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Abstract  The analytical solution for a transversely 

isotropic linear elastic layer bonded to a rigid 

foundation and indented by a rigid cylinder or 

sphere was developed. This solution follows 

procedures used by others to solve contact problems 

of linear anisotropic materials. The solution can be 

used to find the stress distribution and the 

displacement field in anisotropic layers like articular 

cartilage. The solution was used to compare stresses 

and displacements in articular cartilage assuming 

two sets of engineering properties with different 

degrees of anisotropy. The results may support 

current research about the relation between impact 

loading on the articular cartilage and the 

development of osteoarthrosis. 
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I. INTRODUCTION 

Articular cartilage is the material covering the end of 
the bones inside the synovial joints. It has excelent me-
chanical properties to transmit loads and to allow rela-
tive movements without significant wear (Mow et al., 
1980). In some cases, articular cartilage begins to dete-
riorate and the underlying bone grows until direct con-
tact bone to bone is produced inside the joint causing 
inmobilization and severe pain. This desease, known as 
osteoathrosis, can lead to considerable hospital stays 
and extended periods of lost work days (Mackenzie et

al., 1988).  
Significant research has been undertaken to under-

stand the ethiology of osteoartrosis (Ewers et al. 1998). 
Some authors have suggested that osteoarthrosis is due 
to impact loading to the joint and in vivo experiments in  
animals have been used to study this correlation (New-
berry et al., 1998). The most widely used mechanical 
model for the articular cartilage is the biphasic (Mow et
al., 1980), which considers the tissue composed of a 
solid phase and a fluid. Under impact loading and equi-
librium, biphasic cartilage can be analyzed as an equiva-
lent elastic layer (García et al., 1998). It has been shown 
that an isotropic model for articular cartilage is unable 
to simulate the response in indentation experiments 
(Mow et al., 1989). On the other hand, a transversely 

isotropic model in which the Young´s modulus in the 
plane of the cartilage (plane of isotropy) is higher than 
that in the direction of the loading, provides a good fit to 
the experimental curves (Cohen et al., 1993; García et

al., 2000). 
In situ indentation tests with spherical and cylindri-

cal indenters have been widely used to determine the 
elastic properties of articular cartilage (Töyräs et al.,
2001), which are necessary to asses the condition of the 
tissue in animal experiments and to undertake finite 
element analysis of the joints.  If a transversely isotropic 
model is adopted for the articular cartilage, there is no 
analytical elastic solution for this layer firmly bonded to 
the rigid foundation.  In this study, the analytical solu-
tion for the indentation of a transversely isotropic elastic 
layer bonded to a rigid foundation was developed based 
on the general equations of the anisotropic elasticity 
presented by Lekhnitskii (1981) and procedures fol-
lowed by others to solve linear elastic contact problems 
(Sakamoto et al., 1991). This solution may help to ana-
lyze articular cartilage under impact loading and to de-
velop procedures to determine their elastic constants 
from in situ tests. 

II. METHODS 

A. Problem formulation 

The model to be solved consists of a transversely iso-
tropic linear elastic layer bonded to a rigid foundation 
and indented by a cylindrical or spherical punch. Iso-
tropic planes are perpendicular to z-axis (Fig. 1), which 
is the axial symmetry axis. A cylindrical coordinate 
system was used with the origin located at the intersec-
tion between the rigid foundation and the symmetry 
axis. The material is characterized by five elastic con-
stants, which are the Young’s modulus and Poisson’s 
ratio (E, ) in the isotropy plane and the Young’s 
modulus, shear’s modulus and Poisson’s ratio out of the 
isotropy plane (E’, ’ and G’). These engineering con-
stants can also be related to the elasticity coefficients 
C11, C33, C44, C13 and C12 used by Lekhnitskii (1981) as 
shown in Appendix A.  

This model can be used to represent the mechanical 
behavior of articular cartilage, firmly attached to the 
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underlying subchondral bone which is much more rigid 
than the cartilage. 
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Figure 1. Problems to solve 

Boundary conditions are as follows. Normal stresses on 
the surface outside of the contact area as well as shear 
stresses on the entire surface are zero. Displacements 
inside of the contact area are known and displacements 
in the bottom plane are zero since the layer is bonded to 
a rigid foundation. These conditions can be written as 
follows: 
____________________________________________| 

 (w)z=h = - 0,+ f(r)  (0  r  r0), (1) 
  ( z)z=h = 0,     (r> r0) (2) 

 ( rz)z=h = 0, (3) 
 (wz)z=0  =  0,  (4) 
 (u)z=0 = 0,       (5) 

where w(r,z) and u(r,z) are the displacement functions 
in the z and r directions, respectively. Letters  and 
are used for normal and shear stresses respectively. The 
function f(r) = 0 applies for the cylindrical indenter and 
f(r) = r2/2R applies for the spherical indenter, where R 
is the sphere radius. 

Linear elasticity equations can be formulated as pro-
posed by Lechnitskii (1981) for axial symmetry and 
anisotropic materials. two functions 1(r,z) and 2(r,z) 

are defined which must satisfy equilibrium and the 
compatibility equation as follows:

0
2

2

2

2

ii
zrrr

. (6) 

The linear elastic solution consists of finding func-
tions 1(r,z) and 2(r,z) which satisfy Eq. (6) and 
boundary conditions (1)-(5). Then, displacements and 
stresses can be calculated using Eqs. (7)-(12) as follows 
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where: 

4413

4411

CC

CC
k i

i ; k1k2 = 1; 

and
i

i
kC

CC

144

1211  ;    for   i = 1,2 

and i are the roots of the equation:  

_____________________________________________ 

C11C44
2 + { C13(2C44+C13) - C11C33 }  + C33C44 = 0.

Other stress components and the circumferential dis-
placements are zero due to axial symmetry. 
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B. Solution 

To be able to satisfy the boundary conditions for the 
layer bonded to the rigid foundation, the functions i

are assume to be: 

 (13) 
where i = 1,2, Ai( ) and Bi( ) are unknown functions of 

 and J0( ) is the zeroth-order Bessel function of the 
first kind. In addition 

i

i

z
z .

Functions i defined in (13) are a variation of those 
used for the indentation of a transversely isotropic layer 
not bonded to the rigid foundation (Sakamoto et al.,
1991).  

Substitution of equation (13) into equations (3) – (5) 
leads to: 
 B2( ) = -B1( ), (14) 

1
1

2

2

1
2 A

k

k
A , (15) 

12
1

2

2

1

2

2
1

11

sinhsinh
1

1

cosh
cosh

hh
k

k

k

h
h

AB ,(16) 

11 /hh  ,
22 /hh

in which A2( ), B1( ) and B2( ) are defined in terms of 
A1( ) which is still an unknown function. The main part 
of the procedure, which is quite tedious, consists of us-
ing the equations presented above to find function A1( ),
which is expressed in terms of an infinite series of coef-
ficients an and bn. This procedure is thoroughly ex-
plained in Appendix B. The numerical procedure used 
to calculate the coefficients an and bn given a set of ma-
terials properties is explained by Hara et al. (1990).

C. Parametric Analysis 

A parametric analysis was undertaken assuming two 
sets of properties with different degree of anisotropy. In 
set 1 the ratio between the elasticity moduli was 20 and  
set 2 represents approximately an isotropic material, 
with a unit ratio between elasticity moduli (Table 1). 
For each set, displacements and stresses were calculated 
for several values of z/h, by Eqs. 8, 11, 27, 31, 39 and 
37. In addition, the finite element program ALGOR 
(Algor Inc., Pittsburgh, USA) was used to compare 
some results of this analytic solution.

Table 1. Elastic properties used in the analysis 

 E’ (Mpa) G’ (Mpa) ’ E (Mpa) 
Set 1 0.5 0.8 0.1 10 0 
Set 2 0.5 0.2 0.1 0.5 0 

III. RESULTS 

The an and bn coefficients decrease rapidly (Tables 2 
and 3) and function A1( ) can be accurately evaluated 
using the first seven terms of the series. 

Table 2.  Values of coefficients an and bn for set 1. 

n coefficients an coefficients an- bn

0 9.837111e-001 4.526701e-001 
1 -6.087176e-003 -4.527150e-001 
2 6.985322e-005 4.528167e-005 
3 -5.565644e-007 -3.720521e-007 
4 3.506282e-009 2.456384e-009 
5 -1.864476e-011 -1.361846e-011 
6 8.445326e-014 6.409409e-014 

Table 3.  Values of coefficients an and bn for set 2. 

n coefficients an coefficients an- bn

0 1.8828e+000 8.2128e-001 
1 -5.9057e-002 -8.2273e-001 
2 2.1067e-003 1.4823e-003 
3 -4.8966e-005 -3.9211e-005 
4 8.3657e-007 7.7134e-007 
5 -1.1023e-008 -1.1708e-008 
6 1.1590e-010 1.4110e-010 

Nondimensional axial displacement ( 0/ww ) for 

the second set is higher at the axis of symmetry and 
lower at a distance of 1.5 times the indenter radius (Fig. 
2, 3). 

Figure 2.  Nondimensional displacements for spherical 
indenter 

0 0coshsinh),( drJzBzAzr iiiii
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Figure 3.  Nondimensional displacements for cylindri-
cal indenter 

Nondimensional axial stress ( Pr /* 2
0 ) for the 

second set is higher at the axis of symmetry.  The dif-
ference at the axis of symmetry is substantial, especially 
at the center of the layer, in which the stress for set 2 is 
approximately 2.5 times the stress for set 1 (Fig. 4, 5).   

Figure 4.  Nondimensional axial stress distribution for 
the spherical indenter 

Figure 5.   Nondimensional normal stresses for cylin-
drical indenter 

Good correlation is observed between pressure dis-
tributions obtained with the Hertz’s solution and this 
solution for material properties of Set 2, aspect ratio of 
10 and a spherical indenter (Fig. 6).  

Comparison of vertical displacements with those ob-
tained with the finite element method also shows good 
agreement for the plane indenter (Fig. 7). Small differ-
ences are observed between the analytical and computa-
tional axial stress distributions (Fig. 8).

Figure 6.  Pressure distributions under contact area of 
spherical indenter 

Figure 7. Nondimensional axial displacements for cy-
lindrical indenter, material Set 1 

Figure 8. Nondimensional axial stresses for cylindrical 
indenter, material Set 2 
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III. CONCLUSIONS 

A new analytical linear elastic solution has been devel-
oped for the indentation, with a flat ended cylinder or a 
sphere, of a transversely isotropic layer bonded to a 
rigid foundation. The solution follows the procedure 
presented by Sakamoto et al. (1991) for the indentation 
with a flat ended cylinder of a transversely isotropic 
layer resting without friction on a rigid foundation and 
has been extended to consider the case of a spherical 
indenter. Unlike the solution developed by Sakamoto et
al. (1991), which allows relative horizontal displace-
ments at the rigid foundation, the solution presented 
here considers the layer completely bonded to the foun-
dation, which is an appropriate assumption for the ar-
ticular cartilage, firmly bonded to the subchondral bone.  

This new solution can  be employed to find relations 
between the indentation force and the elastic properties 
of the layer, which may be helpful to find material 
properties of articular cartilage under indentation tests. 
The solution also allows finding the complete distribu-
tion of stresses and displacements in the layer. These 
results could be used to validate finite element contact 
analysis of anisotropy layers.   

This is a new solution and there are no reported re-
sults in the literature to compare those obtained in this 
study. For the nearly isotropic case, good correlation 
was observed between pressure distribution in the con-
tact area obtained with this solution and that given by 
the Hertz. For an anisotropic material, vertical dis-
placements were almost equal to those obtained with the 
finite element code Algor (Algor Inc., Pittsburgh, USA) 
and small differences were observed in the stress distri-
butions. These differences can be understood since the 
precision of the finite element displacement method is 
reduced for stresses.

Results of the analysis showed smoother displace-
ment and stress distributions for the more anisotropic 
layer, i.e. displacement and axial stress were lower be-
low the contact area and descended more gradually to-
wards the radial direction. Experimental studies (Wang 
et al., 2003) have shown that the degree of anisotropy of 

the articular cartilage is similar to that of set 1 of this 
analysis. This suggests that under equilibrium or impact 
loading, when the biphasic cartilage can be considered 
as an equivalent elastic layer, the anisotropy of the carti-
lage plays an important role to redistribute loads and to 
reduce stresses in the solid phase.  

The solution presented here is valid for an elastic 
layer under infinitesimal deformation. Significant errors 
may be produced if this solution is applied to articular 
cartilage when large deformations and viscoelastic ef-
fects are significant. 
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Appendix A. Relation between flexibility coefficients 
and engineering constants 
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Appendix B. Detailed Procedure to Develop Stress and 
Displacement Equations. 

In order to develop an expresión for A1( ) the following 
procedure must be undertaken. Substitution of Eqs. (14), 
(15) and (16) into Eqs. (1) and (2) leads to: 

0
0

01 drJAyw hz  (0  r  r0) (17) 

0
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where y( ) and f( ) are defined as: 
____________________________________________| 
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Next, contact stresses are assumed to be (Sakamoto 
et al., 1991): 0 0
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where T2n+1 are Tchebycheff polynomials and an’ are 
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unknown coefficients. This distribution contains a sin-
gularity equal to that of an isotropic layer indented by a 
cylindrical punch (Hayes et al., 1972). By using the 
Hankel inversion of Eq. (18) by means of Eq. (19) and 
the following identity of Bessel functions: 

)(,0
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2
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0
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drJZ
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we obtain: 
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Substitution of Eq. (22) into Eq. (17) leads to: 
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where g( )=y( )/f( ). Now, if the Gegenbauer’s equa-
tion: 

0
00 cos2
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(where 
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) is substituted into Eq. (23), it is 

obtained: 

1cos)(2
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0
nn aa , (26) 

2
02 r

JX mm  and 0m is the Kronecker’s delta. 

____________________________________________| 

By matching the coefficients of cos(m ) in both 
sides of Eq. (25) the equation (27) is obtained: 

m

n

mnn dXZgar 0
0

0
0 (m,n=0,1,2…)(27) 

which represents an infinite system of simultaneous 
equations which are used to determinate the an coeffi-
cients. Then, the an’ terms the function A1( ) are deter-
mined by Eqs. (26) and (22) respectively. Numerical 
solution of Eq. (27) was undertaken using the method of 
Hara, et al., (1990). 

Contact stresses z are calculated substituting the 
Eq. (26) into Eq. (19) as follows: 
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where H(r0 - r) is the Heaviside’s step function.  
    In order to calculate w(r,z), Eq. (22) is sustituted into 
Eq. (17). 
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nnhz drJZgaw . (29) 

The above integrals were calculated following the pro-
cedure developed by Sakamoto et al. (1991), which 
consists of calculating the limits when  tends to infinite 
of Zn( ) and g( ), and rearranging the equation (29) as 
shown bellow. 
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Substitution of Eqs. (30), (31) into Eq. (29) leads to Eq. 
(32): 
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So far, the above equations are valid for a cylindrical 
indenter. To find equivalent equations for spherical in-
denter we assume that: 

nnn b
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where the an coefficients are the same of equation (27) 
and the bn are unknown coefficients which can be found 
as follows. 

____________________________________________ 
Substitution of Eq. (32) into Eq. (22) leads to: 
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Next, substitution of Eqs. (34), (24) and f(r) = r2/2R into 
Eq. (17) yields to Eq. (35): 
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Next, by matching the coefficients of cos(m ) on both  
sides of last equation we obtain: 
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m
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mnn dXZgbr , (36) 

from which the bn coefficients can be calculated as ex-
plained before for equation (27).  
In order to obtain contact stresses and displacements, 
Eq. (33) is substituted into Eq. (19) and the contact 
stress at r = r0 is made equal zero, it is obtained the fol-
lowing entity  

n

n

b

a

R

r

0

2
0

4
. (37) 

    Using Eqs. (37) and (33), the contact stresses and 
dispacements can be written as follows: 
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    Then, using Eqs. (30) and (31) we can write the Eq. 
(39) as: 
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    With the above equations the analytical solution for 
spherical indenter is completed. Now, the indentation 
force is obtained for both indenters by integrating (Eq. 
(28) and (38)) 
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    The indentation forces for the cylindrical and spheri-
cal indenters are respectively: 
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