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Abstract — This work presents a control 

algorithm for a group of non-holonomic mobile 
robots that must attain coordinately a specific 
formation, which can be fixed or moving in the work 
space. The control error is defined in terms of 
location, size and shape of the constellation of points 
placed by the robots and the constellation of 
objective points. The stability analysis of the 
proposed control system is included along with the 
results from simulation and laboratory experiencies 
which validate the good performance of this robot 
formation control system.  

Keywords — Multi-agent robotic system, robot 
formations, centralized formation control, non-
holonomic mobile robots, non-linear systems. 

I. INTRODUCTION 

There is a steady growth of applications where the 
purpose is to coordinately control a group of robots 
assigned to a specific task. Examples of tasks that 
require the cooperation of several robots are: robot 
teams for games, surveillance operations, search and 
exploration, rescue, survey and mapping, and taks that 
need organized robot teams in specific formations such 
as moving objects, cooperative handling of objects, etc.   

The research on coordinated robots starts after the 
introduction of the behavior-based control paradigm 
(Brooks, 1986). Basically, there are three approaches for 
robot coordination reported in the literature: leader 
tracking (Monteiro et al., 2004; Desai et al., 1998), 
behavior methods (Fredslund and Mataric, 2001; Balch 
and Arkin, 1998), and virtual structure techniques (Belta 
and Kumar, 2002; Lewis and Tan, 1997). Most of the 
proposed coordination control systems are not based on 
dynamic systems and control theory, largely on account 
of the complexity of multi-robot systems. This is more 
so when considering non-holonomic mobile robots. 
However, in order to ensure system stability, it is 
necessary to resort to using the tools from control theory 
and dynamic systems (Das et al., 2002; Yamaguchi et 
al., 2001). 

Within the field of robot formation control, the 
control task could be either centralized when there is 
monitoring and control of all robots to make them be 
placed at the desired position, or decentralized when 
there is no supervisor and the feedback is only the 

detected relative positions of each robot respecting their 
neighbor robots. The centralized formation control 
could represent a good strategy for a small team of 
robots, when it is implemented with a single computer 
and a single sensor to monitor and control the whole 
team. However, when considering a team with a large 
number of robots, the need of greater computational 
capacity and a large communication bandwidth could 
make advisable to use the decentralized formation 
control. Yamaguchi et al. (2001) presents a distributed 
control scheme and shows simulations for final static 
formations. Fierro et al. (2002) proposes a hierarchical 
control structure that allows the switching of controllers 
in order to have a stable formation, based on sensing 
their relative positions to neighboring robots, under a 
strategy of distributed control. 

This work considers a centralized control strategy by 
assuming as known information the sensing of the 
instantaneous relative position of each robot in the work 
space, for example, by means of a camera that watches 
and monitors the entire scene. Within this known 
context, a controller is designed to coordinate the 
simultaneous movement of a number of non-holonomic 
mobile robots to make them reach a pre-established 
desired formation that could be fixed or moving. The 
constellation of target points and the initial positions of 
the robots will be considered through the polygons 
formed by their positions. Using non-linear control 
theory, it is verified that the designed controller leads to 
reaching asymptotically the objective of robots 
formation.         

The work is organized as follows. Section II defines 
the error model used for designing the controller. 
Section III presents the proposed controller and the 
stability analysis for the formation control system. 
Section IV shows the results from simulations and 
laboratory experiences, and Section V gives some 
conclusions on the work. 

II. FORMATION ERROR MODEL 

The first aspect that arises in the problem stated for this 
work is to define an error in the formation between the 
group of n robots (constellation of robots CR, see Fig. 1) 
and the group of their n desired positions (desired 
constellation CD). 
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Fig. 1: Constellation CR and CD, for n=4 

 
In order to calculate an index for the error between 

constellations CR y CD, let’s consider that ξi=[xi yi]T is 
the position vector of the i-th robot, and that        
ξdi=[xdi ydi]T denotes the i-th desired position, with 
i=1,2,..,n. For each case, the n position vectors can be 
arranged in the global position vectors ξ=[ξ1 ξ2  ... ξn]T 
and ξd=[ξd1  ξd2  ... ξdn]T. This work assumes that the 
indexes have already been assigned to the robots by 
means of, for example, an adequate assignation 
algorithm to make the robots travel the shortest distance 
to accomplish the desired formation, and to decrease the 
collision risk between robots. One of such algorithms is 
presented in Kelly et al. (2004). 

The difference between the actual and the desired 
robots’ positions is: 
 ξξξ −= d

~  

The formation error is defined as follows (Kelly et 
al., 2004): 

yyy d −=~  ; ( )dd ξyy =  ; ( ) ( )ξξyξy y d

~
−==  

where y is the output variable that captures the 
information on the state of the group of robots (posture, 
form, moments, etc); yd is the desired output variable. 
Function ( )ξy  is defined such that it be continuous and 
differentiable, and the Jacobian matrix J that relates: 
 ( )ξξJy =   ;  ( ) ( ) nnxyJ 22ℜ∈

∂
∂

=
ξ
ξξ  (1) 

is of full rank. The present work uses the following 
definition for the output variable: 
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which represents the relative positions of the robots and 
the formation centroid. The resulting Jacobian matrix is: 
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III CONTROL SYSTEM 

The control objective is to make the mobile robots reach 
the desired formation as defined by yd. Formally, the 
control objective is to satisfy: ( ) 0~lim =

∞→
ty

t
. 

As a first step, a vector with reference velocities for 
the robots is specified as a time function computed as: 

 

 ( ) ( )[ ]yKyJ dr
~1

!

+= −ξξ  (3) 
 

where: ( ) ddd Jy ξξ= . K(.) is a matrix function which is 
introduced to prevent generating reference velocities 
larger than the physical limits of the robots. This 
function is designed such that xTK(x) - with x∈ℜ2n - is 
positive globally defined. 

In Eq.(3), [ ]TT
rn

T
r

T
rr ξξξξ ...21= , where 

ririri v ϕξ ∠=  (see Fig. 2) is the reference velocity of the 
i-th robot. 

From (3), if ξξ ≡r
 (ideal velocity controllers), it 

yields (using Eq. (1)): 
 ( ) 0~~ =+ yKy  (4) 

By introducing the following Lyapunov candidate 
function and its time derivative for system (4): 
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it is then clear that the closed-loop system has 
asymptotic stability, thus ( ) ∞→→ tty  with 0~ . 
Equivalently dy y→ , which means that the relative 
positions and the formation centroid converge to their 
desired values asymptotically. This condition is verified 
for the ideal case of the robots following exactly their 
reference velocity. This is not so for a real controller, 
which eventually reaches asymptotically the reference 
velocity. The convergence to zero of the formation 
control error, under these real conditions, will be 
analyzed at the end of this section; after considering a 
controller proposal to make the non-holonomic robot 
reach the reference velocities.  

 

 
Fig. 2: Robot and its reference system 
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The linear and rotational dynamics of a mobile robot 
are approached through the following linear differential 
equations: 

 ( ) ( ) ( )
( ) ( ) ( )tuKtTt

tuKtvTtv vv

−

+

=+
=+

ϕϕϕϕ
 (6) 

 
LRLR uuuuuu −=+= −+   ;   

where v(t) is the linear velocity of the robot; ϕ(t) is the 
robot’s heading (Fig. 2); Tv, Tϕ are linear and rotational 
time constants; Kv, Kϕ are gains in the model; uR, uL are 
the electric input voltages applied to the right and left 
motors respectively, and u+, u- are the common and 
differential voltages. 

The control commands for the common and 
differential voltages applied to the robot’s actuator will 
be computed so as to ensure the robot reaches the 
reference velocity asymptotically. These control laws 
are of the inverse dynamics type (Slotine and Li, 1991). 
The control law proposed for the heading control is: 
 ( )[ ] 0,~~1: 3232 >+++=− kkkkT

K
u r ϕϕϕϕϕ

ϕ

 (7) 

where ϕr is the reference heading of the robot, 
ϕϕϕ −= r

~  is the robot heading error and 32 ,kk  are 
design gains. By equating Eq. (7) to the second Eq. of 
(6), the following closed-loop equation is obtained: 
 0~~~

32 =++ ϕϕϕ kk  (8) 

this implies that ( ) 0~ →tϕ  exponentially with t→∞. 

The control law proposed for the linear velocity is: 
 ( )[ ] 0~cos~1: 11 >++=+ kvvkvT

K
u rv

v

ϕ  (9) 

where vr is the module of the robot reference velocity, 
vvv r −=~  is the velocity module error and 1k  is a 

design gain. Factor )~cos(ϕ  allows attenuating the 
correction of the velocity module when the robot 
heading is not correct, thus giving a better robot 
evolution. By equating Eq. (9) to the first equation of 
(6), the following closed-loop equation is attained: 
 0~cos~~

1 =+ ϕvkv  (10) 

Considering the following positive definite function 
and its time derivative: 
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According to Eq. (8), ϕ~cos  reaches positive values in a 
finite time, while v~  continues being finite. Therefore, 
the second Eq. of (11) is negative definite in a finite 
time, which allows concluding that ( ) 0~ →tv  with 

∞→t . 
This way, in the design of the controller it has been 

proven that ρξξ =−r
 with ( ) 0→tρ  (asymptotic 

convergence of velocities). Expression (3) can now be 
written as (using Eq. (1)): 
 ( ) ρJyKy =+ ~~  (12) 

Considering: 
 ( ) yKyK c

~~ =  (13) 

where: 
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 kgi>0 for i=1,2,..,2n; a>0. 
it follows: 
 yKJy c

~~ −= ρ  (14) 

Regarding the Lyapunov candidate function and its 
time derivative: 
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A sufficient condition to make the second equation 
of (15) be negative definite is: 
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The last equation is conceptually valid if 
( ) ρJk gjj

>min , or if it is verified in a finite time. 

Since ( ) 0→tρ , it means that ( ) 0~ →ty  with t→∞. 

Remark 1. The effect of errors from estimating robot 
positions on the stability of the system can be analyzed 
following a similar procedure. By performing this 
analysis, it can be concluded that the formation errors 
converge into a ball whose size depends on the errors of 
the robot’s position estimation. 

 
Remark 2. To choose the constants of the matrix Kc the 
next analysis can be considered. For 0iy ≈ , the 
elements of the matrix gain in (13) are 

( ) ( ) ( )1 1 2 2/ ... /g g n nK y k y a k y a⎡ ⎤≈ ⎣ ⎦
. For 0iy >> , 

( ) ( ) ( ) ( )( )1 1 2 2...g g n nK y k sign y k sign y⎡ ⎤≈
⎣ ⎦

, the right 

part of this equation is a bound for K(.). The constants 
kgi and a should then be chosen so as to avoid saturation 
of the control signals for large errors and to have a good 
performance of the system for small errors iy . 
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IV SIMULATION AND EXPERIMENTATION 

Simulations were carried out with a set of three robots 
(n=3) to illustrate the behavior of the proposed control 
system. Static formations are considered for the first 
two simulations, whereas in the third simulation the 
centroid of the desired formation varies through time. 

The parameters of the tracking control of reference 
velocities used in simulation were set to: 
 k1=1,  k2=1.3,  k3=2.7. 

The first simulation considers a static desired 
formation, with gains for the formation control:  

kgi=30, i=1,..,4; kgj=15, j=5,6; a=50; 
the initial position and heading of the robots: 
( ) [ ]T0,0,3.0,3.0,2.0,4.00 −−−−=ξ  (given in meters), 

( ) 001 =ϕ , ( ) 002 =ϕ , ( ) 003 =ϕ ; and the desired 
formation: [ ]Td 3.0,0,0,2.0,0,2.0−=ξ  (meters). 

From Fig. 3 and Fig. 4, it can be noted that the 
convergence of the relative position between robots is 
faster than the convergence of the constellation centroid 
towards its desired position. The cause for this is that 
the first four gains of Kc (kgi, i=1,..,4) are greater than 
the last two gains of Kc (kgj, j=5,6). According to the 
formation error y~ , the four first gains of Kc correspond 
to the error of relative positions, and the two last gains 
of Kc correspond to the error of the constellation 
centroid. 

The second simulation considers the same 
conditions as for he first one, though just modifying the 
gains of the formation controller to be equal and set to: 
 kgi=15, i=1,..,6; a=50; 

From Fig. 5 and Fig. 6, it can be noted that, in 
contrast to the first simulation, all the errors come to be 
closer to zero at a same time.  

 
Fig. 3: Evolution of the robot formation in the first 

simulation. The small circles and arrows indicate the 
initial posture of the robots, and the small stars, the 

desired formation. 

 
Fig. 4: Evolution of the formation error in the first 

simulation. The solid lines are the relative error between 
robots, and the dash-and-dot lines are the constellation 

centroid error. 
 

The third simulation considers the same initial 
positions and headings as for the first simulation. The 
initial desired formation is (given in meters) 
 ( ) [ ]Td 3.0,0,0,2.0,0,2.00 −=ξ  

The centroid of the desired formation will move 
along a straight line forming a 45 degree-angle with the 
horizontal, with a velocity of 0.0707 m/s. 

The following formation control gains are used: 
 kgi=30, i=1,..,4; kgj=15, j=5,6; a=50 

The same observations made for the first simulation 
can be expressed for Fig. 7 and Fig. 8. In addition, it can 
be noted that the formation controller shows a good 
performance in following the desired constellation with 
time-varying centroids. 
 

 
Fig. 5: Formation evolution in the second simulation. 

The small circles and arrows indicate the initial posture 
of the robots. The small stars, the desired formation. 
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Fig. 6: Evolution of the formation error in the second 

simulation. The solid lines are the relative error between 
robots. The dash-and-dot lines are the constellation 

centroid error. 
 

 
Fig. 7: Robot formation evolution in the third 

simulation. The small circles and arrows indicate the 
initial posture of the robots. The doted triangles are the 

desired formation at a given time instant. 

 
Fig. 8: Error evolution of the robot formation in the 

third simulation. The solid lines are the relative error 
between robots. The dash-and-dot lines are the error of 

the constellation centroid.  

For the experimental stage, a Direct Visual Control 
System -thoroughly described in Carelli et al. (2003)- 
was used. This control system is based only on the 
measurements made on the visual plane of the camera, 
i.e., the control is performed on the image plane and not 
on the work plane (the plane on which the robots move). 
The camera is fixed, as shown in Fig. 9. 

Since the control is performed on the image plane, it 
should be taken into account the dynamic model for 
each robot on the image plane (Carelli et al., 2003). 
Such a model is stated by: 

 

 ( ) ( ) ( )
( ) ( ) ( )tuKtJTtJ

tuKtvJTtvJ vvvv

−
−−

+
−−

=+

=+

ϕϕϕϕ ϕϕ 11

11
 (17) 

 
LRLR uuuuuu −=+= −+   ;   

 

Jacobians 
vJ  and 

ϕJ  are related as: 

 ϕϕ ϕJvJv v ==    ;    
 

where, v , ϕ  are the robot’s velocity and the heading on 
the image plane, whereas v, ϕ are the same variables but 
on the work plane. Constants Tv, Tϕ, Kv and Kϕ are the 
same ones as those used in Eq. (6). 

The control laws proposed in Carelli et al. (2003) to 
control the linear velocity and heading of each mobile 
robot on the image plane are:  

 

 ( )[ ] 0,~~: 3232

1

>+++=
−

− kkkkT
K
J

u r ϕϕϕϕϕ
ϕ

ϕ  (18) 

 ( )[ ] 0~cos~: 11

1

>++=
−

+ kvvkvT
K
J

u rv
v

v ϕ  (19) 

 

Jacobians 
vJ  y 

ϕJ  are estimated on-line using the α-

β filter, which was described also in Carelli et al. 
(2003). 

The formation law of Eq. (3) does not change 
because the formation will be made on the image plane 
instead of the work plane. Therefore, 

 

 
ririri v ϕξ ∠=  (20) 

 
 

 
 

Fig. 9: Experimental systems and cellular robots. 
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To localize the robot on the image plane, a tracking 
system was developed which estimates from the video 
stream the robot’s position and heading direction over 
time. The video camera uses an RGB representation, 
allowing colour detection for robot segmentation in the 
image plane. The robot position on the image plane is 
thus estimated by calculating the centre of mass on the 
binary image obtained from the colour segmentation. 
The robot heading direction is estimated likewise using 
the angle of the vector passing through the centre of 
mass of two distinct colour bars located at the front and 
back of the robot. These variables and their derivatives 
required in the control laws of (18) and (19) are 
estimated using the α-β filter. 

The experiences involved performing the triangle 
formation of cellular robots. The centroid of the desired 
formation will move with a constant desired velocity.  

The initial desired formation (in pixels) and the 
velocity of the desired robot formation centroid are: 
 

 ( ) [ ]Td 31,109,31,31,109,700 =ξ       
 

 vcdx=10 pixels/seg  ;  vcdy=8.1 pixels/seg 
 

The constants of the formation control system used 
in the experiences are: 
 

 kgi=27, i=1,..,4; kgj=20, j=5,6; a=50 
 

 Robot 1: k1=7, k2=6, k3=5. 
 

 Robot 2: k1=8, k2=6, k3=8. 
 

 Robot 3: k1=8, k2=6, k3=5. 
 

The values for the model constants 
vK , 

ϕK , 
vT , 

ϕT  
(Eq. (6)) of each mobile robot, are: 
 

 Robot 1: 
volt

cmKv −
=

sec
19,1 , 

volt
radK
−

=
sec

17,0ϕ
,  

 sec132,0  =vT , sec365,0  =ϕT . 
 

 Robot 2: 
volt

cmKv −
=

sec
19,1 , 

volt
radK
−

=
sec

17,0ϕ
,  

 sec132,0  =vT , sec365,0  =ϕT . 
 

 Robot 3: 
volt

cmKv −
=

sec
28,1 , 

volt
radK
−

=
sec

22,0ϕ
,  

 sec14,0  =vT , sec4,0  =ϕT .  
 

The experimental results are shown in Fig. 10 and 
Fig. 11. The results validate the theoretical aspects of 
the robot formation control.  

 

V. CONCLUSIONS 

The work has presented a strategy for the centralized 
control of a robot formation. The absolute posture 

information for each robot is available, and the 
objective is that the robots reach a relative desired 
arrangement that will probably evolve through time. 
The formation control law generates velocity references 
for each robot, and they are applied to individual 
angular and linear velocity controllers of the non-
holonomic robots. The performance of the proposed 
formation control system has been validated in 
simulations and laboratory experiences. The 
experimentation system consists on a fixed camera that 
captures the scene with small robots that lack on-board 
sensors. All the information on robot evolution is 
obtained by the fixed camera, and the formation control 
is performed on the image plane. The results show the 
feasibility and good performance of the proposed 
control system. Future work will delve into the issues of 
obstacle avoidance and collision avoidance between 
robots. 
 

 

 
Fig. 10: Evolution of the robot formation obtained in  
experiences. The small circles and arrows indicate the 
initial posture of the robots. The dotted lines show the 

desired formation at a given time instant.  
 
 

 

 
Fig. 11: Evolution of the robot formation error obtained 

in experiences. The solid lines are the relative error 
between robots. The dash-and dot lines are the error of 

the constellation centroid.  
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