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Abstract— In this paper H and H control from input-output information, avoiding the need for2

techniques are applied to the real-time control a state-space model of the system.
of a gyroscope with two degrees of freedom. The main contribution of this paper is the appli-
The controllers are designed based on a poly- cation of modern optimization control techniques to
nomial approach and using routines from the the control of a gyroscope in real time. To this end,
Polynomial Toolbox for MATLAB. Real-time we obtain a suitable description of the system, and
results are presented, showing a good perfor- explain with detail the design of the corresponding
mance of the controllers. controllers. Real-time results are presented, show-

ing a good performance of the controllers. Also, the
Keywords— Control system design, Opti- application proposed in this paper can serve very

mization H , Optimization H , Polynomial well as a lab for students. Indeed, the polynomial2

approach, Gyroscope, Polynomial Toolbox. approach is relatively simple to apply, and the analy-
sis and design can be easily carried out using routines
from the Polynomial Toolbox.

I. INTRODUCTION Roughly speaking, H -optimization consists in2

Practical applications of modern control techniques finding a controller which minimizes the H norm of2

to physical systems are fundamental in control engi- the closed-loop transfer function and internally sta-
neering. These modern techniques allow controlling bilizes the system. The closed-loop transfer function
complex dynamic systems satisfying particular de- to be minimized is located between the external sig-
sign objectives. The e ciency of the control schemes nal and the control error signal, where the external
is tested and verified in the application process. signal comprises external inputs, including perturba-
Computational routines and software, on the other tions, measuring noise and reference inputs.

hand, are important tools for the application of con- The standard H problem was solved by Doyle et2

trol schemes. The analysis of dynamic systems and al. (1989), and the authors present a solution to
the design of controllers, usually involving complex this problem considering a state-space description of
computations, can be easily carried out using com- a linear multivariable system. In Hunt et al. (1994),
puter programs. a solution is presented to the standard H problem2

The aim of this work is to apply H and H op- based on the polynomial solution to the LQG pro-2

timization techniques to the control of a gyroscope blem from Kučera (1979). The proposed polyno-
with two degrees of freedom. The controllers are de- mial solution is based on square complements and
signed using routines from the Polynomial Toolbox Diophantine equations. Another polynomial solu-

12.5 for MATLAB , which are based on a polynomial tion to the standard H problem is given in Meinsma2

approach. One of the advantages of the polynomial (2000), which is based on factorizations over polyno-
approach is that the controllers for the linear model mials and stable matrices. Later on, Kwakernaak
of the system can be designed directly from a transfer (2000) presents another solution based on factori-
function description, which can be usually obtained zations over polynomial matrices and Diophantine

equations. This solution uses a generalized plant
1For more information on the Polynomial Toolbox, see

as a starting point, which allows to solve a num-www.polyx.com. MATLAB is a trademark of The MathWorks

Inc. ber of problems, for example the mixed sensitivity  
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problem and Wiener Hopf optimization, in a simple navigation gyrocompasses, etc. (Cannon, 1967).
and methodological way. The system considered in this work is a gyroscope
It should be stated that the previously mentioned of two axes, shown schematically in Fig. 1, which

solutions to the standardH problem are not entirely2 is a lab experiment developed by Quanser Inc. (see
equivalent. Because of the di erent mathematical www.quanser.com). The gyroscope consists basically
tools applied, the problems are solved at di erent of the following components: a support plate hold-
levels of generality under di erent assumptions. ing the gyro module with a rotor which rotates at
The design of the H controller to be applied in2 a constant speed, its movement being produced by

this work to the gyroscope is based on the results a DC motor, sensors for the angles and , and a
of Kwakernaak (2000). The reason for this choice is data acquisition card connecting the gyroscope to a
due to the simplicity of the polynomial approach and computer.
to the fact that there exist computer routines in the Angle defines the angular position of the struc-
software Polynomial Toolbox, which allow obtaining ture with the rotor, with respect to the gyro module,
the corresponding controller in a relatively simple while angle is located between the gyro module and
way. the support plate.
Investigation on H -optimization for control sys-

tems was initiated by Zames (1981), who considered
the minimization of the maximum magnitude over
frequency of the sensitivity function of a scalar linear
feedback system. There exist various solutions to
the standardH problem, the most important being
the so-called “two Riccati equation” solution (Glover
and Doyle, 1988; Doyle et al., 1989), which relies
on a state space representation of the problem and
requires the solution of two indefinite algebraic Ri-
ccati equations. A frequency domain solution to the
standard H problem is presented in Kwakernaak
(1996), based on polynomial matrix techniques and
spectral factorizations. The corresponding scheme
consists on a generalized plant interconnected with
the feedback compensator, and the H -optimization

Figure 1. Scheme of the gyroscope.problem consists basically in finding a controller K
which minimizes the H norm and stabilizes the

The purpose of the controller to be designed for thisclosed-loop system. While the H norm of a signal2

system is to maintain the direction at which the gy-is the mean energy with respect to the frequency,
roscope is pointing, while the support plate rotatesthe H norm is the maximum energy with respect
relative to the base plate. In other words, the gyroto the frequency. The design of the H controller
module must keep its position relative to the baseto be applied to the gyroscope will be based on the
plate in the presence of perturbations or any move-frequency domain solution of Kwakernaak (1996).
ment of the support plate. This mimics the problemThis work is organized as follows. The system
of a ship on which a radar is mounted, and it is de-under study, a gyroscope of two axes, is presented
sired to maintain the direction in which the radarin section II. Section III deals with the application
beam points independent of the unknown yawn ofof H -optimization to the gyroscope. The corres-2

the ship due to disturbances and steering. The con-ponding controller is obtained using routines from
trol input of the system is the voltage applied tothe Polynomial Toolbox and an adequate choice
the DC motor, and the output will be considered toof the filters. Real-time simulation results of this
be the angle .controller applied to the gyroscope are also pre-

sented in this section. In section IV, application of The transfer function of the gyroscope between the
input and the output , obtained from the dynamicH -optimization is considered, presenting also the
equations and from the parameters of the system, iscontroller design and real-time simulation results.
given byFinally, we end with some conclusions.

n(s)
P (s) =

d(s)II. DESCRIPTION OF THE SYSTEM

239.579128s 179088.87Gyroscopes are used to measure the angular move- = .
4 3 2s + 1.7285370s + 139071.00s 7821.3381sment with respect to a fixed structure, and are a

key component of plane automatic pilots, rocket
guidance systems, spatial vehicle altitude systems, The zeros and poles of the system represented by the
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transfer function P (s) are given by by V (s), and V (s), and frequency weightings of the1 2

controlled output and of the input determined by
zeros = 67.267 W (s) and W (s).1 2

67.267

poles = 0
0.056239
0.89238 + 372.92i
0.89238 372.92i,

from which it can be seen that the system is non-
minimum-phase and unstable. The Bode diagram of
the transfer function P (s) is shown in Fig. 2.

Figure 3. The H mixed sensitivity problem.2

The design objectives of achieving stability, perfor-
mance and robustness can be accomplished by ma-
king the loop gain large at low frequencies, small
at high frequencies, and keeping the loop gain away
from the critical point -1 at crossover frequencies.

The loop gain has a direct e ect on important
closed-loop transfer functions which determine the
2-norm, such as the sensitivity S(s) and the comple-
mentary sensitivity T (s). For the configuration of
Fig. 3, these functions are given by

1S(s) = [I + P (s)K(s)]
(1)

1T (s) = P (s)K(s)[I + P (s)K(s)]
Figure 2. Bode diagram of the transfer function P (s).

where P (s) is the open-loop transfer function of the
system.

The sensitivity function S(s) determines the e ect
III. H CONTROL2 of the disturbance on the output of the control sys-

In this section we present first the design of the H2 tem. The complementary sensitivity T (s) satisfies
controller and afterwards the real time simulations

the identity S(s) + T (s) = I, and it is important
of the controller applied to the gyroscope. The con-

for the closed-loop response, the e ect of measure-
troller to be designed should be such that the gyro

ment noise and the amount of control e ort. In terms
module keeps its position in presence of perturba-

of these two functions the design objectives can be
tions or movements of the base plate, while providing

accomplished by making the sensitivity S(s) small
stability, performance and robustness to the closed-

at low frequencies, making the complementary sensi-
loop system.

tivity T (s) small at high frequencies, and preventing
both S(s) and T (s) from peaking at crossover fre-

A. Controller Design
quencies.

The controller will be designed based on the proce- For simplicity, we consider that V (s) = 0, which2

dure indicated in Kwakernaak (2000). Let us con- is equivalent to supposing that there does not exist
sider the block diagram of Fig. 3, where P (s) is measuring noise. In order to use the Polynomial
the transfer function of the system, K(s) is the com- Toolbox, we need the generalized plant given by
pensator to be designed, v comprises the external
inputs, including perturbations, measurement noise W (s)V (s) W (s)P (s)1 1 1

and reference inputs, z is the control error signal, 0 W (s)G(s) = . (2)2
y is the measured output, u is the control input,

V (s) P (s)1and V (s), V (s), W (s) and W (s) are shaping fil-1 2 1 2

ters. The H mixed sensitivity problem consists in2

finding a controller K(s) which minimizes the H The instruction h2 from the Polynomial Toolbox for2

norm of the closed-loop transfer function and inter- the design of the controller which solves the H pro-2

nally stabilizes the system. This generalized pro- blem we are considering in this work, is of the form
blem allows for colored disturbances and measure-
ment noise, whose frequency contents are determined [Y, X, clpoles, fixed] = h2(N, D, ncon, nmeas)
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where N and D are a left coprime matrix fraction proper to allow the 2-norm to be finite. Since we
description of the generalized plant G, ncon is the have that V (s) has a pole at 0, then W (s) may be1 1

number of driving inputs, and nmeas is the number used for fine tuning. A safe initial choice, and the
of measured outputs. This instruction returns the value we will actually use is W (s) = 1.1

controller K = Y/X, the nonfixed closed-loop poles, Since V (s) has a pole excess of 1, the input sensi-1

and the fixed poles of the plant. tivity function
The weighting functions V (s), W (s) and W (s)1 1 2

K(s)will be assigned following the procedure indicated in U(s) =
1 + P (s)K(s)Kwakernaak (2000) as follows. Several recommen-

dations are given in this reference for the choice of must be such that W (s)U(s) has pole excess 0.2
V (s), one of them being the following: if the trans-1 Therefore, W (s) must be of the form2
fer function of the plant P (s) is strictly proper then

s+ 1V (s) is recommended to be of the form P (s) , W (s) = c(1 + rs) = 0.1(1 + 0.1s)1 2s

where the constant is a design parameter. It can1

where the values of c and r were obtained experi-be seen that the presence of a pole at 0 in V (s) forces1

mentally.the sensitivity function S(s) to be 0 at s = 0. If S(s)
Substituting the functions V (s),W (s) andW (s)1 1 2does not have a zero at 0 then the 2-norm cannot be

in the generalized plant G(s) given by (2), we havefinite. If the plant P (s) has a pole at 0, then it is not
that the following is a left coprime polynomial matrixnecessary to include a pole at 0 in V (s) except if it is1 fraction description of G(s)

desired to design a system with more than one inte-
1grator. This situation is also in accordance with the G(s)=D(s) N(s)

internal model principle, where the open loop trans- " # " #1
1 0 1 0 0fer function of the plant with the compensator must
0 1 0 0 0.1(1 + 0.1s)= .contain the model of the perturbation.
0 0 d(s) m(s) n(s)

In our case, and since the transfer function of the
gyroscope has already a pole at 0, instead of the

For this generalized plant, the instruction h2 from
previous choice, the function V (s) will have the form1

the Polynomial Toolbox 2.5 returns the controller
K = Y/X, wherem(s)

V (s) =1
d(s) 2Y = 0.000984 1.02s+ 0.00723s

3 4+0.000775s + 0.0000760s ,where d(s) is the denominator of the plant P (s) and
2 3m(s) is a polynomial to be properly assigned. With X = 1 + 0.346s+ 0.0621s + 0.00525s

4this form of V (s), it can be shown in the mixed sensi- +0.000163s .1

tivity problem formulation that the polynomialm(s)
The closed-loop poles of the system are given bycancels against a corresponding factor in the closed-

loop characteristic polynomial X(s)d(s) + Y (s)n(s)
clpoles = 0.89387 + 372.94i

of the feedback system (Kwakernaak, 1993). Then, 0.89387 372.94i
the roots of m(s) will actually be poles of the closed- 12
loop system, situation which is referred in Kwaker- 9.4935
naak (1993) as the partial pole placement technique. 5
Therefore, the selection of V (s) is one of the key1 2.4556 + 2.6019i
steps in the controller design. 2.4556 2.6019i
The polynomial m(s) in the case of the gyroscope 0.0010000

was assigned as

there are no fixed closed-loop poles
m(s) = (s+ 12)(s+ 5)(s+ 0.001)

fixed = Empty matrix: 0-by-1,
basically from time simulations, trying di erent pole

and the closed-loop zeros are given bylocations until a good performance was obtained.
Then V (s) is strictly proper and has a pole excess1 clzeros = 67.267
(di erence between the number of poles and the 67.267
number of zeros) of one, as recommended in Kwa- 14.949 + 21.471i
kernaak (2000). 14.949 21.471i
For sensible control systems the sensitivity func- 19.717

tion S(s) has the property that S( ) = 1 and there- 0.00095600.
fore it is proper but not strictly proper. For this rea-
son, whichever way the weighting function V (s) is The corresponding sensitivity functions S(s) and1

chosen, the product W (s)V (s) needs to be strictly T (s) given by (1) are shown in Fig. 4, where it1 1
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can be seen that they have the specified proper- without any movement at all while the support plate
ties to accomplish the design objectives of achieving rotates due to the perturbation introduced, showing
stability, performance and robustness of the closed- a very good performance of the designed H con-2

loop system. Indeed, the sensitivity S(s) is small at troller.
low frequencies, the complementary sensitivity T (s)
is small at high frequencies, and both S(s) and T (s)
do not peak at crossover frequencies.

Figure 6. Angle (t) in real time.

Figure 4. Sensitivity S(s) and complementary sensitivity

T (s) for H control.2

B. Real-time Results

To test the performance of the designed controller in
real time, we introduce a perturbation to the system

Figure 7. Control signal (t) in real time.by moving manually the support plate, producing
a sequence of step-like functions of di erent magni-
tude. Figure 5 shows the angular movement (t) be-

As far as the design and operation of the control sys-tween the support plate and the gyro module caused
tem are concerned, we noticed that if the sensitivityby the input perturbation. Angle (t) stabilizes at
function S(s) is bigger, the gyroscope is more in-the negative value of the input perturbation for every
fluenced by the perturbations, and the actuators arestep-like function.
saturating due to the appearing peaks. This problem
appears in real time, but in simulation the system
performed better the bigger the sensitivity function
was, and the reason for this is because no noise is
considered in the simulations. Observe also that one
of the closed-loop poles of the system is very close to
the imaginary axis. The system performed better in
simulation the more this pole was far away from the
imaginary axis, but in real time the system did not
work, again because of saturation of the actuators.
Even though we tried to find a theoretical explana-
tion why this pole must be close to the imaginary

Figure 5. Angle (t) in real time. axis to avoid saturation, it must be said that still we
do not understand this phenomenon properly.
Notice also that the closed-loop system has highly

Figure 6 shows angle (t), where it can be seen oscillatory poles, which may be a threat to the sys-
that in the presence of a perturbation, angle (t) tem stability. These poles are also present in the
opposes to the movement of the gyro module until open loop and it could be expected that the con-
the perturbation is rejected. troller cannot compensate for them. However, no
Figure 7 shows the control signal (t) applied to important e ect produced by these highly oscillatory

the system. The gyro module remains practically poles was observed in the real-time simulations.
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IV. H CONTROL were obtained experimentally from various tests as

gmin = 134.5A. Controller Design
gmax = 139

In order to solve the H mixed sensitivity problem,
4accuracy = 1× 10

we need again the generalized plant in the form given
4 9 15 8tol = [1× 10 , 1× 10 , 1× 10 , 1× 10 ].

by (2). For this, the weighting functions V (s),W (s)1 1

and W (s) have to be properly chosen, and the pro-2 With these data and parameters, the instruction
cedure to choose them is very similar to the case mixeds produces the compensator K = Y/X, where
of the H mixed sensitivity problem (Kwakernaak,2

2 31996; see also Kwakernaak, 1998). One minor di e- Y = 0.000414 + 0.437s+ 0.276s 0.0248s
4rence is that the function V (s) has to be proper for +0.000133s ,1

theH control, and not strictly proper as in the case 2 3X = 0.511 0.671s 0.137s 0.00858s
of the H control.2 40.000135s .
The function V (s) is then a proper rational func-1

tion of the form The closed-loop poles and zeros of the system are
given by

m(s)
V (s) =1

d(s) clpoles = 0.86516 + 372.92i
0.86516 372.92i

which must satisfy that W (s)V (s) is proper, and1 1 42
where the roots of m(s) become closed-loop poles of 15
the system. The polynomial m(s) was obtained as 5

0.79247 + 0.79159i
m(s) = (s+ 42)(s+ 15)(s+ 5)(s+ 0.001) 0.79247 0.79159i

0.0010000,
basically from time simulations, trying di erent pole
locations until a good performance was obtained. clzeros = 67.267

67.267As in the case of the H control, we have that2

1843.9W (s) = 1. For the function W (s), and in order1 2

12.628that W (s)U(s) has pole excess 0, we have that2

1.4036
W (s) = c(1 + rs) = 1(1 + 0s) = 1 0.00000094.2

where the values of r and s were obtained experi- The corresponding sensitivity functions S(s) and
mentally. T (s), shown in Fig. 8, have the specified proper-
Substituting the functions V (s),W (s) andW (s)1 1 2 ties to accomplish the design objectives of achieving

in the generalized plant G(s) given by (2), we have stability, performance and robustness of the closed-
that the following is a left coprime polynomial matrix loop system, namely the sensitivity S(s) is small at
fraction description of G(s) low frequencies, the complementary sensitivity T (s)

is small at high frequencies, and both S(s) and T (s)
1

1 0 1 0 0 do not peak at crossover frequencies.
0 1 0 0 1G(s) = .
0 0 d(s) m(s) n(s)

TheH controller will be obtained using the instruc-
tion mixeds from the Polynomial Toolbox. Besides
the left polynomial factorization of the generalized
plant, this instruction requires the parameters gmin,
gmax, accuracy and tol to be specified. The pa-
rameters gmin and gmax are respectively lower and
upper bounds for the minimal H norm, accuracy
specifies how closely the minimal norm is to be
approached, and tol defines four tolerances, namely
those used in canceling identical pole-zero pairs in
the transfer function of the optimal compensator,
in various stability tests, in the spectral factoriza-
tion, and in the left-to-right and right-to-left conver- Figure 8. Sensitivity S(s) and complementary sensitivity

sions. For the case of the gyroscope, these values T (s) for H control.
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B. Real-time Results did not work because the control law was out of the

physical rank it could assume, producing saturationFor the real-time application, and in order to test
in the actuators. As in the case of the H control,2the performance of the designed controller, we intro-
the closed-loop system has a pole near the imaginaryduced again a perturbation by moving manually the
axis, and highly oscillatory poles.support plate. The angle (t) caused by this input

perturbation is shown in Fig. 9. The corresponding
behavior of the angle (t) is shown in Fig. 10, where V. CONCLUSIONS
it can be seen that (t) opposes to the movement of In this paper, H and H control techniques have2
the gyro module until the perturbation is rejected. been applied to the real-time control of a gyroscope
The control signal (t) is shown in Fig. 11. of two degrees of freedom. The controllers were de-

signed using routines from the Polynomial Toolbox
for MATLAB, based on a polynomial approach. This
approach is relatively simple to apply, and the exis-
tence of computational routines helps to a great ex-
tent in the controllers design.
Real-time results show a good performance of the

controllers. The choice of the corresponding filters
and parameters for the controllers design was done
taking into account the system characteristics and
experimental results from simulations. Thus, this
selection strongly depends on the particular physical
system to be controlled.Figure 9. Angle (t) in real time.
Although the H controller performed generally

a little better than the H controller rejecting step-2

like perturbations, both controllers performed rather
similarly in the time domain, both rejected distur-
bances, and closed-loop poles location does not di er
too much.
Future work has to focus on testing the robustness

of the controllers, for instance introducing variations
on the parameters of the system.
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