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Abstract — In the present work, a method for
rotor support stiffness estimation via a model
updating process using the sensitivity analysis is
presented. This method consists in using the
eigenvalues sensitivity analysis, relating to the rotor
support stiffnesses variation to perform the
adjustment of the model based on the minimization
of the difference between eigenvalues of reference
and eigenvalues obtained via mathematical model
from previously adopted support bearing stiffness
values. The mathematical model is developed by the
finite element method and the method of adjustment
should converge employing an iterative process. The
performance and robustness of the method have
been analyzed through a numerical example.
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I. INTRODUCTION

Mathematical models have been used to simulate and to
accomplish predictions of the vibratory behavior of the
dynamic systems. In fault detection and model updating
there is a particular interest in obtaining relationships
between the parameter variations of the system and its
modal behavior or its response due to different
excitation forces. In this case, the sensitivity analysis
has been successfully used (Zimock, 1987).

In general, the model adjustment is carried out in
terms of the mass and stiffness parameters of the
system. In the publication of Zhang er al. (2000), a
successfully model updating method to reduce the
difference between the measured and calculated natural
frequencies was presented. Sun er al (2000) also
present a sensitivity-based model updating method to
automatically minimize the difference between the
analytical and experimental model by using the least
square algorithm. Several works (Sheinman, 1996;
Kosmatka and Ricles, 1999; Dems and Mréz, 2001)
have been devoted to model updating in the process of
fault detection employing modal parameter sensibility.

An application that has demanded a lot of interest in
the model adjustment is the identification of stiffness of
supports of rotating systems (Su and Huang, 1997,
Rajan et al., 1986). In the rotating machines, the support
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stiffness values normally are very difficult to be
determined and they are not directly found in the
literature. They are function of the bearing type, rotating
speed of the machine, characteristics of the oil lubricant
or rolling bearing employed, pedestal and foundation.
However, the other dynamic parameters of the machine
can be calculated with satisfactory accuracy from its
design and from user or manufacturer information. The
support stiffness identification is very important in the
development of mathematical models with guaranteed
accuracy in representing the dynamic of the system, and
it is known that it is only possible when the parameter
uncertainties are significantly reduced (Smart et al.,
2000; Sinha et al., 2002).

Although numerous papers on support stiffness
identification have been published, most of them just
work with flexible supports. However it is known when
the supports have high stiffness, their sensibility with
respect to the modal response becomes very small, and
it can induce instability in the algorithm, hindering the
convergence, so a robust algorithm is necessary.

II. SENSITIVITY ANALYSIS

Consider a  multi-degree-of-freedom  undamped
mechanical system described by equation,
[+ [k H}=o0, M

where [M] and [K ] are matrices of mass and stiffness
respectively, and {y} is the displacement response
vector. Now, it is admitted that in the eigenproblem
solution the vibration modes are conveniently
normalized to produce,

o] [m]e]=[1].
o] [k]@]=[A].

where [®] and [A] are the eigenvector and eigenvalue
matrices respectively, and [/ ] is the identity matrix.
Mathematical sensitivity analysis relations are now
sought that show how the matrices [A] and [®] change
when the matrices [M] and [K] change. For this purpose
the matrix Taylor expansion can be used. For
sufficiently small changes in the parameters of the
system (1), only the first term in the expansions need to
be retained, i.e.,

(22)
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A(m.k) = A(m, k) + 0, A(im. k )k — k) +

+0, A, k)(m—m),

O(m., k) = O, k) + 0, (M. k )(k — k) +

+ 0, ®(m. k) (m ).
where the partial derivative of the modal characteristics
matrices are called the sensitivity matrices of the
mechanical system (1) and the over-marks indicate the
initial values of the parameters. The sensitivity of the
modal parameters with respect to the stiffness matrix
change can be obtained by derivative expressions,

%ak fo] = o], @
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Differentiating Eq. (2a) with respect to an arbitrary
element of the stiffness matrix gives the relationship,
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Since the partial derivative of the mass matrix [M]
with respect to stiffness is null and introducing Eq. (4)
into Eq. (6), it results,

s o) fol+ [of rfels*]=0. @)

. The Eq. (7) can be simplified by using Eq. (2a) to
give,

[s#] +[s*]=o0. (8)

In the same way, differentiating Eq. (2b) with

respect to the stiffness, it results,

AL et oy Wiol oy 1?4, )

7 7
and introducing Eq. (4), we have,
s T lor kel &, o) [Tl ]- 0,0, (10)

and finally, by using Eq. (2b) the Eq. (10) can be
simplified to give:

[Ski/]r[/\]+ [kw]+ [A][Ski/]z A an
- [SW IA]+ [A][S“/]Jr []%/ru]z O (12)
where,
[k, ]-loF a[K][q)] (13)
Yu Yo o Vm
[CD] J’21 J’22 y:2" ) (14)
Y Y2 0 YV

The eigenvalue and eigenvector sensitivities due to
small changes in a particular element of the stiffness
matrix with indexes i =1 and j = 2 can be determined by
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using the Eq. (12), in which the matrices will be

developed in the form,

o1 0 -0
0 0 0
[0 ]= [0l [0 0 0[] (15)
000 -0
Yuya Yuya Y1Yan
[I%klz]z J’1z:y21 J’12:y22 Y12:y2n , (16)
Y21 Yl YinYon
[A]lsklz]:
A0 e 0TSy 8w oS8,
o 4 0 SZl S,y e S, | - (A7)
0 O )L Sﬂl SHZ S)m
_}HSH }“1512 iSln 1
[A][Sklz]: 12:921 )'22922 . lz?z;z (18)
_/7')1 Snl /111 SnZ o /?'n N nn |
Proceeding analogously one obtains,
-j'lsll /?'ZSIZ /1"51"_“2
[SklzlA]z )Ll‘:ng /122922 4, SZn , (19
_/11 Snl /12 SnZ o /ln Srm a
and finally,
[A]lsml_ IS/(IZIA] _
k12
0 (4= 2)st’ (4= 2,)88,)°
_ (4 = 4)551? 0 (A = 2,)85,° (20)
(in_}“l)Sll;ll2 (/111_/12)5‘:32 0

In the Eq. (12), by considering the elements of the
main diagonal of the matrices, the following expressions
can be described,

4“2 =Ynya

S/lk1 —y y
12722 S/zl"/=y'kyjk’

@n

S/lﬁlz =YY

and, by taking the elements out of the main diagonal of
the matrices, one can then determine the expressions,

k
0= (2 =2, )52 + yy\3y, — 812 = - 21220
/1] _/7'14
0=(1, — 2.)sk! + V1Y _y §k12 _ yl2y2n’
( 2 ) 2n 12.2n 2n /12 —/L,, (22)
ski :—;"’ﬁ okl =12, nsl % )

—4
The elements of the sensitivity matrix of the
eigenvalues with respect to the stiffness changes are
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determined by Eq. (21). On the other hand, the elements
of the sensitivity matrix of the eigenvectors are obtained
by Egs. (4) and (22).

I1. ESTIMATION METHOD

Consider that one wants to estimate the stiffness values
of the support of a real rotating system. A mathematical
model for that system is developed, in which the initial
support stiffness values are arbitrarily adopted. Thus,
the theoretical eigenvalues, A; (k= 1, 2, ..., N), can be
can be determined, where N is the number of bearings
of the system. The sensitivity of these eigenvalues with
respect to changes in the stiffness value of each support,
S2% , also can be given from modeling by using the Eq.

(21). Also consider that a modal analysis was
accomplished and the first experimental natural
frequencies of the system, w,.; , were determined. The
experimental eigenvalues can be given by,

(k=1,2,...N).

In this system if one considers that the support
stiffnesses are the only parameters that will vary, then
the Eq. (3a) regarding the first term in the Taylor
expansions can be simplified as,

Ak)= AR)+2,AENe k).

Admitting small changes in the elements of the
stiffness matrix of the system, then the Eq. (24), when
described to a particular eigenvalue, can be expressed
as,

)Lek = (27Twel( )2 5 (23)
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The aim of the proposed method is having an
adjustment of the support bearing stiffnesses. In
modeling terms the support stiffnesses are finite
elements just connected to one nodal point, so each
stiffness value will be allocated in an element of the
main diagonal of the stiffness matrix, simplifying the
use of the Eq. (25). In that equation, in taking 4, as

(CA))

experimental eigenvalues and 4, as theoretical

eigenvalues obtained by using the initial values of the
support stiffnesses, then it can be established a linear
system of equations given by,

Dot = Ay = SHINk + SHP Ny + -+ SAN Ak,
s =2y = S Ak + 542 Ay +--+ SV Ay, 26)
Joy = Ay = SANAky + SAFAky + -+ S Ak,

and in the matrix form, the equation system (26)
become,

SHL sk S| Ak, A =
Sﬂ.’;] S/{I;Z S/lg\ Akz _ /132 - /12 (27)
SA SAE o Say [(Bky ] Ay = Ax

or

|52 k) = {a2}. (28)

The solution of the Eq. (28) will determine the Ak
values to adjust the stiffnesses of the supports, in such
manner that the theoretical eigenvalues of the machine
given by using de mathematical model become very
close to the experimental eigenvalues. From equation
system (27), it can be seen that the number of equation
is equal to the number of bearings of the machine.

It is known that the sensitivity matrix in Eq. (28)
has guaranteed accuracy only for small stiffness
changes since that equation has been deduced just
regarding the first term in the Taylor expansions.
Therefore, its solution is conveniently obtained by using
iterative procedure, and the convergence occurs
minimizing the differences between the theoretical and
experimental eigenvalues. The convergence process
finishes when these differences are smaller than a
previous established tolerance. Figure 1 shows the block
diagram of the computational program implemented for
adjustment of the support bearing stiffnesses. It can be
observed that in each iteration the Ak, values are
algebraically added to their respective & and the
elements of the {AA} vector tend to zero.

As the method uses only the first term in the Taylor
expansions, when the differences between the
theoretical and  experimental eigenvalues are
significantly high, it can occur numerical problems for
convergence during the first iterations, since the
solution of the equation system (28) can result in very
high values of Ak (unreal). To deal with this problem,
when the differences are higher than a previous
established tolerance (f0l2), they are automatically
divided in p parts so that the algorithm convergence will
happen in p steps. Therefore, a loop process occurs in
each step until the current differences become lower
than a certain tolerance (to/1), and thus the process goes
to the following step, successively, as it is shown in Fig.
1. That resource improves the robustness of the method
to estimate very rigid supports, which provide very
small eigenvalue sensibilities making more difficult the
convergence of the system of Eq. (28).

IV. ROTOR MODELLING FOR SUPPORT
STIFFNESS ESTIMATION

In this section a simplified model of rotor vibration in
the vertical direction will be described. Figure 2 shows
the schematic of the rotor-bearing system, which was
modeled by using the finite elements method. The rotor
consists of a 500 mm long shaft that is 14 mm in
diameter and was considered to be a flexible beam
divided into elements having distributed mass and
elasticity. The two disks were modeled as lumped
masses of 0.4 and 1.35 kg attached to the shaft, which is
supported by bearings modeled as springs with
stiffnesses K; and K, as shown in Fig. 2.

The rotor has been modeled into 14 finite elements
and 11 nodal points with two degrees of freedom each,
displacement in vertical axis and rotation around the
perpendicular axis. The model does not include the
gyroscopic effects.
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V. NATURAL FREQUENCIES OF REFERENCE

Model data and experimental To accomplish the simulations, at the beginning it was

eigenvalues 4, determined the first two natural frequencies of the rotor

regarding different sets of support stiffnesses. Table 1

v shows these natural frequencies, which will be used as

C=0: Cy=1: /{ek =y references in analyzing the method and its robustness.

The analysis is carried out by taking arbitrary stiffness

+ values for the rotor supports so that the method

Theoretical eigenvalues 4, calculation processes the adjustment based on these reference
frequencies.

In general the support stiffness is the most
influential factor in determining critical speeds of the
rotors. At low support stiffnesses relative to shaft
stiffness the natural frequencies of the rotor are almost
Yes entirely dependent upon the stiffness of the bearings.
When the supports become very stiff, the rotor is said to
be shaft dependent because bearing stiffness changes
cannot raise natural frequencies significantly. In this

No

vectorZy (1 +1)= Mx (1+1) (=0l...p-1)
p

I = vectoriy, (C2) case only changes on the shaft geometry haye impor’fant
influence on the natural frequencies. The intermediate
v condition is when the supports and shaft stiffnesses
contribute to natural frequencies determination.
Equation system solution It can be observed in Table 1 that practically there
[S/I" ]{Ak}: {a2} «— O:__ are no changes in natural frequencies when the
7 A stiffnesses are higher than 1.0x10% N/m, where the
system has reached the zone of shaft dependent.
ki = ki + Aki Therefore, the robustness of the method has been tested
for this condition, as well as for very flexible rotor
v support within of the zone of bearings dependent
Theoretical eigenvalues 4, (l.OXIO2 N/m) and for an intermediate condition
updating (1.0x10° N/m).
v VI. NUMERICAL RESULTS
Ci=C+1 Table 2 shows the results of the supports stiffness
estimation by taking different initial stiffnesses and
using the natural reference frequencies (1.408 Hz and
No 2.827 Hz) related to the rotor with supports of 1.0x10?
N/m (see Table 1). These results indicate that the
Co=Cy+ 1 method is quite effective to estimate the stiffness of the
Yes + 2y = vectori (C,) rotor supports V\.'hejn they are very ﬂex1ble, in th<? zone
where the variation of the critical frequencies is
No completely dependent of the characteristics of the

support stiffness. It can be observed that the adjustment

does happen even when it is taken quite high initial
Yes stiffnesses (higher than 10° N/m) as data for the
adjustment process, however there is an increase in the
number of iterations to converge to the solution.

It shows the adjusted stiffness
value of each support

Table 1. Stiffnesses X rotor natural frequencies

Stiffness of the Natural
Figure 1. Block diagram of the estimation algorithm supports [N/m] | frequency [Hz]
. K, K, first | second
— 1.0x107 | 1.0x10% | 1.408 | 2.827
= — 1.0x10° | 1.0x10° | 4.442 | 8.936
= | 1.0x107] 1.0x107] 13.738 | 28.118
::K L . 1.0x10° | 1.0x10° [ 36.069 | 84.517
T\j : [ i 1.0x10° | 1.0x10°] 55.012 [ 172.618
AR} 1.0x10" | 1.0x10" | 58.791 | 196.907
. ) 1.0x10% | 1.0x10% | 59.206 | 199.536
Figure 2. Model ofro_tor for support stiffnesses 1.0x10° | 1.0x10° 1 59248 [ 199.800
estimation 1.0x10° | 1.0x10° | 4921 | 71.888
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Table 3 demonstrates that when the rotor possesses
supports with stiffness around the transition zone
between bearing dependent and shaft dependent
(represented here by 1.0x10° N/m), the method is still
quite robust to converge for the solution. This result also
shows that the convergence will certainly occur if lower
initial stiffness values are taken and that the solution is
not gotten for initial stiffness values above 5.0x10° N/m.

The estimation results for very rigid supports are
presented in Table 4, where it can be verified that the
method can still reach the convergence even when the
rotor has very rigid supports, already in the zone of
rotor shaft dependent. However, in this case it is
recommended taking initial stiffness values as close as
possible to the values to be estimated, so that the
convergence can surely happen. Table 4 shows that the
convergence only occurs for initial values higher than
1.0x10° N/m, approximately.

Table 2. Estimation of flexible supports (1.0x10* N/m)

Initial stiffness Estimated stiffness
Case [N/m] [N/m] hoop

K, K, K, K, ‘
1 | 1.0x10°| 1.0x10° |9.9980x10' | 1.0004x10*| 3
2 [ 1.0x10*| 1.0x10* |9.9979x10' | 1.0004x10*| 6
3 11.0x10°| 1.0x10° |9.9979x10' | 1.0004x10*| 8
4 [1.0x10°| 1.0x10° |9.9979x10' | 1.0004x10% | 497
5 | 1.0x107| 1.0x107 |9.9981x10" | 1.0004x10*| 17
6 |1.0x10%| 1.0x10® |1.0739x10%| 1.0004x10*| 20

Table 3. Estimation of supports with stiffness of
1.0x10° N/m

c Imtla}l\sl‘;lrﬁf]ness Estimated stiffness [N/m] | Loop
ase
K, K, K, K, G
1 | 1.0x10%| 1.0x10% | 1.0000x10° | 9.9993x10*
2 | 1.0x10° | 1.0x10° | 1.0000x10° | 9.9993x10*
3 | 1.0x10*| 1.0x10* | 1.0000x10° | 9.9993x10*
4 [1.0x10°| 1.0x10° | 1.0000x10° | 9.9993x10* | 42
5 |5.0x10°|5.0x10° | 1.0000x10° | 9.9993x10* | 277
6 |35.0x10°|5.0x10° There was no convergence
7 |1.0x107| 1.0x107 |  There was no convergence
8 |1.0x10°| 1.0x10° There was no convergence

Table 4. Estimation of rigid supports (1.0x10® N/m)

C lnltla[le/trlgness Estimated stiffness [N/m] | Loop
ase
C
K | K Kk | & ‘
1 | 1.0x10*| 1.0x10* There was no convergence
2 | 1.0x10%| 1.0x10° There was no convergence
3 | 1.5x10° | 1.5x10° | 1.0508x10% | 9.7068x107 | 13
4 |2.0x10° | 2.0x10° | 1.0508x10% | 9,7068x107 | 13
5 | 1.0x10°| 1.0x10° | 1.0508x10% | 9.7068x107 | 11
6 |1.0x107|1.0x107 | 1.0508x10% | 9.7068x107 | 8
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Table 5. Estimation of supports with different
stiffnesses (1.0x10° N/m and 1.0x10° N/m)

Initial stiffness Estimated stiffness
Case [N/m] [N/m] hoop

K, K, K, K, '
1 | 1.0x10%| 1.0x10% | 1.0000x10° | 9.9996x10* | 5
2 | 1.0x10° | 1.0x10° | 1.0000x10° | 9.9996x10? | 5
3 | 1.0x10*| 1.0x10*| 1.0000x10° | 9.9996x10* | 5
4 |1.0x10° | 1.0x10° | 1.0000x10° | 9.9996x10* | 6
5 | 1.0x10° | 1.0x10° | 1.0000x10° | 9.9996x10% | 82

Table 5 presents the results of the convergence
analysis when the rotor possesses supports with very
different stiffness (one is a hundred higher than the
other). Even with that high stiffness difference the
method converges normally. Also, in this case it is
recommended to take low initial support stiffnesses to
assure the convergence.

In general, the convergence for the solution occurs
with a reduced number of iterations and the relative
errors in estimating the stiffness are very small, being
lower than 3% in the case of rotor with high support
stiffnesses (see estimated stiffnesses in Tab. 4). In the
other cases the relative errors were null practically. It is
important to highlight that those results with small
relative errors have been obtained with a tolerance
(maximum difference) of 0.01 Hz between the adjusted
natural frequencies and the natural frequencies of
reference.

VII. CONCLUSIONS

In this work a method for estimation of rotor support
stiffnesses using the sensitivity analysis is presented. A
theoretical rotor modeled through a finite elements code
was used to analyze the performance of the method and
interesting results were obtained. It is important having
an accurate model to represent the dynamics of the rotor
to assure a reliable process for model updating. In
general the implemented method has demonstrated to be
efficient and robust to estimate the stiffnesses of rotor
supports. When the method is applied to estimate
flexible supports, in the zone of bearing dependent
rotor, the probability of occurring problems of
convergence is very small, even when the convergence
process begins with initial stiffness values very different
from the values that will be estimated. When the rotor is
in the zone of shaft dependence, with very stiff
supports, the convergence can be more difficult;
therefore, it is interesting to take initial stiffness values
as close as possible of the values that will be estimated.
In this case the user's experience in dynamics of systems
can help considerably.

Another interesting fact is that the probability of
occurring convergence problems is quite reduced when
it is taken smaller initial stiffness values than the values
that will be estimated. This happens because the
convergence process begins in such condition where the
eigenvalue sensitivities respect to the support stiffness
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are considerably high, and for consequence, the stability
of the method become higher.

An interesting characteristic of the method is the
high speed of the model adjustment shown by the low
number of iterations to obtain the solution. Another
important characteristic of the method is its accuracy,
once the convergence process can precisely reaches the
natural frequencies of reference and, consequently, the
estimated stiffnesses.
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