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Abstract−− This work deals with an ill-posed in-

verse problem in which a distribution function, f(x), 
is estimated from two independent sets of non-
negative relative measurements. Each measurement 
set is modeled through a Fredholm equation of the 
first kind, with unknown parameters in its kernel. 
While the first measurement model only includes a 
scalar unknown parameter, p0, the second model 
contains a vector of unknown parameters, p. The 
proposed method consists of the following steps: (i) 
to obtain a first estimate of f(x) and p0 from the first 
measurement; (ii) to estimate the vector p from the 
second measurement and the previous estimate of 
f(x); and (iii) to estimate an improved f(x) by simul-
taneously using both measurements and the esti-
mated parameters in a unique combined problem. 
The proposed algorithm is evaluated through a nu-
merical example for simultaneously estimating the 
particle size distribution and the refractive index of a 
polymer latex, from combined measurements of elas-
tic light scattering and turbidity. 
Keywords−− Inverse problem; parameter estima-

tion; combined measurements; ELS; Turbidity. 

I. INTRODUCTION 
Inverse problems are frequently present in most of the 
measurement systems that include non-ideal devices, or 
when only indirect measurements are available. Indirect 
measurements arise when a physical property of a sam-
ple, f(x), must be estimated from the measurement of a 
different physical quantity, g(y). The estimation prob-
lem consists in finding f(x) from g(y), on the basis of 
theoretical measurement models that relate these vari-
ables. Often, this kind of inverse problem is numerically 
‘ill-conditioned’; i.e., small changes in the measured 
variable (for example, originated by different noise lev-
els), may lead to large changes in the estimated vari-
ables (Kirsch, 1996). As a consequence, simulation of 
different f(x) can generate almost the same g(y), thus 
complicating the estimation problem. 

Regularization methods replace the unstable original 
problem by a similar one, but stable or well-
conditioned; and they usually include adjustable pa-
rameters, a priori knowledge of the solution, or some 
smoothness condition (Kirsch, 1996; Engl et al., 1996; 

Hansen, 1994). Often, when a regularization condition 
is included, then several solutions can be attained. Typi-
cally, a trade-off solution must be selected: (i) a strong 
regularization modifies the original problem, with the 
advantage of leading to a smooth solution; and (ii) a 
weak regularization keeps the original problem almost 
unchanged, but can originate oscillating solutions. In 
general, all regularization method includes (at least) an 
adjustable parameter, which is usually selected by the 
user on the basis of the obtained solutions. Alterna-
tively, the regularization parameter can be automatically 
estimated through some numerical methods, as for ex-
ample the Generalized Cross Validation (GCV) tech-
nique (Golub et al., 1979), or the L-curve technique 
(Hansen, 1994). 

Combination of two or more independent sets of 
measurements (e.g., obtained from two different equip-
ments), allows increasing the information content in the 
problem, and can contribute to improve the quality of 
the estimates. The numerical treatment of the combined 
problem is simple when the indirect measurements are 
absolute (i.e., when all proportionality constants are 
known), and the involved mathematical models are lin-
ear (Eliçabe and Frontini, 1996). However, if the model 
related to the measured physical quantities includes un-
known proportionality constants, then the measurements 
are relative, and a ‘normalization’ parameter is required 
to adequately combine all sets of measurements in a 
unique problem (Frontini and Eliçabe, 2000). In such 
cases, the resulting combined problem may be nonlin-
ear, and some alternative algorithms have been pro-
posed to solve it. For example, Frontini and Eliçabe 
(2000) developed a method to estimate in a single step 
f(x) and the normalization parameter. Alternatively, 
Vega et al. (2001) and Vega et al. (2003), proposed a 
"two-step" procedure that involves the resolution of two 
linear estimation problems. In the first step, the nor-
malization parameter is estimated on the basis of con-
ciliating the two independent measurements; and in the 
second step, the sought f(x) is obtained after numerical 
inversion of the combined problem. 

The estimation problem becomes more difficult 
when the mathematical model is not exactly known, or 
when some parameters are unknown. Typically, several 
linear inverse problems with unknown kernel parame-
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ters, may be described through the following Fredholm 
equation of the first kind: 

 ∫
∞

=
0
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where f(x) is an unknown function of the distributed 
variable, x; )  represents the indirect measurement of 
f(x), at each measurement point, y; the kernel A contains 
a set of unknown parameters, p(y); and k is a propor-
tionality constant that adequately scales the model pre-
dictions to the real measurements. The constant k in-
cludes the detector gain and it is often unknown. More-
over, sometimes such constant may depend on the un-
known f(x) distribution (Vega et al., 2003). In practice, 
both continuous variables (x and y) of Eq. (1) are lim-
ited to a finite range of values. 

(yg

In the case of only one unknown parameter in the 
kernel (i.e., when p = p0 = constant), the estimation of 
f(x) and p0 from Eq. (1) has already been considered 
(Frontini and Fernández Berdaguer, 2003). In this work, 
a more general case when the unknown parameters de-
pend on the independent measurement variable [i.e., 
p = p(y)], will be investigated. The next section details 
the problem statement and proposes a method for esti-
mating both f(x) and p(y). In section III, a numerical 
example is considered to evaluate the proposed method. 
The example simulates the estimation of the particle 
size distributions (PSD) of a polymer latex from turbid-
ity (T) and elastic light scattering (ELS) measurements, 
when the refractive index of the polymer particles is 
unknown. 

II. THEORY 

A. Formulation of the Discrete Combined Problem 
Assume that each independent variable (x and y) of Eq. 
(1) is discretized at regular intervals ∆x and ∆y, respec-
tively. Then, the discrete version of Eq. (1) can be inter-
preted as a set of ‘m’ algebraic equations (one for each y 
value), in ‘n’ unknowns (one for each x value). Thus, 
Eq. (1) can be written in the following vector equation: 

 fpAg )(k=  (2) 

where the vector g (m×1) contains the measurements; 
the matrix A (m×n) is theoretically known, but it has ‘r’ 
unknown parameters represented by the vector p (r×1); 
and the vector f (n×1) represents the unknown ordinates 
of the distribution. Usually, n<m and r≤m. 

Consider two different sets of measurements g1(y1) 
and g2(y2), obtained from two different equipments. The 
following is assumed: (1) both measurements are non-
negative; (2) in measurement g1(y1), the kernel A1 has 
only one unknown parameter, p0; and (3) in measure-
ment g2(y2), the kernel A2 has one unknown parameter 
for each value of the independent variable y2, p(y2). 
Then, the discrete equations for the measurements are 
represented by: 
 fAg )( 0111 pk=  (3.a) 

 fpAg )(222 k=  (3.b) 

where k1 and k2 are normally unknown proportionality 
constants. Eqs. (3) can be rewritten as: 
 r011 )( fAg p=  (4.a) 

    r22 )( fpAg K= (4.b) 

where fr = k1 f, and K = k2/k1 is the ‘normalization’ pa-
rameter defined in Vega et al. (2001), and Vega et al. 
(2003). Vector and matrix dimensions in Eqs. (4) are: 
g1 (m1×1), g2 (m2×1), A1 (m1×n), A2 (m2×n), fr (n×1), 
and p (m2×1). 

Equations (4) can be combined in a unique expres-
sion, as follows: 
 r0 ),,( fpAg pK=  (5) 
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where g [(m1+m2)×1] is the vector of combined meas-
urements; A [(m1+m2)×n] is the combined matrix; and 
g1,max, g2,max are the maximum values of g1 and g2, re-
spectively. The scaling by g1,max, g2,max in Eqs. (6) is 
used to treat the inversion problem of Eq. (5) as if the 
noise variances were the same for both sets of meas-
urements (Eliçabe and Frontini, 1996). 

The problem to be solved consists in finding K, p0, 
p, and fr, from the measurements g1 and g2 (although 
distribution f is the original unknown, the estimation of 
fr is thoroughly equivalent because f and fr are propor-
tional each other through the scaling factor k1). In prin-
ciple, all unknowns could be estimated through some 
numerical methods (e.g., a nonlinear optimization rou-
tine) applied to the nonlinear system of Eqs. (5, 6). In 
practice, however, such possibility is discarded because 
most problems are extremely ill-posed, and solutions 
obtained through standard methods would be rather 
poor. Alternatively, specific numerical methods for ill-
posed problems should be applied. Even though a spe-
cific inversion method is available, only Eq. (4.a) could 
be solved. In fact, Eq. (4.a) can be seen as a set of m1 
nonlinear algebraic equations that includes n+1 ( < m1) 
unknowns; whereas Eq. (4.b) expands in a set of m2 
nonlinear algebraic equations in n+m2+1 ( > m2) un-
knowns. Thus, Eq. (4.b) could only be solved if an esti-
mate of fr or p is available. 
B. Estimation of the unknown parameters ‘p’ 

Assume that an acceptable estimate of fr ( f ) is avail-
able. Since vector p affects g

r
ˆ

2, Eq. (4.b) can be used to 
calculate p, provided that K is known. Even when K is 
unknown, Eq. (4.b) allows estimating p in the two fol-
lowing cases: 
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Case 1: for any p1 ≠ p, then Α , 
regardless of the selected scalar constant q. In such case, 
p(y

r12r2 fpΑfp )()( q≠

2) mainly affects the shape of g2(y2), and K can be 
eliminated through an adequate normalization of Eq. 
(4.b), as follows: 

 
1
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2
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where 1.  stands for the standard 1-norm of a vector 

(i.e., ∑= ia1a ). Equation (7) expands in a set of m2 
nonlinear algebraic equations in m2 unknowns (the 
components of p).  
Case 2: (i) for some p1 ≠ p, there is a scalar constant q 
that verifies: Α ; and (ii) pr12r2 fpΑfp )()( q≅ 0 is a 
known component of p(y2), i.e.: at a given y2 = y2,0, 
p0 = p(y2,0). In such case, p(y2) mainly affects the magni-
tude (but not the shape) of g2(y2). In this case, a first 
estimate of K can be calculated from Eq. (4.b) evaluated 
at y2 = y2,0, yielding:  
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Then, Eq. (8) is introduced into Eq. (4.b), and  can be 
obtained by solving: 

p̂
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Equation (9) can be directly solved for the remaining 
m2-1 unknown components of p. Both Eq. (7) and Eq. 
(9) can be solved through a classical estimation algo-
rithm for a set of nonlinear algebraic equations, such as 
the Gauss-Newton or the Levenberg-Marquard methods 
(see for example, Dennis, 1977; and Moré, 1977).  
C. The Proposed Estimation Method 
To estimate all unknowns, the following four−steps pro-
cedure is proposed. 
Step 0 (initial conditions). Solve the inverse problem of 
Eq. (4.a), to find a first estimate of fr ( f ), and the es-

timate of p
0,

ˆ
r

0 ( ). Only the measurement g0p̂ 1 is required. 
The method given by Frontini and Fernández Berdaguer 
(2003) can be applied.  
Step 1 (estimate of p). Obtain an estimate of p ( p ), by 
solving Eq. (7) in Case 1, or Eq. (9) in Case 2. The first 
estimate of f

ˆ

r, and the measurement g2 are required. 
Step 2 (estimate of K). Estimate the normalization pa-
rameter K that conciliates Eqs. (4), on the basis of the p 
and fr estimates given in the previous steps. The method 
proposed by Vega et al. (2003) can be applied, which 
provides the following solution: 

 )~~/()~(ˆ TT
2222 gggg=K  (10) 

with ~ . 0,
ˆ)ˆ( r22 fpAg =

Step 3 (estimate of fr). Estimate an improved fr distribu-
tion ( ), by numerically inverting Eqs. (5, 6), with the 
estimates of p

rf̂
0, p, and K given in the previous steps.  

The proposed numeric method is schematically rep-
resented in Fig. 1. Notice that: (i) each step can be se-
quentially implemented and solved; (ii) in practice, the 
main outputs of this algorithm are the estimates of p and 
fr; (iii) only one of Eq. (7) or Eq. (9) must be imple-
mented in Step 1, depending on the corresponding Case; 
and (iv) for inverting Eqs. (5, 6), the estimate of p0 is 
only used in Case 1 if p0 does not belong to vector p; 
whereas in Case 2, p0 is directly included in the estimate 
of vector p.  

 

Eq. (4.a)
f̂ r,0

p̂ 0Step 0

Eq. (7)

Step 1

Eq. (10)

Step 2

Eq. (9)

Case 1

Case 2

p̂ 

Measurement #1 Measurement #2

g1 g2

Eqs. (5,6)

Step 3

^K

f̂ r

 

Figure 1. The proposed calculation scheme. 

III. NUMERICAL EXAMPLE 
To evaluate the proposed estimation method, a simu-
lated numerical example is presented. “Synthetic” or 
simulated examples are ideal for investigating data 
treatment procedures, because the solutions are a priori 
known. The basic example already investigated by Vega 
et al. (2003) shall be analyzed, but now under the as-
sumption of several unknown parameters in the mathe-
matical model. 

Consider a polymer latex sample, which basically 
consists of spherical particles suspended in an aqueous 
medium. Typically, the particle diameters (D) of a latex 
ranges from several nanometers to some micrometers, 
with concentrations of c.a. 109 part./cm3. Since particles 
differ in their sizes, a whole size distribution is present 
in the sample. In general, the number PSD, f(D), repre-
sents the amount of particles present in a   given interval 
of diameters (D + dD).  

The analysis of a polystyrene (PS) polymer latex 
with water as the dispersion medium, and a global con-
centration of 5×109 part/cm3 is investigated. The a pri-
ori known (discrete and bimodal) PSD consists of 56 
evenly spaced points in the diameter range [50, 600] 
nm. It was obtained by combining two normal-
logarithmic distributions, with mean diameters of 200 
and 400 nm, standard deviation of 0.15 and 0.075, and 
number fractions of 0.85 and 0.15, respectively.  
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Two experiments based on ELS and T measure-
ments are simulated. In the ELS experiment, a mono-
cromatic light beam (of wavelength λ0 = 632.8 nm) falls 
onto the diluted particle sample, and a light intensity 
Is(θ) is scattered by the particles at each angle, θ. In 
ELS, the measurement is the intensity light ratio 
I(θ) = Is(θ) / Is(θ0), with respect to a reference angle, θ0; 
and it can be calculated using the Mie theory, as follows 
(Bohren and Huffman, 1983): 

maxmin

0 00

                                          

 )())(;,()(/)()(

θθθ

λθθθθ

<<

== ∫
∞ dDDfnDCkIII pIIss  (11) 

where CI(θ, D) represents the light intensity scattered by 
a particle of diameter D at the angle θ, and it is calcu-
lated through the Mie scattering theory (Bohren and 
Huffman, 1983); kI is an unknown constant; and np(λ0) 
[= np,0 = 1.5729] represents the particle refractive index 
at the experiment wavelength. A range of measurement 
angles [θmin,, θmax] = [12°, 150°] is considered, with 
measurements taken each 2°. The relative measurements 
I(θ) are commonly reported in angular light scattering 
determinations (Glatter et al., 1985). 

In the T experiment, Ii(λ) is the intensity at the light 
source, It(λ) is the intensity at the light detector, and λ is 
the wavelength of the incident light in vacuum. The 
measurement is the turbidity spectrum, τ(λ), which is 
defined as the light intensity attenuation experienced by 
the beam of light traversing the diluted sample; i. e., 
(λ) = ln[Iτ

]

i(λ) / It(λ)]. For spherical particles, τ(λ) is 
related to f(D) according to Mie theory (Bohren and 
Huffman, 1983), as follows: 

[ ] == )(/)(ln)( λλλτ ti II  

∫
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maxmin λλλ <<  

(12) 

where Qext is the extinction efficiency of a particle of 
diameter D at λ; kτ is a constant that depends on the 
optical path length; and np(λ) represents the particle 
refractive index at each λ. Upper and lower limits for λ 
[λmin, λmax] = [306, 701] nm are also considered, with 
measurements taken each 5 nm. 

For a given system, kτ could be in principle exactly 
calculated as kτ = π /4, where l  is the optical path 
length (basically, the thickness of the cell). This is not 
the case for k

l

CI

I, however, that depends on the PSD 
through the following theoretical relationship (Vega et 

al., 2003): . ∫
∞− =
0 0

1 )(,,( dDDfnDk pI θ 0, )

Consider now the discrete PSD (with the diameter 
axis sampled each 10 nm), described by: 

[ ]T
n21 )()()( DfDfDf L=f  (13) 

Assume the ELS and T measurements respectively rep-
resented by the following two vectors: 

[ T
m211 )()()(

1
θθθ III L=g  (14.a) 

[ ]T
m212 )()()(

2
λτλτλτ L=g  (14.b) 

with kI = k1 = 2.0252×10-10, and kτ = k2 = 0.19635 cm; 
thus K = 9.6953×108 cm. 

After calculating the discrete version of Eqs. (11) 
and (12), a problem thoroughly equivalent to that of 
Eqs. (3) is obtained. The unknown parameters are np(λ); 
and np(λ0) is one of the np(λ), because λ0 belongs to the 
selected range of λ.  

Measurements of ELS and T were simulated accord-
ing to Eqs. (11) and (12). A random Gaussian noise of 
standard deviation equal to 0.1% of the maximum of 
each measurement was added. Both measurements are 
represented in Fig. 2 as continuous functions (thick 
trace), although they have a finite number of points (m1 
and m2) indicated in the figures. To quantify the effects 
of the parameters on the measurements, uncertainties of 
±1% around the true values of np,0 and np(λ) were simu-
lated, and the corresponding measurements are repre-
sented in thin traces in Fig. 2. The simulation results 
indicate that a constant error in np(λ) mainly modifies 
the magnitude of τ(λ), with a slight effect on its shape. 
Thus, the parameter estimation problem corresponds to 
Case 2, and np(λ) should be estimated through Eq. (9). 
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Figure 2. Sensitivity of: (a) ELS measurement [to ±1% 
in np,0]; (b) T measurement [to ±1% in np(λ)]. 

Throughout this work, the Phillips-Tikhonov regu-
larization method was applied to solve all inversion 
problems. In that method, if A is an ill-conditioned ma-
trix, a regularized pseudo-inverse of A may be com-
puted through: , where H is 
a selected regularization matrix, and α is the adjustable 
regularization parameter (Phillips, 1962; Tikhonov and 
Arsenin, 1977).  

T1T]1[ )( AHAAA −− += α
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The algorithm detailed in the previous section was 
applied. The main simulation results are presented in 
Fig. 3. From the ELS measurement, I(θ), the method 
developed by Frontini and Fernández Berdaguer (2003) 
was applied to solve the Step 0 of the algorithm. The 
following was obtained:  = 1.5757, and the first 

PSD estimate (f

0,ˆpn

ˆpn

r,0), indicated as  in Fig. 3. De-

spite  clearly differs from the true PSD, Eq. (11) 

is fulfilled by the estimates  and , thus re-
vealing the ill-posed characteristic of the inverse prob-
lem. Also, the first estimate of the normalization pa-
rameter (  = 9.6881×10

)(0̂ Df

f̂

)(0̂ Df

0K̂

0, )(0 D

6) was obtained after evaluat-
ing Eq. (8) at λ0 = 632.8 nm. 
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Figure 3. (a) The true refractive index, np(λ), and its 
estimate, . (b) The true PSD, f(D); and its esti-

mates:  , and  

)(ˆ λpn

)(0 Df ,ˆ )(ˆ Df )(ˆ* Df .

Based on  and , Eq. (9) was used to es-

timate n

)(0̂ Df

(ˆ Df

0,ˆpn

)(λp

p(λ); and from Eq. (10),  = 9.6543×10K̂ 6 was 
obtained. Then, Eqs. (5, 6) were inverted to obtain the 
estimated PSD, . These estimates are represented 
in Fig. 3. For comparison, the PSD estimate when all 
parameters are exactly known is also represented in Fig. 
3 as . This estimate was obtained by solving Eqs. 
(5, 6); i.e., Step 3 of the algorithm. Notice that the re-
fractive index estimate, , resulted slightly higher 
than the true value, as a consequence of the erroneous 

, but the shape of the true n

)

)(ˆ* Df

n̂

0,ˆ pn p(λ) is closely recuper-
ated. Thus, if a better initial estimate of np,0 were avail-
able, then a practically exact estimation of the refractive 
index function would be obtained. The accuracy of the 

estimated np(λ) ranged from 0.15 % to 0.35 % with re-
spect to the true value. 

Due to the biased , the solution of the com-
bined problem in Step 3 originates an erroneous K esti-
mate, even worse than the initial estimate, . How-

ever, the PSD estimate  resulted somewhat better 

than the original .  

)(ˆ λpn

)(ˆ Df

)

0K̂

(0̂ Df
To evaluate the quality of the PSD estimates, the fol-

lowing performance indexes were defined: 
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where  is the weight average diameter of the 
PSD, that can be calculated as: 

)( fDw
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The errors corresponding to the three PSD estimates are 
indicated in Table 1. The error of the initial estimate is 
relatively high mainly because the first peak of  
resulted shifted with respect to the true PSD. On the 
other hand, the errors of  and  are practi-
cally equal, despite n

)(0̂ Df

)(ˆ* Df )(ˆ Df

p(λ) was not exactly estimated. In 
all cases, however, an accurate mean diameter was ob-
tained, with relative errors lower than 1%. 

Table 1. PSD estimation errors [Dw(f) = 325.0 nm] 

 )(0̂ Df  ) (ˆ* Df(ˆ Df  )  

fE  0.1469 0.0704 0.0746 

wDE  + 0.6 % − 0.6 % − 0.9 % 
 

Although the proposed algorithm only considers the 
sequential steps above commented, some additional 
simulations were implemented to explore a further im-
prove of the estimates. The obtained  was used to 
recalculate n

)(ˆ λpn

p,0, but no meaningful change in its value 
was observed. Then,  was injected into Eq. (9) 

instead of ; but the new estimate of  re-
sulted practically coincident with its original estimate. 
Thus, at least for this specific problem, iterations do not 
allow an improvement of the solution.  

)(ˆ Df

)(0̂ Df )(λpn
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IV. CONCLUSIONS 
A numerical method for solving an ill-conditioned in-
verse problem with unknown kernel parameters was 
presented. The algorithm assumes two available sets of 
indirect measurements to be known, and it consists of 
four sequential steps that are based on the mathematical 
model of the measurements. While the first measure-
ment set is unaffected by the unknown kernel parame-
ters, each measurement point of the second set directly 
depends on a different unknown parameter. Also, the 
method considers the more general case when the meas-
urements are not absolute, i.e. when unknown propor-
tionality constants are included. 

If the problem were well conditioned, then no uncer-
tainty in Step 0 would be present; and after Step 1 the 
problem should become completely solved. This is not 
the case for ill-conditioned problems, however. In such 
cases, the outputs of Step 0 can be erroneous, and there-
fore Step 1 will not provide exact estimates of the pa-
rameters. The inclusion of Steps 2 and 3 in the algo-
rithm allows increasing the information content in the 
problem, by combining the measurements.  

The algorithm can be applied in the more general 
case of indirect measurements, and when typically un-
known proportionality constants are present. If such 
constants were a priori well-known, Eq. (9) should be 
replaced by Eq. (4.b), and Eq. (10) should be discarded. 

Each step of the proposed algorithm can be sequen-
tially implemented. However, the estimation of K after 
Step 2 should coincide with its initial estimate given by 
Eq. (8). Any detected differences between those values 
could in principle be used to implement an iterative pro-
cedure that allows improving the quality of the esti-
mates. Such methodology should be further investigated 
to establish conditions that guarantee convergence of 
the iterations.  

Extension of this algorithm for including measure-
ments of other physical variables, or for incorporating a 
third set of measurements, seems to be straightforward. 
Inclusion of a new measurement provided by a different 
device will require the development of its corresponding 
mathematical model. Inclusion of a third measurement 
set will require the estimation of two normalization pa-
rameters.  

The performance of the algorithm was successfully 
evaluated through a numerical example. The simulated 
example is technologically important, because the parti-
cle refractive index is often unknown. Moreover, in 
some cases, the estimation of the particle refractive in-
dex may be the key problem to be solved, regardless of 
the PSD, and to this unique effect, the proposed algo-
rithm may also be applied. 
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