
Latin American Applied Research  36:57-62 (2006) 

57 

AN EXTENDED MPC CONVERGENCE CONDITION 
 

A. H. GONZÁLEZ† and J. L. MARCHETTI‡ 

† Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (UNL - CONICET) 
alejgon@ceride.gov.ar 

‡ jlmarch@ceride.gov.ar 
 

Abstract— Nominal convergence of Constrained 
Model Predictive Control has been extensively 
analyzed in the last fifteen years. The inclusion of a 
terminal constraint into the optimization problem 
and the expansion of the prediction horizon up to 
infinity are the main strategies already proposed in 
order to achieve the desired stability. However, when 
a model is used in which the inputs are in the 
incremental form, these strategies tend to be 
infeasible. This paper extends the contracting 
constraint idea by including a simple-to-apply and 
less restrictive new set of constraints into the 
optimization problem, to allow nominal convergence.  
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I. INTRODUCTION 

The Receding Horizon idea uses an on-line optimization 
that updates the manipulated variable at each sample 
time. In the tracking problem, the difference between 
the predicted future outputs and the set point is the cost 
function of a minimization, and nominal stability 
reduces itself to ensure the convergence of the 
successive optimal costs. Since consecutive 
optimization problems are in essence different, it is not 
simple to compare two consecutive cost functions (the 
prediction horizon recedes in time so the successive cost 
functions differ from each other in their location). When 
an infinite horizon (IHMPC) is used, the end of the 
consecutive horizons does not vary while the beginning 
increases. Making use of the Bellman’s principle of 
optimality, which states that the tail of any optimal 
trajectory is itself the optimal trajectory from its started 
point, the convergence can be guaranteed. See 
Maciejowski (2000), pp 191-198. However, when an 
incremental form of a model is used, the effect of the 
integrating modes at the end of the control horizon must 
be zeroed in order to make the infinite open-loop cost 
bounded (Rodrigues and Odloak, 2003). Similar to the 
case of terminal constraints, this problem tends to be 
infeasible and slack variables must be added (Rodriguez 
and Odloak 2003, Odloak 2004). 

Following the strategy developed by González, et al. 
(2004), this paper extends the idea of including a set of 
contracting constraints to achieve output convergence. 
In the mentioned work, a preliminary study of 
convergence conditions that is different from the 

classical method has been made. However, convergence 
could not be properly proved. Now, two improvements 
are made: the convergence of the method is proved, and 
the whole formulation is translated into a State Space 
Model in order to take advantage of its well-known 
benefits. 

II. BASIC FORMULATION OF MPC 

Consider a system with nu inputs and ny outputs and 
consider an optimization cost function as the sum of the 
future errors inside the prediction horizon plus a 
manipulated variable penalization, namely 
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and ( ) nykiky ℜ∈+ /  is the predicted output, 
( ) nuiku ℜ∈+Δ  are the manipulated variable increments, 

p is the prediction horizon, m is the control horizon, 
nynyQ ×ℜ∈  and ( )R diag R R=

�
" , nunuR ×ℜ∈ , are positive 

definite weighting matrices, and r is the setpoint value. 
If *uΔ is the optimal input increment vector, then 
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is the optimal cost function value at time k. In the same 
way, the optimal cost function value at time k+1 will be 
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Now, following the idea used by Rawling and Muske 

(1993), an auxiliary pseudo cost function at time k+1 is 
defined using the optimal values of the input changes 
calculated at time k: 
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where ( )/ 1e k i k+ +�  is the error at time k+i, calculated 
at time k+1, using 1ku +Δ � , and1 

                                                 
1 The form of the pseudo cost obeys to the fact that, in the infinite 
horizon case, if no new control increments is introduced at k+1, then 
the optimization remains exactly the same from time k to time k+1, 
except for the starting point. 
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III. STATE SPACE MODEL 

The initial model has the form2: 
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where ( ) nuku ℜ∈  and ( ) nxkx ℜ∈ . 

Now the component errors ( )/e k i k j+ +  are written 
as functions of uΔ  in the case that state space models 
are used. 
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In the same way, at time k+1, the outputs are given by 
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2 Note that the initial model is written in term of “u”. 
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where the input ( ) ( ) ( )* *1u k u k u k= − + Δ  was calculated 
with the last optimal value ( )* /u k kΔ  computed at time 
k. This corresponds to the receding horizon idea of 
applying only the first calculated element of each 
optimization problem. Then, a new optimization 
problem is solved at the next time. 

 
It can be proved that, for the undisturbed system, if 

1ku +Δ �  is used instead of *
1ku +Δ , then 
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therefore, the difference of two successive cost function 
values *

kJ  and
1kJ +

� is given by 
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Q
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IV. THE NEW INFINITE CONTRACTING 
CONSTRAINT 

An inequality constraint that forces the cost function to 
be non-increasing is given by3 
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or, taking into account that R is positive definite4, 
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In order to make the dependence of the last errors on 
optimization variables explicit, it is useful to express 
them in terms of uΔ : 
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3 The formulation presented here is the same used in Maciejowky 
2000. 
4 Note that the constraint c1 in (11) is more conservative than the 
former. 
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where row1 and rowp are the first and the last block of 
matrix As, A1 and A2: 
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and the hat means that the variables are optimization 
variables. 

Another way to find a general expression for the 
successive contracting constraint is by “moving” the 
rows through the matrix instead of the updating input 
and the state vector. That is, 
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(15) 
where ˆkuΔ  is the vector of optimization variables and 
both, ( )x k  and ( )1u k − , are feedback measurements. 
Here, it can be seen that all the necessary information to 
write the inequality constraints is in matrices A, B and 
C. Note that in the last expression, matrices As, A1 and 
A2 were extended in time (j rows were added to the end 
of the original definition in (8)). 

Then, the optimization problem that includes the 
contracting constraint can be written as: 
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(16) 
Finally, it must be shown that, if 1ku +Δ � is a feasible 

solution of the optimization problem at time k+1, then: 
*

1 1k kJ J+ +≤ �  (17)
Thus, the (global) optimum obtained in (16) will not 

be worse than the one obtained from this particular 
solution. 

But the required feasibility is not easy to obtain and, 
as shown in González, et al. (2004), it demands an 
infinite series of (forward) constraints of the following 
form: 
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The complete MPC optimization problem is then: 
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V. DEALING WITH AN INFINITY NUMBER 
OF CONSTRAINTS 

In the formulation presented above, the number of 
constraints is infinite, but considering that the open-loop 
system is stable, only a finite number of constraints 
must be added since the plant, with null input moves 
(from k+m on), converges to a finite value5. 

Since input increments are null from k+m on, the 
constraints at a generic time k+m+j take the form 
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which is an expression in terms of ( )x̂ k m+ and 

( )ˆ 1u k m+ −  only. 
Now, when j →∞ , we have 
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5 Note that, as opposite to the infinite horizon case, the requirement is 
not ( ) forss ssu k i u r a i m+ = ≥= , but ( ) 0u k iΔ + =  
for i m≥  (control horizon hypothesis). In the infinite horizon case, 
this requirement is only stated to make possible the computation of the 
infinite cost function. 
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since matrix A is stable (has all its eigenvalues lower 
than unity), and then A∞ is a null matrix. This means 
that at time j approaching infinity, all the constraints are 
satisfied. 

Note that to satisfy the last equality constraint, it is 
not necessary that 

( )*

0

1 ss
i

i

ass

ru k m u
C A B

∞

=

≈

+ − = =

∑
��	�


 
(22)

where the matrix 
0

i

i
C A B

∞

=
∑  is clearly the gain of the 

plant and ( )* 1u k m+ −  is the last input injected in the 
open-loop prediction. 

It is important to notice that, in spite of a potential 
large number of contracting constraints, this strategy is 
less restrictive than others, which need the 
accomplishment of (22). On the other hand, the 
weakness of this strategy is that the minimum number 
of constraints to ensure the overall convergence (in case 
to exist) remains to be determined. 

In order to strengthen that the infinite number of 
constraint present in (19) still holds when a finite 
number of them is used, it is possible to require that the 
last input in the control horizon be such that the steady 
state value of the open-loop prediction be no greater 
than the set point. This condition added to a number of 
contracting constraints covering the complete dynamic 
order of the plant would help to the accomplishment of 
the constraints for all future time. Note that this strategy 
may be a bit conservative, but it is always feasible. 

 

VI. CONVERGENCE OF THE METHOD 

Now, a matrix condition must be derived to guarantee 
that both, the output error and the input increments 
converge to zero. 

Suppose that the proposed optimization problem has a 
feasible solution at each sampling time, that is, a 

( )/u k kΔ  move exists that minimizes the cost function. 
The infinite contracting constraint ensures that the cost 
is non-increasing, 
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Then, because of its positive (quadratic) condition, the 
series of cost functions { }*

kJ  is bounded below by zero 
and therefore converges. From (23) both, the term 

( ) 2
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R
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converge to zero for large k. From the last one, two 
alternatives arise: 
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where ec represents a predicted output offset. 
Note that the condition 

( ) 2
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R
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for large k (which imply, in turn, that ( )/u k k  is also 
bounded), added to the open-loop stability hypothesis, 
guarantees that the output error converges to a bounded 
value. 

Theorem 1 
If the system to be controlled is stable and problem P1 

is feasible at each time step k, then, there exist matrices 
Q and R, and horizon p, such that the offset ec converges 
to zero as k tends to infinity. 

Proof: 
Suppose that when k k→ - large enough- the output 

error tends to 0ce ≠ . Then, taking into account that the 
input increments necessarily converge to zero, the 
corresponding cost (considering a SISO case and m=1 
for simplicity) is 
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future errors in absence of new input increments. 
In this way, the (no optimal) input increment that 

guides the system to the set points (in steady state) is 
given by 
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where G is the plant gain, and r is the set point. With 
this input increment (which may not be the optimal) the 
corresponding cost is given by6 
                                                 
6 It is supposed that the on-line optimization problem is always 
feasible, and then, the steady state using the proposed input increment 
exhibits a null cost ( 0k j j

J + →∞
→ ). 



A. H. GONZÁLEZ, J. L. MARCHETTI 

61 

( ) ( )

( )
( ) ( ) ( )

( ) ( )( )
min

min

2 21

1
22 20 1 1 1

2 2 21 1 1

1 1 1 1

2

/

.

p

ck RQi

f f c c c f cQ QR

c f c cR Q R

T TT
c f f c

Q

c Q

J e k i k G e

e A G e G e Ue A G e

G e U A G e G e

e U A G Q U A G G RG e

e

−

=

− − −

− − −

− − − −

= + +

= − + = −

+ = − + =

− − +

=

∑ ��

� ��

�� �

� �

���������	��������


 

(30) 
Note that 0

fe  = cUe  because it represents the future 
error in absence of new input increments. Thus, the 
condition that guarantees the convergence of the error to 
zero is 

mink kJ J Q Q< ⇒ < �  (31)
Now, let’s remark de following fact: equation (31) 

can be expressed as 
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then, as p increases, the last element of vector Af tends 
to G, and the last part of the term 1

fU A G−−  tends to 
zero. Therefore, since the left-hand side increases with p 
while the right hand side tends to a finite value, a 
prediction horizon p does exist that guarantees (31). 
Then, matrices Q and R, and horizon p exist that 
guarantee the convergence of the error to zero, and the 
theorem is proved. 

To summarize, if (31) is true and ec is different from 
zero, then, in the open-loop optimization problem there 
are no reasons to prevent ( )/u k kΔ from moving to a non 
null value in order to eliminate ec. Therefore, the null 
condition of kuΔ  (which, in turn, is given by the 
convergence of the cost function) implies, indirectly (by 
means of the model), that ec is null. In other words, 
there are no reasons, out of infeasibility, to impede the 
closed-loop optimization to find a value of u (uss) that 
takes the output to its desired value r. Recall that this 
value of u is computed taking into account the output 
feedback and then, it will be accurate to the actual plant. 

 

VII. SIMULATION RESULTS 

A numerical example taken from Marchetti, et al., 
(1986) is used to illustrate some results; this is a second 
order system with a right half plane zero: 
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Figure 1 shows the closed-loop response of the 
second order system for a step change in the set point 
when the constraints, defined in (19), are not included in 
the control problem. On the other hand, Fig. 2 shows the 
indexes *

1 2, andk k kJ J J+ +
�� � , which correspond to this 

case. Due to the small output horizon that was adopted 
in this case, the closed-loop system becomes unstable. It 
can be seen that the index values violate in this case the 
proposed constraint. 

Figures 3 and 4 show the step response and the 
indexes when the infinite constraint is used. It can be 
seen that including the constraints defined in (19) turns 
the closed-loop system stable. The parameter values of 
the MPC for both cases (with and without infinite 
constraint) are shown in Table 1. 

Table 1. Parameter values used in the Constrained MPC 
controller (in both cases: with and without infinite 
constraint) 

Control Horizon (m) 3 
Prediction Horizon (p) 8 

Weight on uΔ  (R) 0.5 
Weight on errors (Q) 1 

Nº of Constraints 10 
 

 
 

Figure 1: Output response without infinite constraint. 

 
Figure 2: Indexes without infinite constraint. Only three 

successive indexes are shown. 
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Figure 3: Output response using infinite constraint. 

 
Figure 4: Indexes using infinite constraint. Only three 

successive indexes are shown. 
 

VIII. CONCLUSIONS 

A new MPC convergence condition is proposed when 
State Space Models are used. The strategy consists of 
the inclusion of a set of constraints that forces the MPC 
cost function to decrease, plus an appropriate selection 
of cost weighting matrices. The main contribution of 
this paper consists of the development of a detailed 
proof of convergence of the successive optimizing 
solutions, and a simple-to-apply relationship among the 
weighting matrices, which allows the output offset 
elimination. 
Even though the theoretical number of contracting 
constraints should be infinity, the simulation results 
show that, when the controlled plant is open-loop stable, 
only a finite number of them are necessary to 
accomplish the desired convergence. However, the 
precise finite number of constraints that guarantees the 
convergence and would work as a sufficient condition 
was not determined. This problem and the robustness of 
the proposed procedure in the presence of model 
uncertainties are considered matter of future works.  
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