
Rosenfeld, 1996). Basically they can be stated as fol-
lows

o Reformulate the different information sources as
constraints to be satisfied by the target estimate.

e Among all probability distributions that satisfy
these constraints, choose the one that has the
highest entropy.

Mathematically m constrains are expressed as expec-
tation functions as follows

E{gr(x)} = ng(a:i)P(a:i) E={1,....m}, (4

Vzi

where gi(x) are model constrains usually expressed as
expectation of these functions. The distribution that
maximizes entropy given such constrains is given by
(Cover and Thomas, 1991)

exp <— Z Aka(@)
k=1

ZO, - Am)

p(x) =

where Z is the partition function.
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III. MAXIMUM ENTROPY
GOOD-TURING ESTIMATOR

A. A dynamic model for language production

We can think the speech production process as fol-
lows. Consider a hypothetical speaker who starts to
speak to another person about some specific topic. At
this moment his vocabulary is reduced to the num-
ber of words he said up to a particular moment ¢; say
Ny, . the number of repetitions is expected to be low
at first. Therefore, a reasonable assumption for the
probability of emission of a word is 1/Ny,. If we use
entropy as a measure of the information of the mes-
sage at time ¢1, it will be approximately Hy, = log Ny,
(Cover and Thomas, 1991). After some time of emit-
ting words, say at instant to, the speaker vocabulary
will increase to Ny, and, language entropy will also
grow. However at this point, some vocabulary repe-
titions are expected to have occurred, decreasing the
growth rate of entropy. As a consequence, Hy, will
be lower than log Ny,. Our assumption is that in the
long term, language entropy of that dynamic process,
will grow at decreasing rate up to a maximum station-
ary value. This value would correspond to the case
when the speaker has used nearly all his vocabulary
concerning to a specific topic to a specific person, and
the number of repetitions is enough to avoid further
entropy growth.

This means that we are viewing language produc-
tion as a dynamic process by which the probability of
an event is not fixed but is a function of time, so that
it could be zero at a moment (when no examples of an
event are emitted up to that moment), and non zero at
another moment. A complete formulation of the dy-
namics of this model is out of the scope of the present
work; however, if we assume that in the long term the
system bounds a maximum entropy state which does
not change any more, a simplified model can be devel-
oped and a robust estimator of the probability of an
event can be found.

B. Model constraints

It should be clear from the discussion above, that r,
the frequency of occurrence of event, is not constant
but it changes when speaker introduces more and more
vocabulary. We can think it as a random variable with
an associated probability P;(r) which, of course, is un-
known. Use of the index t means that distribution
changes with time. If we adopt the symmetry require-
ment used in the Good-Turing estimator, we will not
be able to distinguish between different events that oc-
cur the same number of times. Hence a distribution
which represents model dynamics will not only be a
function of r, but also of the number of events whose
frequency of occurrence is r. If we call such number ¢,,
we will have an associated distribution P;(r,¢,). But
we are not interested in the instantaneous dynamics of
the model, instead we are concerned with the distribu-
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tion whose entropy reaches a stable maximum. Such
distribution would corresponds to the best static ap-
proach we could produce for our dynamic process. We
will call such distribution P(r,c,).

In order to find P(r,c,) we will embody four statis-
tics that include information of the process necessary
for the model. The first is

S =Y N(o), (6)
Vo

where o is an event, and N (o) is the number of times
such event occurs. This statistics corresponds to a
sufficient statistics for the Poisson distribution (Cover
and Thomas, 1991). The choice of this statistics is
based on a previous work (Church and Gale, 1996)
which shows that the frequency of occurrence of an
event in a text follows a Poisson distribution. In an-
other work (Witten and Bell, 1991), it is also shown
that ¢, (the number of events with frequency r) also
responds to a Poisson distribution, but different for
each r, so the second statistics that we incorporate is

Ny
Sy =" 8(N(0),k), (7)

k=0 Vo

where N, is the maximum number of occurrences of
an event and §(i,7) = 0 Vi # j. We also define two
statistics which take into account dynamics properties

N,
Ss =Y > ki(N(0),k), 8)

k=0 Vo

Sy = Z log N(U)7 (9)

Vo
Now we can formulate a maximum entropy prob-
ability distribution P(r,¢,) that meets our four con-
straints.
C. Calculation of the distribution

The four statistics (6), (7), (8) and (9) are put to-
gether in the model trough equation (4) resulting in
the following set of equations

N, N.
cr

oY eP(re) = o),

r=1c¢,.=0

N, N.

Z Z re.P(r,c.) = (re.),

r=1c,=0

S 3 log(r)P(r.c;) = (log ),

where (logr), (c.), {(re,) y {r) are evaluated from train-
ing data, N, is the maximum number of occurrences
for all event and N, is the maximum number of events
that occur r times with the same frequency. Maximiz-
ing the entropy of P(r,c,) with the above constraints
we obtain the corresponding form of equation (5) for
our model

r_/\le_cT(/\z + )\37“)6—)\47‘

P(r,c,) = : 14
(r7c ) Z(>‘17A23A37>\4) ( )
where
N, N,
2O A2 A8 M) =3 > “A1—cr(A2 + A3r) o~y
1, A2, A3, N\4) — r & € .
r=1c,=0

Expectations (logr), {(¢,), (re,) y (r), are obtained
from training data. We have used re-sampling statisti-
cal techniques which give rise to Jackknife’s estimators
(Walsh, 2000); however, other techniques could have
been used. Once we obtain expectations we can obtain
parameters A1, Ao, A3 y A\q using IIS algorithm (Della
Pietra et al., 1997). Finally applying formula (14)
we obtain our maximum entropy distribution. The
next step is to introduce this distribution in the Good-
Turing estimator.

D. Maximum entropy Good-Turing estimator

Once (14) is determined, it is not difficult to calculate

expectations of the Good-Turing estimator (1). It is
straightforward to show that
Krf)\lef(Ag -+ )\37")67)\47'
gr,cr{cr} = ) (15)

(1 — e (M2t )\37“))2

Finally replacing (15) in (1) we obtain our new maxi-
mum entropy Good-Turing estimator

o (r+1) ro\"
@ = N r+1

1— e—()\g + )\37“)
<1 _ (A2t A3(r+1))

(16)

2
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E. Discussion

It is important to compare our estimator with
maximum-likelihood estimator ¢, = r*/N. To this
end, define the quotient r* /r

; B <Tj;1) (r—:l)/\l
1— e~ A2+ As7)
<1 _ (A2t A3(r+1))
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This quotient allows us to understand the influence
of the parameters model. Parameter \; is a measure
of the velocity of growth of P(r,¢,) when r increases.
Parameter \; is related to the value of the estimator
at very low values of r (including r = 1). Parameter
A3 measures the maximum likelihood limit that our
estimator will reach. Finally, parameter \4 is related
to a multiplicative factor (independent of r). This pa-
rameter will affect the probability mass of unobserved
events. If we model unobserved events probability as

N,
P(QOO) = QOCO =1- ZqTCT‘?

r=1

an increase of the parameter A4 will decrease ¢,, and
as a consequence P(gg), the probability of unobserved
events will also grow.

Another advantage of our estimator is that it veri-
fies two desired requirements for an estimator (Ney et
al., 1995) ¢, <r/N, and ¢q,—1 < g, Vr. The second re-
quirement is easily seen from (16). To verify the first
requirement we have found that our estimator satisfies
the following condition that is equivalent to ¢, < r/N
which is verified by our estimator

— A4

- A1+ 2)\3)\2€_>\2 -1 1 e X
) s <t

Finally, if we make a series expansion of expression
(16) and we take the linear term, also making a con-
venient choice of parameters A1, As,A3 and A4, Ney
discounting estimators (Ney et al., 1995) results as a
special case of the maximum entropy Good-Turing es-
timator

IV. EXPERIMENTAL RESULTS
A. Data description

Experiments were performed on three corpora: an En-
glish database, switchboard phase one, and two Span-
ish databases, Latino 40 (available from LDC) and
Latin-American Spanish database collected by SRI In-
ternational (Bratt et al., 1998). We also used text
extracted from newspapers. We performed perplexity
measurements using the whole databases, and N-best
re-scoring using switchboard corpus. We used bi-gram
models with Latino40 corpus and tri-gram models with
switchboard and Latin-American Spanish databases.
The text was split in three classes

e Text A: Consists of text taken from Latino40
transcriptions, we used 32k words for training
and 8k words for testing.

e Text B: Consists of text taken from Latin-
American Spanish database transcriptions and
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newspapers texts. Combining both classes of
text we used 752k words for training, and 33k
words for testing.

e Text C: Consists of 3M words taken from switch-
board phase one transcriptions used for training,
and 59k words taken from HUB-5 2001 evalua-
tion set transcriptions used for testing.

B. Results

Perplexities measurements were performed over classi-
cal Good-Turing estimator (CGT) (Good, 1953), Katz
estimator (KATZ) (Katz, 1987), Absolute discount-
ing (ADE) and linear discounting (LDE) estimators
(Ney et al., 1995) and Maximum entropy Good-Turing
(MEGT). Results can be shown in table 1.

Estimator | Text A Text B Text C
(bigram) | (trigram) | (trigram)
CGT 219 739 534
ADE 149 251 160
LDE 138 693 176
KATZ 156 232 155
MEGT 134 218 146

Table 1: Perplezities of selected estimators with differ-
ent vocabulary

Finally we performed N-best re-scoring over 5895
sentences corresponding to the HUB-5 2001 test set.
We re-scored 2000-best hypothesis performed by The
SRI DECIPHER(TM) speaker-independent continu-
ous speech recognition system at SRI International.
Results are shown in table 2

| estimator | wer \
BASELINE 31.8
KATZ | 315 (0.9%)
MEGT | 30.7 (3.4%)

Table 2: WER after re-scoring using Katz and MEGT
estimators.

C. Discussion

Table 1 shows that the maximum entropy method re-
ports an improvement in terms of perplexity that is
superior to the rest of the estimators. It is interest-
ing to observe that, improvement is performed over
all three text corpora. This is an important difference
with respect to the other estimators. For example the
Katz estimator has lower perplexity for texts B and C
than for text A.

Table 2 shows results on N-best re scoring over the
switchboard corpus in terms of WER. Only the Katz
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estimator gave a small improvement. The other esti-
mators were not included because they did not de-
crease the baseline WER. We can see a significant
improvement concerning the baseline of 3.4% in our
maximum entropy Good-Turing estimator. We could
expect a greater increase if we used maximum entropy
estimator in a n-gram model on a ASR task.

V. CONCLUSIONS

Using a maximum entropy method and assuming a dy-
namic model for language production, we have found a
Good-Turing like estimator which requires neither the
smoothing nor the empirical adjustments which are
necessary in the classical Good-Turing estimator. Pa-
rameters defining our model are determined using the
well known IIS algorithm. We have also shown that
our new estimator verifies both requirements desired
in language estimators ¢, < r/N, and ¢,—1 < ¢, Vr.
Finally, we have shown that our estimator contains the
Ney discounting estimator as a particular case.

Experimental results show that the maximum en-
tropy method performs better than all others estima-
tors for the three classes of text corpora considered.
We also tested our estimator in a 2000 hypothesis
N-best re scoring over switchboard corpus obtaining
decrements in the WER . of 3.4% with respect to the
baseline.
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