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Abstract— A control strategy is developed
in order to keep processes based on the hy-
drogen evolution reactions (HER) near oper-
ational steady states. The problem is treated
in the context of Optimal Control for nonlin-
ear systems subject to quadratic cost objec-
tives. The original dynamics is shown to be
accurately approximated by a bilinear model
without increasing the dimension, so the state
variables retain their physical meaning. Finite
and infinite horizon optimal control strategies
are developed, based on the Hamiltonian for-
malism, and introducing a novel approach for
working on-line with generalized Riccati differ-
ential equations and the associated costate dy-
namics. When there exists a final penalty on
the state deviation, then a first order quasi-
linear partial differential equation is discovered
and solved for the Riccati matrix. The observ-
ability problem is also treated, since the natu-
ral state (electrode surface coverage) can not
be measured continuously. The output vari-
able (current density) is fed into a high-gain
nonlinear observer based on Lyapunov’s stabil-
ity considerations. The whole approach allows
for (in general time-dependent) state-feedback
control.

Keywords— Optimal Control, Nonlinear
Processes, Electrochemistry, Hydrogen Evolu-
tion Reaction, Hydrogen Technology.

I. INTRODUCTION

Hydrogen Evolution Reactions (HER) refer to the ki-
netics of most electrochemical processes where hy-
drogen is produced or consumed. Hydrogen produc-
tion is becoming increasingly relevant in the indus-
trial world due to the recurrent crisis in oil prices,
the international pressure to mitigate global warm-
ing, and the high rate of depletion of other natural
fuels. A sufficiently general formulation of HER in-
clude the Volmer-Heyrovsky-Tafel (VHT) model stud-
ied below and described in Section 2. Since these re-
actions usually evolve on the surface of metallic elec-
trodes, abundant empirical work has been carried out

to determine kinetic parameters for different cathodes
(Ni, Pt, Pd, Co304) and environments (acidic or al-
kaline solutions) (see Harrington and Conway, 1987).
But also, as new applications of clean technologies are
announced, interest is growing in the design, opera-
tion, and optimization of industrial devices based on
HER systems, such as fuel cells, batteries (Vincent
and Scrosati, 1997), Ha-decontamination and corro-
sion prevention processes for heavy metals (Al-Faqeer
and Pickering, 2001), and cold nuclear fusion (Green
and Britz, 1996; Yang and Pyun, 1996). The control
of fuel cells operation has received special attention for
non-isothermal proton exchange membrane prototypes
(Golbert and Lewin, 2004; and the references therein),
where the modeling aspects include pressure, heat, and
mass transfer balances, so the problem takes a qualita-
tively different form. However, for conventional types
of fuel cells with metallic electrodes where isothermal
conditions are approximately maintained, the kinetics
of set-point changes and steady-state operation install
HER-VHT equations as the main object governing the
process.

The dynamics of HER systems are irreducibly non-
linear. This is confirmed by the detection of solu-
tion trajectories whose characteristics are only possi-
ble for nonlinear systems (in fact, oscillatory behav-
ior in reaction systems have appeared early and fre-
quently in the electrochemical context; see the exten-
sive review by Hudson and Tsotsis, 1994). Simula-
tions and experiments have also shown hysteresis-like
cyclic behaviors (Costanza et al., 2003), bistability (see
Costanza, 2005), strange attractors and chaos (Green
et al., 2000). These somehow unexpected results shed
light on the theory of adsorption mechanisms, spa-
tiotemporal patterns of catalytic electrodes, and re-
lated physical problems. Closer to the traditional con-
trol point of view, some parameter variation strategies
have been developed to avoid or to cope with non-
linear complexities in electrochemical systems (see for
instance Kiss et al., 1997; Parmananda et al., 1999),
with the main objective to make safe the operation
of emerging industrial applications. The optimal con-
trol of set-point changes for HER equations with fixed
parameter values and power-spending restrictions has
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also been attacked recently (Costanza, 2005).

Regulation problems, more related to stability ob-
jectives, have an intrinsic local character, which allows
the dynamics to be approximated by simpler control
models. In this paper a bilinear model is proposed.
The trajectories of the approximate system nearly
coincide with those of the original equations for a
wide range of control values. Bilinear approximations
have theoretical advantages over classical linearization.
They play the role of universal approximations to non-
linear systems (see for details Krener, 1975; and its ref-
erences), analogously to polynomial approximations to
continuous real functions in bounded domains guaran-
teed by the Stone-Weierstrass theorem. Also, since
the analytical expression of bilinear equations is “al-
most linear”, they represent an improvement concern-
ing calculations with respect to the original dynamics.
This simplification has allowed to the development of
close solutions to several optimal control and tracking
problems (Costanza and Neuman, 1995b) , including
extensions to Kalman filtering (Costanza and Neuman,
1995a), some of which will be adapted to the situation
at hand.

In the next Section the physical context of the dy-
namical system underlying the problem is succinctly
presented through the main balance equations. In Sec-
tion IIT different optimization criteria for evaluating
the VHT electrochemical performance and their solu-
tions are discussed. In Section IV the Hamiltonian ap-
proach is discussed in more detail and a novel solution
for the steady-state problem is presented in Section V.
The observability aspects are discussed in Section VI,
and the conclusions are summarized in Section VIII.

II. THE VOLMER-HEYROVSKY-TAFEL
EQUATIONS

The dynamics of hydrogen adsorption, desorption, and
chemical reactions over the surface of an electrode is
usually modelled through a combination of three ele-
mentary “routes” or “steps” (Gennero de Chialvo and
Chialvo, 1996, 1998), with corresponding velocities:

Volmer:Hz0 + e~ = H(qqs) + OH™

1-0 0
vy =% { 0 e~ (- fn _ —eo‘f"} (1)

l_e e

Heyrovsky:H2O + H(a45) + €~ = Ha) + OH™

1—
vy =V {o%e—(l-a)fn - d&ieaﬂ]} 2)

Tafel:H(ads) + H(ads) = Hz(g)

UT=U;{(%)2— (%)2} 3)

where the main variables involved are:
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0 : surface coverage (the fraction of the electrode sur-
face covered by adsorbed atomic hydrogen H(,4s)), and
7 : the overpotential imposed on the system to run the
reaction.

Other symbols and parameters used above mean:
Hy(,): gaseous (desorbed) molecular hydrogen,

v§r, v, v% ¢ equilibrium reaction rates of each step

0. : specific equilibrium surface coverage (6 = 0.1 in
numerical calculations and graphics of this paper)

a : adsorption symmetric factor (= 0.5 in calculations)
R : gas constant = 8.3145 Joule mol~1°K !

F : Faraday constant = 96484.6 coulomb mol ~*

T : absolute temperature, here taken equal to 303.15
°K

f = g5 = 38.2795 coulomb Joule™'.

By taking all three routes into account, and assum-
ing that the electrode’s surface coverage is propor-
tional to the number of atoms of H,4,), then the HER
stoichiometric balance translates into a  accumulation
rate equation

i= Ty —om —20r), (= 90m), (@)

where o is the experimentally measured surface den-
sity of electric charge needed to complete a monolayer
coverage of H(ggs). In the numerical results of this
paper a value of o = 2.21 x 10~ 4coulomb cm™2 will
be adopted, corresponding to a standard Pt electrode
(similar to Harrington and Conway, 1987).

Typical solutions for a small-amplitude toothed pe-
riodic path given to the forcing voltage n are illus-
trated in Fig. 1. Hysteresis loops appear because the
state 6 takes different values for the same value of 7,
depending on whether the voltage is in the ascending
or in the descending part of the teeth of the forcing
function. This behavior can be observed for most of
the reference velocities used in these calculations, but
such qualitative behavior is not present in other re-
gions belonging to the range of admissible values for
vy, Vg, 5. One of the reasons for improving regula-
tion strategies might be to maintain the system far
from regions where hysteresis can appear.

Sometimes a “double layer” capacitance is proposed
to explain the overpotential decay when the circuit is
opened. In this paper only close-circuit situations
will be considered, so the overpotential behavior will
be independent of the surface coverage.

III. THE OPTIMAL REGULATION
PROBLEM

Since the overpotential evolution 7(.) is (within rea-
sonable bounds) manipulated to influence the build-
ing of the hydrogen layer on the electrode surface,
then n will be the natural input or control variable
for the system ¥ under study. On the contrary, the
variable 6 can not be directly handled from outside.
However, once 7)(.) is chosen and applied for t < 7,
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Figure 1. Solutions in phase space to toothed peri-
odic forcings, with hysteresis loops. Parameter val-
ues: v§ = 10719 v = 0, v = 10719, 1071110712,
10713,1074, (from top to bottom).
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then the value of 6(7) contains all the information
needed to predict the (near) future evolution of the
system, so 6 is the natural state variable for ¥. The
smoothness of HER equations guarantee that for each
piecewise continuously differentiable control trajectory
{n(t),0 <t < t* < oo} and for each initial condition
6(0) = 6y € [0,1], there exists a continuous solution
trajectory {6(t),0 < ¢t < t*}. Mathematically, not
more than piecewise continuous differentiability of the
input is needed to ascertain the existence and unique-
ness of state trajectories, but in what follows 7(.) will
be assumed to belong to C*(0,t*). Under such assump-
tions 6(.) will actually be not only continuous on [0, ¢*]
but also continuously differentiable on (0, t*).

Regulation assumes that steady-state operation is
desired. = Admissible steady-states are equilibrium
points of the HER coupled dynamics. In what follows
Oequit(n) denotes the only physically meaningful solu-
tion for @ to the equation g(6,7) = 0 (see Costanza,
2005).

The locus of admissible set-points is depicted in
Fig. 2, together with typical power-optimal trajecto-
ries for one particular steady state, which coincides
with the set-point used for illustration in the regula-
tion examples below. The complex nonlinear quali-
tative behavior of the system is reaffirmed by Fig. 2,
where a manifold (not a linear subspace) of equilibria,
and a closed limit-cycle optimal orbit can be observed.

The original equations are however too involved for
calculations. Without compromising the nonlinear
treatment of the system, an acceptable simpler ap-
proximation is then sought for control engineering pur-
poses. From its definition, the generating function g
is analytical in both variables, and therefore its Taylor
expansion exists and provides a basis for approxima-
tions

il [ 1 - 1
=0.1 -0.08 -0.06 -0.04 =0.02
n®

Figure 2. H-level curves for the minimun power opti-
mal problem. H: Hamiltonian function.

9(6,m) = 9(60,10) + | 35 (60,m0)] (6 — 60) + - -
(5260, m0)] (1= m0) + [ s 60,m0)] -
(0= 60)(n — o) +2 { | 5% (60, m0)
(60— 60)* + [%(90,710) (n—m0)? + ...

®)

Also, once the operational steady-state (6g,70) has
been chosen, with 6y = 0eguit(n0), it is common prac-
tice in regulation situations to change variables to the
differences z := 6§ — 0y w := p — n9. Then, in what
follows the variable x will represent a deviation of the
electrode surface coverage (denoted by Ogpsoiute When
needed) from its steady state value 6y, and similarly
for the variable u. Since g(fo,m0) = 0, the best one-
dimensional bilinear approximation is obtained by ne-
glecting the terms after the mixed second derivative
above.

So, in the regulation context the dynamics will be
approximated by

z ~ Az + Bu + zNu = g(z,u), (6)

i.e. the system will be assumed bilinear around the
operational steady state, with nominal parameter val-
ues

. 0 . 0
A= a_‘g(007770)7 B = 8—2(90»770),

. 9%
= 80—87)(00’ 70)- (7)

A measure of the quality of the approximation may
be derived from a result by Krener (1975): for any
positive time T there exists another positive constant
M such that the state deviation trajectory Z,(.) =
Owtno(.) — B of the system corresponding to any ad-
missible bounded input trajectory w(.) will stay near
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Figure 3. Responses to different step forcings applied
to the original system and to its bilinear approxima-
tion.

the state trajectory z,(.) of the bilinear approxima-
tion corresponding to the same control w(.). In pre-
cise terms, for any admissible bounded control w(.) the
states’ departure will be bounded by

|Tw(t) — Zw ()] < Mt Vt € [0, T] (8)

where the constant M is related to the bounds on the
control values and on the discarded second derivatives
of the function g near the set-point. Therefore for
small times a good approximation is expected. It
should be noticed that for linear approximations the
time 73 can not be fixed in advance, so a linear approx-
imation may be good for all control trajectories only
during an uncertain time period 77, eventually with
inf,, Ty (w) = 0. In the same paper Krener shows how
to construct higher-dimension bilinear approximations
to the original nonlinear system when the departure of
solutions becomes unacceptable. The control strategy
developed below can not be guaranteed to succeed in
dimension one for arbitrary finite horizons. Here this
situation will not be explored, but the results shown
are extensible, via straightforward algebraic manipu-
lations, to multiple-state models to meet accuracy re-
quirements in the whole time-horizon.

Figure 3 shows the response to constant controls of
the original system and its bilinear approximation, in
absolute values, after a small perturbation of 0.001
applied to the states of both systems. The agree-
ment is reasonably good, even for big step controls
like n(t) = 0.8 for ¢ > 0. Different optimality criteria
may be posed when searching for control strategies,
since HER equations may be employed as a subsys-
tem of industrial devices that consume electrical power
in a variety of conditions. In the new variables, the
global cost typically takes the form of an objective

35:327-335 (2003)

functional J of the form

T
Tu) = / L), u®)dt +K@T);  (9)
0

where L is the Lagrangian of the optimal control
problem, and K is the final penalty, eventually null.
Finite or infinite horizons T' give rise to different op-
timal control problems. Infinite horizon problems are
more likely to accept state-feedback solutions than fi-
nite horizon situations. When set-point changes are
to be optimized, usually the electrical power waste
required by the whole operation is the cost to mini-
mize (see Costanza, 2004). At each time, the electrical
power is an involved nonlinear function of # and 7, so
it is difficult to guess the incidence of changes on each
individual variable over the total cost.

For the regulation problem typical quadratic op-
timization criteria will be adopted. Through the
quadratic cost formulation the Lagrangian will take
into consideration two conflictive objectives, each one
corresponding to the trajectory of a unique variable.
The desired accuracy in reaching the equilibrium value
for 0 is compromised by the amount of energy spent
by the required manipulation of 7, through

L(z,u) = gz® + ru? (quadratic cost). (10)

The weight ¢ may be chosen as a nonnegative con-
stant but 7 must be strictly positive for the optimal
control problem to make sense. Time-dependent pa-
rameters ¢ and r may be treated without significant
additional complication in finite horizon problems. In
such cases the final penalty will also be quadratic

K(z(T)) = s [=(T)]?, s > 0. (11)

IV. THE HAMILTONIAN FORMALISM

The Hamiltonian of the approximated problem (bilin-
ear model and quadratic cost) is

H(z,u,A) = L(z,u) + A\g(z,u) =

qz? + ru? + \(Az + Bu + xNu), (12)

where A is a real variable playing the role of a gener-
alized Lagrange multiplier.

The Hamiltonian results to be regular in this case
(see Kalman et al., 1969; Sontag, 1998), i.e. that for
all fixed pairs (x, \) there exist a unique control value
u® that minimizes 7 with respect to u, namely

0 (B4 Nx)X
u’(0,\) = —

For the one-dimensional infinite horizon case (T' =
00, K = 0) it is known (Cebuhar and Costanza, 1984)
that the variable A along the optimal trajectory Z(.)
takes the form

A(t) = 22(t) p(2(1)),

(13)

(14)
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Figure 4. Responses to the optimal control. Differ-
ences are conveniently shifted and scaled, to be dis-
played in the same plot as the absolute values.

with p(z) = 24) 1+ sign(A)y/1+ qﬁ(zw) , (15)
and w(z) = (B—+TNL)2 (16)

Knowledge of p(z) renders the optimal control in the
desired feedback form through:

(z, 2z p(x)).

Figure 4 shows the performance of this control
applied to the original system and to its bilinear
approximation around the steady state (6p,7m0) =
(0 38545805 —0.05), with

(17)

U=1u

= 39 29 (60, mo) = —363.7724,
B = 52(60,m0) = —2714.1,
2
N = 24 (8, m0) = ~770.1951

and the parameter values

vh = 109
v =10710
v§, =107".

Notice that B + Nz = 0 for |z| = —§| > 1, so
p(z) is always well defined since |§ — 6y| must be less
than 1 to have any physical meaning.

V. INTEGRATING THE COSTATE
ON-LINE

The generalized multiplier A is usually referred to as
the costate, or adjoint variable in the Hamiltonian
formalism of optimal control theory. It is well known
that along the optimal trajectory it coincides with the
gradient

< ov

A(t) = 5 (6,3(0) (18)
of the “value function” V (also called the “Bellman
function”) associated with the optimal control problem

at hand, defined in terms of the cost functional as the
total cost associated to the optimal trajectory that
starts at time 7 from the state x, i.e.

V(r,z;) = 11(1f) Tz (1) =

ir(lf){/ L(2(8), u(®))dt + K(o(T ))}, e [0,7]. (19)
ul .

Then, in particular for 7 = 0, the value of A(0) =
%—‘; (0, zp) is approximately equal to the variation of the
(optimal) cost due to an unitary increase in the initial
state condition, consequently called “marginal cost”
in Economics. Therefore, knowledge of the costate \
may help to take economical decisions when consider-
ing the magnitude of eventual changes in set-point for
the state z.

But also, when the Hamiltonian is regular, the
costate allows to evaluate the optimal control in sim-
plest terms, which will be used here. By defining
then the optimal costate satisfies the adjoint equation
obtained from

OH° oL

)'\=——=—

Jg
hdad 0 _\2Z
pe % (z,u’(z, ) — A

9z (z, uO(w’ A) =

—%—Z‘(m, u(z, \),\) — —(:L' u(z, \), /\) (a: A)

N(B + Nx)

2
= (21)

A= —2qz — AN+
with its natural (final) condition
AT) =

g—‘;(T,x(T)) = %(x(T)) (22)

Also, the optimal state trajectory is a solution to

__OH° _[oL, dg
&= = %(x,u (Z,A)+ A %(x, u0(z, \))
o’ - 0 - 0
a(a)a A) +g(z,u ($a )‘)) =g(z',u (1")‘))1 (23)
i.e. (B+N )2
. + Nz
&= Az — —27'—)\’ (24)
with the initial condition
.’v(O) =T (= eabsolute (O) - 90) (25)

Equations 24 and 21, together with their respec-
tively initial and final conditions, give rise to a two-
point boundary value problem, usually analytically
unsolvable and difficult to treat numerically. It is
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known that in the linear-quadratic case the two-point
boundary value situation may be transformed into an
initial-value problem (see for instance Sontag, 1998).
It is shown below that such a useful result may also
be obtained for the bilinear-quadratic problem. For
simplicity, the algebraic manipulations will be made
explicit only for the one-dimensional case.

(i) The infinite horizon (steady-state) case. By propos-
ing

ov

—(t ) = 2$p(1:) (t z) =0, (26)

then the Hamilton-J acobl—Bellman (HJB) equation for
the bilinear-quadratic problem reads:

2
0=, 5) = a4 w0, G|+ (20
v
or
_ 5, 9V, 1(B+Nuz) a_v2_
= +(‘?wa 4 r ox -
Mﬁpzxz
'

Az + (B+xN)u°(x A
| )

= qz® + 24pa® —

Then, for any nontrivial state z (for instance for an
initial condition zy # 0), the proposed form for %—‘;
will be valid provided that p(z) is a solution to the
generalized (z—dependent) algebraic Riccati equation
(GARE)
B + Nz)?

a+24p0) - EX XD g 0. (ag)
Keeping t fixed, the value function will not decrease
with |z| (the cost should increase as the state departs

from zero), then for z # 0 the sign of the variables
would require

10v ov
2z Ox

1 oV 1 90V

= 200" T 2al 1] =
(29)

Then, finding the nonnegative solution to the GARE

equation would be equivalent to obtain the missing

initial condition for the adjoint equation, namely

A(0) = 2zop(z0)

Therefore the adjoint equation 21 can be integrated
on-line and at each time the optimal control can be
implemented as a state feedback from equations 17
and 13.

Figure 5 shows that on-line integration of the costate
is really efficient, since it is compared against the exact
value calculated from equations 14. Calculations were
performed with the following values of the cost-weight
parameters: ¢ =1; r = 5.

Figure 6 shows the evolution of a 0.1 perturbation in
the state  with and without control. The control was
generated by on-line integration of the costate equa-
tion. It is clear that regulation is necessary, since the

p(z) =

(30)
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Figure 5. Costates )\, evaluated on-line (integrated),
and calculated from equations 14-16 (exact). Differ-
ences between both curves are appropriately scaled.
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Figure 6. State trajectories after a big perturbation.
Comparison between the free evolution (v = 0), and
the controlled evolution (u optimal).

free-state evolution, even when heading to equilibrium,
after some time departs and diverges.

(ii) Finite horizon problem. In this case the quadratic
cost objective takes the form

T
I (u) =/0 {gl=@®)* + r[u®))*} dt + s[z(T)]*, (31)

with ¢,s > 0, and r > 0.
It can be shown (Cebuhar and Costanza, 1984) that
in this case oV

Oz
with p an analytical function of z and smooth on ¢.
Local controllability and observability will be assumed
true in what follows. Then, along the optimal trajec-
tory, a necessary condition stemming from 18, 32, and
21 must be met, namely

(t,z) = 2zp(t, ) (32)

= 2[$p+w(— + F )]
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Figure 7. P(t) = p(t,Z(t)) for several optimal state
trajectories ending near zero. Z(T) decreasing from
top to bottom.

—2qx — A\ + &B;Lx))@ =

-2 {x [q + Ap — N_(B:—_Na:_)$p2] }

Now using 24 and the equations for A again, the
following PDE for the optimal p is obtained

(33)

Op (B4 Nz)* . dp
AT g, =
g 24p+ (B+2Na:3(B+J\’:L')p2 , (34)

which can be considered as a generalized differential
Riccati equation (GDRE), with boundary condition
1 1
p(T0) = - 10y = L 9@ s,

The GDRE has been solved by using the method of
characteristics and a value of s = 0.1. The variable x
has been discretized. Results are illustrated in Fig. 7
and 8. In Fig. 7 the values of p(t, Z(t)) are shown for
several optimal trajectories, each one corresponding to
a different final state value Z(7') (and resulting then
in different values of Z(0)). The final value p(T, Z(T))
is constant and equals s.

Figure 8 illustrates the optimal state trajectories de-
parting from different initial conditions, that can be
obtained as a collateral result from the numerical in-
tegration of p in the reverse direction (Egs. 34 and
35). It is clear that the solution to the optimization
problem stabilizes this system, since all perturbations
are abated.

As before, the optimal control can then be read-
ily constructed if all values of p(¢,z) have been saved,
from

(35)

a(t) = p(t,z(t),  (36)

or by integrating Eq. 21 on-line, starting with the
condition

_ [B+ Na(t)|z(t)

A(0) = 2p(0, zo)zo - 37)

X(t), q=0.5 =20 $=0.1
08 T

o8l |
o0sf
04l
0.3}
02 \x\

o1f

Y

Figure 8. State trajectories corresponding to the gen-
eralized Riccati solutions depicted in Fig. 7. P(0)
decreasing from top to bottom.

VI. OBSERVABILITY ASPECTS

Although knowledge of the state z(t) is enough to de-
scribe and control the dynamics of ¥, f-values are not
continuously available in general. The natural output
of the system is the current density J, which in the
present case is a known function J = h(6,n). Nonlinear
observers for a vast kind of nonlinear systems (Isidori,
1989; Garcia, 1993, 2004; Gauthier and Kupka, 1994)
have been devised to recuperate the value of the state
from input-output information when necessary.

When local approximations are not sufficiently accu-
rate, or when changing of set-points imply significant
variations in the state variable, then the full nonlinear-
ity of the system should be handled. Consequently, the
original dynamics 4 will be considered in this Section,
together with the observation function

J = F(vy +vg) (= h(0,n))

An efficient nonlinear observer has been adopted for
this case. The following intermediate definitions are
needed to illustrate the structure of such a device,

(38)

0 - _E .,1 -0 _ E.
Uv—m,vv—vv‘kx,

0o - _E .1 - .0 E.

Vg =16, YvH=Vnt g
Ai(w) - _F 1 1 dv7 .
Aln) =-7 [Uffvv+1’§1v1{+“—§(1_gi) ]»

B -2k [ (39)

1 .
o (7 (1—95)2] ’

D) =£ [Uf/”?/ +vhvg + %] ;

C(n) = Flogvy — viopl;
E(n) = Floj o), — vfofy]
The original system reads now
6 = A(n)0 + B9% + D(n)
J=Cme+Em),

(40)
(41)
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and the proposed observer has the following form

© = A(n)® + BO?* + D(n) + @

{J = C)© — E(n)},0(0) = bo;

{=—p¢—2Am)¢ +2[CM))*, ¢(0) =G >0. (43)

where © stands for the observed values of 6, obtained
from on-line input/output (n/J) data, and the ODE
for the correction factor ( is found from the require-
ment that the observation error

e()=0()-6()

tend to zero for any control strategy, which in turn is
guaranteed provided that

(42)

(44)

1
Wit,e) = 5¢0)e? (45)
be a time-dependent Lyapunov function, i.e., a smooth
positive-definite function of e with negative derivative
along e—trajectories. Notice that from equations 43
and 45, and by defining

W(t) = W(t,e(t)), (46)
then the following result can be obtained
W(t) = —kOW(?), (47)
with 5
k(t) =p—2B(O(t) +6(t)), (48)

and since the state and its observation are bounded
(in this case 0 < ©,60 < 1), then u can be chosen to
make k always positive. Actually, an estimation of the
type

Celt)élt) = Wit) ~ —BW(E) = — S RCLe(@)]?,  (49)

where ¢ and k are characteristic values for the corre-
sponding variables in the time interval under consider-
ation, indicates that the error will tend exponentially-
like to zero with parameter —% < 0.

Figure 9 illustrates the performance of the observer
after a simulated perturbation of 0.02 in the (un-
known) state, a value of ¢ = 1 (in this case, B <0,
so any positive y will do), and {; = 1. The observer
catches the state in a very small time, so the control
variable will not be affected in any perceptible way
when calculated from ©—values instead than from the
physical state 6.

VII. CONCLUSIONS

In this paper an integral approach to the regulation
problem for the Hydrogen Evolution Reactions of Elec-
trochemistry has been developed and the extension to
a class of nonlinear processes discussed and illustrated.
The quadratic-cost optimal regulation problem was

35:327-335 (2003)
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Figure 9. Observer performance.

posed for finite and infinite time horizons, and their
solutions were substantiated and calculated. Classi-
cal linear-quadratic theory was discarded since there
exist qualitative features of HER equations that are
irreducibly nonlinear, like hysteresis loops and closed
periodic orbits far from the origin. The optimization
of these processes has an increasing practical interest
in the light of the energy crisis recurrently appearing
in contemporary industrialized world.

In steady-state situations the proposed strategy re-
sults suboptimal, though accurate enough for engi-
neering purposes. The basic equations for an alterna-
tive treatment of finite-time restrictions based on the
Hamiltonian formalism are presented but not applied
to the present problem due to its numerical involve-
ment.
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