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Abstract— In this paper we present a non-
linear infinite impulse response (NIIR) model
structure for black-box identification of non-
linear dynamic systems. The proposed model
structure allows the implementation of an iden-
tification algorithm in which the degrees of free-
dom of the Nonlinear Output Error (NOE)
model can be easily increased or decreased dur-
ing the identification process. This property is
very attractive to find the appropriate NIIR
model, avoiding overfitting. This is done us-
ing High Level Canonical Piecewise Linear (HL
CPWL) functions with an increasing (decreas-
ing) grid division. Therefore, the algorithm may
start using a linear estimation of the model. The
parameters of the HL CPWL functions are up-
dated using a simple algorithm based on a mod-
ified steepest descent method with an indepen-
dently adaptive learning rate.

Keywords— Nonlinear identification, NIIR
model, PWL functions.

I. INTRODUCTION

The main problem in system identification is to find a
good model structure. If it allows to go from a linear
model to a nonlinear one during the system identifica-
tion process, it makes this problem much harder since
the set of nonlinear models is richer than the set of lin-
ear ones (Sjöberg and Ngia, 1998). If a nonlinear finite
impulse (NFIR) structure is used, the model order eval-
uation problem may be effectively addressed by using
regularization theory (Poggio and Girosi, 1990). This is
due to the reduction of computational complexity when
using NFIR model structures since they allow consider-
ing more parameters than needed in the identification
algorithm and reducing some of them to zero through
the regularization process. If a Wiener like model struc-
ture is used, an aggregation approach can be easily im-
plemented as in the Korenberg algorithm (Korenberg
and Paarmann, 1991). In the Neural Networks litera-
ture there exist growing and pruning methods to deal
with the size of a Neural Network during the train-
ing process (Haykin, 1994). If NIIR model structures

are used, the problem becomes much more difficult due
to the mathematical complexity and the computational
cost involved in the identification process.

In this paper we present an NIIR model structure
that uses High Level Canonical Piecewise Linear (HL
CPWL) functions to develop a nonlinear output error
(NOE) identification algorithm. The main feature of
this algorithm is its simple mechanism for increasing
or decreasing the model approximation capabilities, re-
taining the approximation achieved when moving from
one grid division to another. In this way, it is possible
to start the identification with a linear approximation
and then increase the model degree of freedom progres-
sively in order to reduce the mismatch up to an accept-
able value. On the other hand, a reduced model may
be evaluated to alleviate overfitting.

The paper is organized as follows. In Section II, we
present the identification algorithm and analyze its ad-
vantages and drawbacks; in Section III we develop an
example of the proposed methodology and finally, in
Section IV we draw some conclusions and comments
about future work. In order to be self-contained, in
Appendix A we give a brief introduction to HL CPWL
functions and their main properties.

II. CPWL IIR IDENTIFICATION

A. From linear to nonlinear

Let us suppose that we want to identify a system given
an output vector y corresponding to an input u. If ỹ
is the estimated vector, let us define

uk = [u1 u2 . . .uk] (1)
ỹk = [ỹ1 ỹ2 . . . ỹk]. (2)

It is well known (see (Sjöberg et al., 1995), for exam-
ple) that a general black-box model is given by

ỹk = f
(
uk, ỹk−1, θ

)

= f (ϕk, θ) , (3)

where ϕk = ϕ
(
uk, ỹk−1

)
is the regression vector and θ

is the vector of parameters associated to the function f
used to approximate the system’s nonlinearity. There-
fore, the model is defined once f and the regression
vector ϕk are chosen.
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Following this idea, we propose a regression vector
given by

ϕk = [uk uk−1 . . .uk−M , ỹk−1 . . . ỹk−N ]
= [uk−M , ỹk−N ], (4)

with M, N fixed.
Then our model is defined as follows

ỹk = fpwl (uk . . . ,uk−M , ỹk−1, . . . , ỹk−N ) (5)
= fpwl

(
[uk−M , ỹk−N ]

)
,

where the function fpwl used to approximate the non-
linearity of the model is a HL CPWL function defined,
as in Eq. (19), by

fpwl

(
[uk−M , ỹk−N ]

)
= cΛ

(
[uk−M , ỹk−N ]

)
, (6)

and ỹr, r = 0, . . . , N are initialization values. This
model is pictured in Fig. 1.
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Figure 1. NIIR HL CPWL model.

The domain of the function fpwl is a compact set
S ⊂ Rm,m = M + N + 1, defined as follows

S = {x ∈ Rm : ai ≤ xi ≤ ai + δ ndiv, i = 1, . . . , m} ,
(7)

being δ the fixed grid size and ndiv the number of di-
visions. So each interval [ai, ai + δ ndiv] of the domain
S defined by Eq. (7) is divided into ndiv number of
subintervals of equal length δ. As a consequence, when
the grid size δ decreases, the number of divisions ndiv
increases.

According to Appendix A, the set defined by Eq. (7)
is partitioned into polyhedral regions using a simplicial
boundary configuration. The fpwl constructed using

the methodology described in Appendix A is linear on
each simplex and continuous on the adjacent bound-
aries of the simplices.

In the methodology proposed above, it is possible to
start the identification process with a linear approxima-
tion to the system. Once the parameters are optimized,
the number of divisions ndiv may be increased in or-
der to obtain a better piecewise linear approximation.
On the other way, it is possible to go from a fine ap-
proximation to a coarser one by decreasing the value of
ndiv. This modeling facility not only allows to obtain a
better quality piecewise linear approximation but also
makes it possible to prevent overfitting.

Therefore, when using HL CPWL functions as non-
linear approximators, the parameter ndiv gives a nat-
ural ordering of the model since it allows to go from a
simple model to a more complex one. The advantages
of using this kind of models was pointed out in (Sjöberg
and Ngia, 1998, Ch. 1).

In Fig. 2 (a) and (b) the idea of approximating a
nonlinear quadratic function using HL CPWL functions
with increasing values of ndiv (ndiv = 2, 4) is pictured.
It can be observed that as long as the value of ndiv in-
creases, the HL CPWL function approximates the non-
linear one more accurately. Also, on the XY plane it
can be seen the simplices determined on the region S
by the different number of divisions ndiv.

(a)

(b)

Figure 2. HL CPWL approximation for (a) ndiv = 2
and (b) ndiv = 4.

B. Identification algorithm

Let (uk,yk)1≤k≤L be the iput/output vectors and
cd−1,∗ the (ndiv + 1)M+N+1-dimensional vector of pa-
rameters for a given number of divisions ndiv =
2d−1, d ∈ N (if d = 1 we have a linear approxima-
tion). For ndiv = 2d we find a new (ndiv + 1)M+N+1-
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dimensional vector of parameters using a least square
approximation technique on the new set of vertices of
the region S and note it cd,r, r = 0.

Now we update the vector of parameters cd+1,r, r ≥ 1
using an iterative algorithm that minimizes the square
error Er, r ≥ 1 between the system y and the estimate
ỹ at iteration r, r ≥ 1. The expression of this error in
the variables cd+1,r can be written using Eq. (6), as
follows

Er =
1
2
‖y − ỹ‖2

=
1
2

L∑

i=1

[
yi − cd,r−1Λ

(
[ui−M , ỹi−N ]

)]2
. (8)

In order to minimize Eq. (8) we use the following
modified steepest-descent algorithm. The expression of
the components of the gradient vector ∇Er needed are
given by

∇Er
j = −

L∑

i=1

[
yi − cd,r−1Λ

(
[ui−M , ỹi−N ]

)] ·

· (Λ (
[ui−M , ỹi−N ]

))
j
, (9)

and the vector of parameters cd,r is updated using the
formula

cd,r ← cd,r−1 + ∆cd,r, (10)

where each component of ∆cd,r is adaptively updated
using the following algorithm

∆cd,r
j = −∇Er

j lr
r
j + ∆cd,r−1

j µ, (11)

where lrr are modified as described below and the mo-
mentum µ ∈ R is fixed.

lrr
j =

(
lrr−1

j inc if sign
�∇Er

j

�
= sign

�∇Er−1
j

�
lrr−1

j dec if sign
�∇Er

j

� 6= sign
�∇Er−1

j

�
,

(12)

inc > 1 and dec < 1 being real, fixed, positive constants.
From the formulation, the local convergence of the

method to a minimum immediately follows. The drawback
is that the achieved minimum may not be a global mini-
mum but a local one. Also, the high number of parameters
generated by the HL CPWL approximation when the num-
ber of divisions of the region S increases, constitutes now a
limitation of the method.

In spite of this, the advantages of using HL CPWL func-
tions enumerated below make it worth to define this identi-
fication structure.

1. The computation of the gradient is linear in the para-
meters and straight-forward since the approximation
has already been computed in the previous step.

2. The canonical HL CPWL approximation uses the
least number of parameters in the sense that any other
PWL approximation has greater or equal number of
parameters (see (Julián et al., 1999; Julián, 1999)).

3. A very efficient method for computing the HL CPWL
approximation (see (Julián et al., 1999; Julián, 1999,
Julián et al., 2000)) has been implemented in the
MATLAB environment for both HL CPWL and or-
thonormal HL CPWL functions (Julián, 2000).

III. EXAMPLE

We consider the well known nonlinear system due to Naren-
dra and Parthasarathy (Narendra and Parthasarathy, 1990)
given by

yk =
1

1 + y2
k−1

+ u3
k, (13)

with u a random signal with uniform distribution. Ac-
cording to the proposed methodology, the regressor was de-
fined with one input and one delayed output, i.e. ϕk =
[uk ỹk−1].

We first generated a linear ARX model of the system
given by Eq. (6). In Fig. 3 it is possible to see this linear
approximation in a PWL format.
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Figure 3. Linear approximation using HL CPWL represen-
tation.

In order to improve the model performance, we increased
the number of divisions to ndiv = 2 and optimized the pa-
rameters as described in Section IIB. Consequently, a new
set of HL CPWL functions was obtained (see Fig. 4). We
then repeated the process using ndiv = 4. As it can be
appreciated in Fig. 5, the approximation rapidly improves.

Finally, the number of division of S was increased to
ndiv = 8. The new HL CPWL approximation can be seen
in Fig. 6.

As can be appreciated, the approximation to the nonlin-
ear system quickly improves when the number of divisions
of the set S increases. This statement is clearly showed in
Fig. 7 and Fig. 8. In Fig. 7 we depicted the parameter op-
timization RMS error versus the number of iterations for
each number of divisions. As it can be appreciated, the de-
creasing rate is high each time the number of divisions is
augmented. On the other hand, in Fig. 8 we plotted the
approximation and validation errors (i.e. the error in data
used for approximation and the error in data not used for
approximation, respectively) for the ARX and the NIIR HL
CPWL models. As it can be clearly seen, there is a signif-
icant reduction of both, the approximation and validation
errors, as long as the number of divisions increase.

IV. CONCLUSIONS

In this paper a NOE identification algorithm based on HL
CPWL functions is presented. The main advantages of the
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Figure 4. NIIR HL CPWL approximation using ndiv = 2.
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Figure 5. NIIR HL CPWL approximation using ndiv = 4.

algorithm are the following. We can first mention that this
algorithm might be easily implemented in microelectronics
due to the efficient computation of the HL CPWL functions
and of the gradient. Secondly, we must point out the sim-
plicity of the mechanism for increasing or decreasing the
model degree of freedom, retaining the achieved model ap-
proximation.

The parameters of the HL CPWL for a given number of
divisions could be straightforwardly evaluated from the pre-
vious ones. This would avoid using the least square method-
ology, as mentioned in Section IIB. This is the focus of our
future work.

Furthermore, the potentials of our approach have been
illustrated with a simulation example.
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Figure 6. NIIR HL CPWL approximation using ndiv = 8.
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Figure 7. RMSE approximation error for the NIIR HL

CPWL models using ndiv = 2, 4, 8.

A HL CPWL FUNCTIONS

Definition A.1 A function f : S ⊂ Rm → Rn, where S is
a compact set, is PWL if and only if it satisfies the following

(i) The domain S is divided in a number of finite polyhedral

regions R(1), R(2), . . . , R(N) such that S = ∪N
i=1R

(i)
,

by a finite set of boundaries

H = {Hi ⊂ S, i = 1, 2, . . . , h}, (14)

such that each boundary is an (m− 1)-dimensional
hyperplane (or a subset of the hyperplane)

Hi = {x ∈ Rm : πi (x) = αT
i x− βi = 0}, (15)

where αi ∈ Rm and βi ∈ R for i = 1, 2, . . . , h and can-
not be covered by a (m− 2)-dimensional hyperplane 1.

1We say that a boundary is covered by an hyperplane H if and
only if B ⊂ H
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Figure 8. Approximation and validation errors for the

NIIR HL CPWL model.

(ii) f is represented by an affine mapping of the form

f (i) (x) = J(i)x + w(i), (16)

for any x ∈ R(i); J(i) ∈ Rn×m is the Jacobian of the
region R(i) and w(i) ∈ Rn.

(iii) f is continuous on any boundary between two adjacent
regions, i.e.

J(p)x + w(p) = J(q)x + w(q), (17)

for any x ∈ R
(p) ∩R

(q)
.

If S is defined as in Eq. (7), the space of all continu-
ous PWL mappings defined over the domain S partitioned
with a simplicial boundary configuration H is denoted by
PWLH [S] and it is a linear vector space with the sum and
multiplication of functions by a scalar defined as usual.

A basis for this space, constructed in (Julián et al., 1999)
by nesting absolute value functions, can be expressed in
vector form as

Λ =
h
Λ0T

, Λ1T

, . . . , ΛmT
iT

, (18)

where Λi is the vector containing the generating functions
defined in (Julián et al., 1999) with i nesting levels. Accord-
ingly, any fp ∈ PWLH [S] can be written as

fp (x) = cT Λ (x) , (19)

where c =
h
c0T

, c1T

, . . . , cmT
iT

, and every vector ci is a

parameter vector associated with the vector function Λi.
Then the HL CPWL functions defined on S uniformly

approximate any continuous function g : S 7→ R1. The HL
CPWL approximation to the nonlinear function g is defined
(cf. (Julián et al., 1999; Julián, 1999)) as the function fp ∈
PWLH [S] that satisfies

fpwl

�
vj
�

= g
�
vj
�

, (20)

vj being the vertices of the simplicial partition H of the
domain S. If g (·) is Lipschitz continuous with Lipschitz
constant L and the modeling error is defined as

ε = sup
x∈S

|fp (x)− g (x)| , (21)

then we have that
ε ≤ δL. (22)

In order to obtain an orthonormal basis, it is necessary
to define an inner product on PWLH [S]. If VS is the set of
vertices of S and f , g belong to PWLH [S], then

〈f, g〉 =
X
vi∈S

f (vi) g (vi) , (23)

defines an inner product and so the space PWLH [S] be-
comes a Hilbert space.

The new basis elements are linear combination of (18),
that is

Υ (x) = TΛ (x) , (24)

and the matrix T may be obtained using the Gram-Schmidt
procedure as given in (Julián et al., 2000).

Also, the HL CPWL functions of this class can uniformly
approximate any continuous function g : S 7→ R1. For find-
ing the required approximation, we use a routine of (Julián,
2000) that finds a vector of parameters c that is the so-
lution of the least square problem minx ‖Ax− b‖2, being
A = ΥT (X), X the input matrix and b the output to be
approximated in sparse format. In accordance with (Julián
et al., 2000), the HL CPWL approximation of the nonlin-
ear function g is defined as the function fp ∈ PWLH [S]
satisfying fpwl = Ac.
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