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Abstract— Hybrid electric vehicles (HEV) are 
those equipped with two or more energy sources, 
usually, a fuel tank with its associated internal 
combustion engine (ICE) and an electrical storage 
system (ESS), typically a bank of batteries. In order 
to efficiently operate the system it is necessary to 
determine the instantaneous power split between the 
two sources when the vehicle performs a 
predetermined duty cycle. In this work, this problem 
is posed as an optimal control problem with 
constraints, specifically, as an inventory control 
problem and solved using dynamic programming 
(DP). Results obtained for the HEV being developed 
in the Applied Electronics Group, School of 
Engineering, National University of Río Cuarto are 
shown.

Keywords— optimal control with constraints, 
dynamic programming, supervisory control of 
hybrid electric vehicles. 

I. INTRODUCTION 
HEVs are those whose architecture includes two or 
more energy sources, usually a fuel tank and a bank of 
batteries. These energy sources are associated to energy 
converters such as an ICE and an electric motor 
respectively. These vehicles take advantage of the 
cleanliness and high efficiency of electrical traction and 
overcome its main drawback that is its low range. ESSs 
currently available have a low energy density. This is 
compensated in HEVs by the high energy density of 
fossil fuels, usually two or three orders higher than that 
of  ESSs. 

Energy storage elements and converters can be 
arranged following different topologies. Figure 1 shows 
a scheme of the so-called “series” configuration. In this 
configuration, an electric motor moves the wheels. An 
ESS that may consist of a bank of batteries and/or ultra 
capacitors feeds this motor. On the other hand, the ICE 
is fed by the fuel tank and drives an electric generator. 
This generator provides electric power to the traction 
motor when the power demanded by the driver exceeds 
that provided by the ESS. On the contrary, when the 
power provided by this generator exceeds that 
demanded by the driver, this excess is used to recharge 
the ESS.  

Hybrid electric as well as purely electric powertrains 
have the advantage of "regenerative braking". This 

involves using the electric motors as generators during 
braking, transforming the mechanical energy into 
electrical energy. In this way the kinetic energy stored 
by the vehicle is recaptured by the ESS. The double 
arrows that connect the wheels to the ESS (see Fig. 1), 
represent this reverse energy flow. 

For the same performance target, the ICE and ESS of 
a HEV can be of smaller size than those of a 
conventional or a pure electric vehicle. However, the 
whole system performance will also depend on how 
they interact. At first sight, it seems that the ESS should 
mainly perform velocity changes, taking advantage of 
the reversibility of the electrical path, whereas the ICE 
should supply the rest of the power. The nominal power 
of the latter should be such that it could be used most of 
the time near its optimal operation point. In this way, 
consumption as well as gas and sound emissions would 
be reduced.  

HEVs need an electronic power manager that must 
determine at each instant the amount and direction of 
the flow in each path. This higher-level control is 
usually known as “supervisory control”. Power 
electronics devices control each particular power 
converter according to the commands from the 
supervisory control. 

The coordination between sources and physical and 
operational limitations of the many devices involved 
force trade-offs. Hence for an efficient operation of a 
hybrid powertrain it is necessary to optimize the 
supervisory control strategy. An HEV designed for city 
use is being developed by our research group. It is in 
city use where the advantages of HEVs are most 
noticeable, because of the frequent acceleration and 
deceleration. The purpose of this work is to contribute 
to the definition of an optimal strategy for the 
supervisory control of this vehicle. 

This problem, as an optimal control problem, may be 
posed in different forms depending on the objective 
desired, the model considered, the control action and the 
constraints imposed. However, there are some common 
features to all approaches. Concerning the control 
objective, it is natural to consider minimizing fuel 
consumption while not degrading the vehicle dynamical 
response. Concerning the dynamical models, they 
unavoidably include combinations of linear and non-
linear, discrete and continuous, algebraic and dynamical 
systems. Moreover, they are subject to constraints not 
only on the control variables but also in the state 
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variables as it is explained in Section II. Hence, most of 
the reported optimal supervisory control strategies use 
either intelligent control techniques such as rule-based, 
fuzzy logic and neural networks, or optimal control 
approaches. Within the latter, Delprat et al. (2001; 
2004), Steinmauer and del Re (2001) and Daniels and 
Kumar (1999) use Pontryagin Maximum Principle 
optimality conditions. Zaremba et al. (2002), Brahma et
al. (2000a;b) and Sciaretta et al., (2004) use a discrete 
approach and a dynamic programming algorithm.  

In previous work (Pérez et al., 2004) we followed 
Brahma et al. (2000,a; b) and posed the problem as a 
shortest path problem. The drawback to this approach is 
the treatment of a constraint of integral form. This 
constraint arises from the need to preserve the batteries 
from depletion or overcharge, and/or if a “charge 
sustaining” operation of the vehicle is imposed. Brahma 
et al. (2000a;b) proposes a method using a penalization 
term added to the objective function. We applied this 
approach and proposed an alternative method based on 
checking this constraint as the algorithm proceeds. Both 
methods include heuristics and consequently give sub-
optimal results.  
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Figure 1. Scheme of a series HEV. 

In this paper, we have tried to overcome the use of 
heuristics by posing the problem as a deterministic 
inventory control problem. In this way we can find the 
optimum, up to the discretization step considered 
(Bertsekas, 2001). Section III refers to the algorithm 
used to find the solution.  

This approach was applied to find the optimal power 
split between the bank of batteries and a hypothetical 
ICE and generator to be used in the HEV being 
developed. A brief example of some of the results 
obtained is included in Section IV.  

We consider this work, one of the first steps towards 
the definition of a supervisory control strategy for our 
prototype. Finally, we include some conclusions and a 
prospective of our future work in Section V. 

II. STATEMENT OF THE PROBLEM 

A. Abstracted model for the vehicle  
In order to solve the supervisory control problem, it will 
be enough considering an abstracted scheme for the 
system that represents the vehicle (Brahma et al., 2000a, 
2000b; Rizzoni et al., 1999) where the intermediate 

devices of the powertrain such as rectifiers and 
converters, are replaced by the net power flow in each 
path. PFT(t) will indicate the power flow at time t in the 
fuel tank/engine/generator path (which we shall call FT- 
path henceforth) and PESS(t) the power flow at time t in 
the ESS-path (Fig. 2). The energy losses that take place 
in the intermediate converters will be represented by an 
efficiency factor. 

The following convention is also established: a
positive power flow means power flowing away from the 
ESS. Consequently, during regenerative braking a 
negative flow will take place in the electrical path. 
Besides, the power flow from the fuel tank cannot be 
negative, as it cannot absorb any power. 

The required vehicle velocity profile is considered a 
given function. The required power can be computed 
from this profile using a model of the vehicle 
longitudinal dynamics. Hence, it is also considered a 
known function that will be denoted by Preq(t). This is 
indeed not true for the real case, where the future 
velocity is not known but depends on the transit and 
road conditions, but we hope this approach will be able 
to be extended to real driving conditions by using a 
stochastic approach and/or short-term horizons. 

Figure 2. Abstracted scheme for an HEV. 
B. Power balance 
A balance equation can naturally be established, since 
the sum of the power from both sources has to be equal 
to the required power at all times: 

( ) ( ) ( ).FT ESS reqP t P t P t  (1) 
In the series configuration this addition takes place in 

the form of electrical power. 
C. Energy consumption and efficiencies 
Regarding the net energy consumed from each source in 
a time interval, we must take into account that not all 
the power delivered by the source can be actually used 
to supply the demand, since in every energy conversion 
process there are losses. Therefore, only a portion of the 
power delivered will reach the summing junction in Fig. 
2. In our abstracted model, this portion will be 
represented by two functions FT and ESS that take 
values between 0 and 1, and will be referred to as the 
efficiencies associated to each path. Indeed, efficiencies 
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depend on the power flows. We consider them known 
functions that in practice are experimentally determined 
for all possible power values. Hence, the net energy 
contained in the FT at time t can be computed as 
follows:

0
0

( )( )
( ( ))

t
FT

FT FT
FT FT

P sE t E ds
P s

 (2) 

where EFTo is the initial energy in the fuel tank. 
To compute the net energy consumed from the ESS it 

has to be considered that during acceleration (PESS >0)
the effect of losses is represented by dividing the 
delivered power by ESS as in the previous case. But 
during regenerative braking, because of losses, only a 
portion of the kinetic energy coming from the wheels 
will reach the ESS, and so the inverse situation has to be 
represented. Let us define 

( ) 0
( ( ))

0.
( )

ESS ESS ESS ESS

ESS ESS
ESS

ESS ESS

P P if P
f P t P if P

P
 (3) 

Then, the net energy contained in the ESS at time t is 

0
0

( ) ( ( ))
t

ESS ESS ESSE t E f P s ds  (4) 

where EESSo  is the initial energy in the ESS. 
D. Control objective 
The control objective is to minimize fuel consumption 
in a time interval [0,T], T known. That is, to minimize 
the net energy consumed from the chemical source in 
the interval, i.e.:

0

( )
min [ ] min .

( ( ))FT FT

T
FT

FTP P
FT FT

P sV P ds
P s

 (5) 

E. Control action, state variable and state equation 
Our purpose is to determine for each t in [0,T] the 
values of PESS and PFT that minimize the objective. 
Using the balance equation (1), we can eliminate one of 
these functions. Hence, the problem can be posed in two 
alternative forms. Either PFT or PESS can be taken as the 
control action or the independent variable, over which 
the minimization will be performed. The remaining one 
is considered the dependent variable and is obtained 
from the first. Physically, this implies that the 
supervisory control will be exerted either by the engine 
acceleration command or by the ESS power controller. 
The alternative device should provide the necessary 
remaining power to satisfy the demanded power Preq.
Since both problems are similar only the case where 
PFT(t) is the control action will be described. 

From (1) and (4) we arrive at 
( ) ( ( )) ( ( ) ( )).ESS ESS req FTE t f P t f P t P t  (6) 

This will be considered the state equation and EESS the 
state variable, with initial condition EESSo. Expression 
(6) is indeed a simple integral rather than a state 
equation in the usual sense, since the right hand side 
does not depend on the state variable but only on the 
control input. However, it is convenient to consider it a 

state equation in order to use DP algorithms for optimal 
control in a straightforward manner. 

Note that considering that f is defined piecewise and 
that FT and ESS are non-linear functions, the state 
equation also results non linear. 

Although it is not necessary to impose a final 
condition to the state, in order to simplify the 
presentation, we will set EESS(T)=EESSo. This represents 
a "charge sustaining operation" of the ESS, which may 
be a desired feature. 
F. Constraints  
Clearly, the power flows are physically limited, hence: 

max
0 ( )FT FTP t P t , and (7) 

min max
( ) ( ) ( )ESS ESS req FT ESSP P t P t P t P t . (8) 

In addition, if the ESS is a bank of batteries, it has to 
be protected from depletion and overcharge. This 
implies that the net consumed energy from the ESS has 
to be maintained between proper limits at each instant t.
Then,  

min max
( ) .ESS ESS ESSE E t E t  (9) 

In summary, there are constraints on the control 
action PFT(t) and on the state variable EESS(t).

III. DYNAMIC PROGRAMMING SOLUTION 
Because of the non-linearities of the dynamic system 
and the many constraints involved, we choose a discrete 
approach and a dynamic programming solution (Chiang, 
1992). From this point of view the problem is similar to 
an inventory control problem (Bertsekas, 2001), where 
for the deterministic case, the demand is known, the 
cost function only considers the purchase inventory and 
there is the possibility of returning goods to stock.
A. Discrete formulation 
Let us divide the interval [0,T] in N stages of length .t.
Let also PFTk=PFT(k t), k=0, 1, ...N-1 be the discrete 
control sequence that is being searched, i.e., the 
sequence of decisions on the power flow in the FT- path 
at each stage. Let EESSk represent the possible states of 
the system that satisfy the discrete state equation  

1

0

( ) 1,..., 1

0
k k k k

k

ESS ESS req FT

ESS ESS

E E f P P t k N

E E for k and k N
(10) 

where  
( )

( )( ) 0

0.
( )

k k

k k k k k k

k k

k k

k k

req FT

ESS req FT req FT req FT

req FT
req FT

ESS req FT

f P P

P P P P if P P

P P
if P P

P P

(11) 

The sequence Preqk, is known and in the usual form, 
Preqk=Preq(k t). Finally, let Vd be the discrete cost 
functional  

1

0
( )

( )
i

i

N
FT

d FT
i FT FT

P
V P t

P
. (12) 
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Then the discrete problem statement is as follows: 
Find for k=0, 1, ...N-1, PFTk that minimize (12)

subject to the state equation (10) and to the constraints  
max

0 0,1,..., 1
kFT FTP P k N  (13) 

min max
0,1,..., 1

k kESS req FT ESSP P P P k N  (14) 

min max
0,1,..., .

kESS ESS ESSE E E k N  (15) 

B. Network and arc costs  
In order to solve the problem, let us consider a network 
like the one shown in Fig. 3. The horizontal axis 
corresponds to time stages tk, k =0, 1, ..., N, and the 
vertical axis corresponds to the possible discrete values 
for the state variable EESSi, i=0,1, ..., M, equally spaced 
between EESSmin and EESSmax. Then, each node 
corresponds to a possible state EESSik at time k. Each 
node EESSik, i=0,1, ..., M, at stage k is connected to each 
node EESSjk+1, j=0,1, ..., M at the following stage k+1. In 
the algorithm used, all possible connections between 
nodes of successive stages have been considered, except 
for the initial and final stages, since they are fixed. 
Hence, a discrete state trajectory is formed by a 
sequence of nodes, one for each stage k, such that 
connects the initial and final states. In the network there 
are, in principle, MN-1 possible trajectories. Because of 
the way in which the network is built, all of them satisfy 
(15). 

Now, state trajectories are completely determined by 
PFTk. according to the state equation (10). Considering 
that PFTk is subject to the constraints (13) y (14), not all 
the trajectories of the network will be feasible. Let then 
Sk be the set of nodes of stage k, such that at least one 
feasible trajectory passes trough it. 

 As usually in DP, we call "arc" the segment that 
connects a state EESSik of stage k to another state EESSjk+1
of the following stage. Each arc has an associated “arc 
cost” that will be denoted by aij

k and is the contribution 
to the total cost that is produced if the state changes 
from node EESSik to node EESSjk+1. For this problem, the 
arc cost is the energy consumed from the fuel tank when 
the energy contained in the ESS changes from EESSik to 
EESSjk+1 and is computed as follows: 

0 1 2 3 4 5 6 

Time 

0ESSE

E E
SS 0ESSE

Figure 3. Network considered in the supervisory control 
problem, exemplified for the case N=6, M=4.
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ij ij
Ft FT

P
a t k N i j M

P

P
a t k j M

P

P
a t k N i M

P

(16) 

where PFTk
ij is the control input needed to make the state 

go from E ESS ik to EESS  jk+1, according to Eq. (10).  
C. Policy 
To solve this problem using DP we also need a function 
that maps states to controls. This function is usually 
named  "policy". In this approach, this function is 
obtained from (10) and can be formally expressed as: 

11( ) ,

0, 1,..., 1.

k k

k k

ESS ESS
FT req

E E
P f P

t
k N

 (17) 

This will allow computing, for each arc between two 
possible successive nodes EESS ik and EESS jk+1, the value 
for PFTk

ij that drives from one to the other. From this 
value the corresponding arc cost is computed using (16). 

It is worth noting that the formal expression (17) is a 
result of the discretization considered in (10). It is also 
the key point that allows to solve the problem by an 
algorithm which, even though it is of the same order of 
complexity than the one presented in the work of 
Brahma et al., (2000a;b), it does ensure that the 
constraint (9) is satisfied, without using any heuristics.  

The expression (17) makes sense because of the form 
that the non-linear function f takes in the range of 
interest. Figure 4 shows the efficiency function 

ESS(PESS) used in this work. It was obtained by fitting 
two polynomials to experimental data. The 
corresponding graph for f is shown in Fig. 5. It can be 
seen that because of the form of ESS, f results strictly 
increasing and hence, setting 1(0) 0f , it is possible 
to recover PFT  for all pair of states 

1
,

k kESS ESSE E  in the 
network.  

Figure 4. ESS efficiency as a function of electrical 
power 
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Figure 5. Net power entering or leaving the ESS as a 
function of the net power used for traction. 

D. DP Algorithm  
Regarding dynamic programming algorithms, we refer 
to Bertsekas (2001) or Kwong and Rogers (2004), and 
only will say here that they consist essentially in 
looking over every node in the network and computing 
the minimum cost to go from each particular node to the 
final node (tail subproblem). The complexity is reduced 
using a recursive algorithm that usually goes backwards 
in time and computes all the tail subproblems of each 
stage using the solutions found for the tail subproblems 
of the following stage. The minimum cost trajectory is 
found at the last recursive step, after looking over all 
nodes in the network.  

In the particular implementation made in this work, 
arc costs are computed as the recursion proceeds. For 
each node ik, the value PFTk

ij capable of driving the state 
EESSik to the state EESSjk+1 is computed using (17) for all 
0 j M. Then, PFTk

ij is checked to see if it satisfies 
constraints (13) and (14) and, if so, aij

k is computed 
using PFTk

ij in Eq.(16). Otherwise, the corresponding arc 
is discarded from the network. Let Sk+1 be the set of the 
surviving j's. This is the set over which the minimum 
indicated in expression (18) below is taken. We include 
the algorithm excluding, for brevity, the special 
treatment of the initial and final stages and writing E
instead of EESS for short. 
Algorithm
% main loop 
For k=N-1, …,0 

 % computation of arc costs from node i of stage k to 
node j of stage k+1      

          For i=1, …,M 
          For j=1, …, M 
               compute PFTk  =- f-1(-( E k+1

j – E k
i )/ t)+Preqk

               if  PFTk  satisfies (13)  and (14)
                 a i,j k = PFTk / FT(PFTk)
               otherwise 
               label a i,j k as unfeasible, taking out j from Sk+1

     %   end of arc costs computation   

      %    beginning of DP algorithm 

       For i=1, …, M         
      

1

( , ) min[ ( , 1)]
k

k
d ij dj S

V i k a V j k (18)

                      indice(i,k)= arg 
1

min[ ( , 1)]
k

k
ij dj S

a V j k

      %  end of DP algorithm  
 % end of main loop 

%  computation of the optimal policy  

 % computation of the sequence of indices 
corresponding to the optimal trajectory 
u(0)=ind_init_cond; 
For k=1, …, N,      u(k)=indice(u(k-1),k); 

%  computation of the optimal trajectory  
For k=0, 1, …, N,     traj(k)=Ek

u(k,)
              

% computation of the optimal policy 
For k=0, 1, … N-1,  
             PFTk =- f -1(- (Ek+1

u(k+1,) - Ek
u(k,)) / t) + Preqk.

IV. SIMULATION RESULTS 
The above method has been applied to the case of the 
experimental HEV being developed in our group. This 
prototype is currently powered in a purely electric form 
by a bank of batteries and is equipped by a 32 kW 
electric motor for traction. In previous work, the 
longitudinal dynamics of this prototype has been 
modeled and validated through road tests (Pérez et al.,
2002). This model allows the computation of the power 
demanded by the vehicle to follow a velocity cycle, 
including mechanical losses and losses from the 
electrical motor. The model has been linked to the DP 
algorithm to provide the values for Preq.

A hypothetical fuel converter system capable of 
delivering a maximum power of 40 kW has been 
considered. Its efficiency function, FT, was taken from 
Brahma et al. (2000b). The discretization step for the 
energy was EESS=0.0028kWh and the time 
discretization was t=2.5seg, since it was observed that 
the results did not change substantially for finer grids. In 
addition, the solution is currently being checked by 
using an alternative approach based on "direct 
transcription" where the state variable need not be 
quantized.  

The electric storage system is a bank of 20 Yuasa-
Exide EV-5 batteries (in series), with nominal charge 
equal to 197 Amph each. The minimum charge needed 
for this system to work properly is 20% of the nominal 
charge. The voltage can be, in a first approximation 
considered constant, equal to its nominal value 
(Unom=120V). Then, EESSmin=1.31kWh and EESSmax=
6.57kWh. However, this bank is excessively large for an 
HEV, since it has been sized for a pure electric vehicle. 
If the ESS has enough energy to perform the cycle and 
compensate for the losses, the solution of minimum 
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consumption will be the trivial solution, PFT(t)  0. That is, no usage of the FT-path and full usage of the ESS. 
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Figure 6. Velocity profile and power split obtained for the European Normalized Driving Cycle 
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Hence, to show illustrative results, we used for the 
simulation in Fig. 6, a hypothetical smaller ESS, with 
EESSmin=1.25kWh and EESSmax=2.5kWh, and an initial 
state EESSo=2.0kWh. 

Figure 6-(a) shows the velocity profile corresponding 
to the European Normalized Driving Cycle that has to 
be limited to a maximum velocity of 60 km/h to fit the 
design constraints of this vehicle. Figure 6-(b) and (c) 
show in dashed line the power demanded by this vehicle 
to perform the velocity cycle in (a). The solid line 
shows in (b), the algorithm output, i.e., the optimal PFT
profile, and in (c) the complementary PESS profile. The 
graph in (d) is the corresponding ESS energy profile. It 
can be seen that it moves within the required bounds 
and that performs a charge sustaining cycle.  

Regarding consumption, it is difficult to establish a 
comparison with other control strategies, since 
strategies that are defined by rules, often fail in 
following the required velocity profile and, therefore, 
the comparison is not relevant. Nevertheless we include 
in Table I consumptions obtained using some other 
strategies, just as reference values. The algorithm we 
proposed in Perez (2004) fails to render a result for an 
initial ESS energy initial value so low as the used in this 
case, so it is not included. The only strategy that is 
comparable with our results is that corresponding to the 
method proposed by Brahma et al. (2000,a). It consists 
of adding a term to the objective functional to penalize 
the use of energy from the ESS. This term includes a 
parameter that regulates this penalization. This 
parameter has to be determined by trial and error in such 
a way that the operation over the whole time interval 
resulted “charge sustaining”. For the data of the 
example in Fig. 4, a value for this parameter was 
searched so that the final energy in the ESS resulted as 
close as possible to EESSo. Then, we run our algorithm 
with that final condition and so we obtained comparable 
results. Note that although the ESS energy consumption 
is almost equal, the FT consumption is lower for our 
algorithm (see Table I). Finally, note that the optimal 
consumption shows a 27% reduction respect to the one 
that would have been obtained if only the FT-path had 
been used (as in the case of a conventional vehicle). 

Table I. Consumption for different supervisory 
control approaches 

Strategy
Fuel

consumption 
(kWh) 

ESS
consumption 

(kWh) 
This algorithm 6.8860 0.0167 

Brahma’s algorithm 7.0853 0.0173 
Using only FT 9.3725 0.0000 

Using FT power 
constantly equal to 
cycle mean power* 

7.2687 -0.6195 

Charge depleting 
control ** 6.9759 1.2201 

* This strategy does not follow the velocity profile 
** This strategy (Emadi et al., 2004) violates constraints 
(13) and (14). 

Concerning the time consumed by this algorithm, it 
can be seen that its order of complexity is O(M2N). This 
is the same order than that of Brahma's algorithm. In 
this case, the execution time will depend mainly on the 
state discretization, while in the former depended on the 
discretization of the control function. In either case the 
choice is arbitrary. If the same power resolution than 
that of Brahma's algorithm is to be obtained, then M
may result larger. However, the power resolution also 
depends on the choice of N. Hence, a trade-off may then 
be used to regulate the computation time. In the 
example of the figure, M=450, N=480 and so the whole 
network has 216000 nodes. This implies power steps 
greater than 4 kW. For these values, the "crude" main 
loop took about 30 min to run, using MATLAB on a 
standard PC with a 2.08 GH Athlon Processor. Clearly, 
this time can be reduced by translating the code to C 
language, interrupting internal loops when it is clear that 
constraints will be thereafter violated and replacing 
repetitive computations by look-up tables. 

V. CONCLUSIONS AND FUTURE WORK 
We think that this problem statement and the solution 
proposed have been successful for the off-line 
optimization of the power split between the two sources, 
without the need of heuristics used in previous works. 
Its main drawback is its high computational cost. We 
are now working on improving the algorithm to reduce 
this cost. In any case, the algorithm outputs provide a 
template to learn from, which can be used to develop 
rule based control laws. 

In the presented approach, it seems that including 
stochastic features and additional controls would be 
conceptually simple, though, again, computationally 
heavy. Nevertheless, we think that considering short-
term horizons reduces the computation time and thus, 
we will be able to extend this algorithm to on-line 
applications and to the problem of including an 
additional ESS such as a bank of ultra capacitors. This 
is an interesting point for hybrid traction, since ultra 
capacitors in contrast to batteries, can deliver high 
bursts of power, though for short periods of time. 
Therefore, they are usually included to improve the 
vehicle dynamical response.  

Finally, we think that this algorithm may apply to 
other systems including sources, storage elements and 
consumers, of interest to our group. Examples of these 
are power electronic devices, stand-alone wind or solar 
stations and power networks including hydro electrical 
and nuclear power stations.  
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