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Abstract— This paper introduces a new nu-
merical method for integration of ordinary dif-
ferential equations. Following the idea of quan-
tization based integration, i.e., replacing the
time discretization by state quantization, this
new method performs a third order approxima-
tion allowing to achieve better accuracy than
their first and second order predecessors. It is
shown that the new algorithm satisfies the same
theoretical properties of the previous methods
and also shares their main advantages in the
integration of discontinuous systems.
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I. INTRODUCTION

Numerical integration of ordinary differential equa-
tions (ODEs) is a topic which has advanced signif-
icantly with the appearance of modern computers.
Based on classic methods like Euler, Runge-Kutta,
Adams, etc., several variable-step and implicit ODE
solver methods were developed (Hairer et al., 1993;
Hairer and Wanner, 1991). Simultaneously, several
software simulation packages have been developed im-
plementing these algorithms. Among them, Mat-
lab/Simulink (Shampine and Reichelt, 1997) is proba-
bly the most popular and one of the most efficient.

In spite of the several differences between the men-
tioned ODE solver algorithms, all of them share a
property: they are based on time discretization, giving
a solution obtained from a difference equation system
(i.e., a discrete-time model).

A completely different approach for ODE numerical
integration started to develop since the end of the 90’s,
in which time discretization is replaced by state vari-
ables quantization. As a result, the simulation models
are not discrete time but discrete event.

The origin of this idea can be found in the definition
of Quantized Systems (Zeigler and Lee, 1998). Quan-
tized Systems were reformulated with the addition of
hysteresis —to avoid the appearance of infinitely fast
oscillations— and formalized as a numerical algorithm
for ODE’s by Kofman and Junco (2001), where the
Quantized State Systems (QSS) and the QSS method
were defined.

The following step was the definition of the method
of second order quantized state systems (QSS2) (Kof-
man, 2002), and then both methods were extended
to the simulation of differential algebraic equations
(DAEs) (Kofman, 2003) and discontinuous systems
(Kofman, 2004).

The discrete event nature of these methods make
them particularly efficient in the last case, and a con-
siderable reduction of computational costs with re-
spect to the most sophisticated discrete time methods
can be observed.

Despite their simplicity, the QSS and QSS2 meth-
ods satisfy some strong stability, convergence and error
bound properties, and they intrinsically exploit spar-
sity in a very efficient fashion.

This paper continues the previous works by formu-
lating the method of third order quantized state sys-
tems (QSS3) which permits improving the accuracy
of QSS and QSS2 conserving their main theoretical
and practical advantages. An additional advantage of
QSS3 is that the choice of the quantum becomes less
critical than in the lower order methods since it can
be adopted in a conservative fashion without affecting
considerably the number of calculations.

After a brief introduction recalling the principles of
quantization based integration, the definition of the
QSS3 method will be introduced. Then, we shall prove
that it is legitimate, i.e., that it cannot produce a
Zeno-like behavior, and we shall deduce the input—
output relationships of the basic components of QSS3
(quantized integrators and static functions). Then, af-
ter a brief discussion about the theoretical properties
of QSS3, two relatively complex simulation examples
will be introduced.

II. QUANTIZATION BASED
INTEGRATION

A. QSS—Method

Consider a time invariant ODE in its State Equation
System (SES) representation:

&(t) = f(2(t), u(t)) (1)

where z(t) € R™ is the state vector and u(t) € R™ is
an input vector, which is a known piecewise constant
function.
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The QSS—method (Kofman and Junco, 2001) sim-
ulates an approximate system, which is called Quan-
tized State System:

&(t) = £(q(t), u(®)) 2)

where ¢(t) is a vector of quantized variables which are
quantized versions of the state variables z(¢). Each
component of ¢(t) is related with the corresponding
component of z(t) by a hysteretic quantization func-
tion, which is defined as follows:

Definition 1. Let Q = {Qo, Q1, -.., @} be a set of real
numbers where Qr_1 < Qx with 1 < k < r. Let Q be
the set of piecewise continuous real valued trajectories
and let x; € Q be a continuous trajectory. Letb: Q) —
Q be a mapping and let g; = b(z;) where the trajectory
q; satisfies:

Qm Zf t=1to
Qi1 if xi(t() =)Qk+1/\
— NGE(tT)=Qr Nk <r
D=9 Qe F wlt) = Qn - en (3)
ANG(ET)=Qr Nk >0
gi(t7) otherwise
and

0 ’Lf (L‘i(to) < Qo
m=4q 1 ifzi(to) > Qr
J ifQ; <z(to) < Qj+1

Then, the map b is a hysteretic quantization function.

The discrete values Qi are called quantization levels
and the distance Qx+1 — Qx is defined as the quantum,
which is usually constant. The width of the hysteresis
window is € and the best choice is taking it equal to
the quantum (Kofman et al., 2001).

Kofman and Junco (2001) proved that the quan-
tized variable trajectories g;(t) and the state deriva-
tives #;(t) are piecewise constant and the state vari-
ables z;(t) are piecewise linear. As a consequence,
those trajectories can be represented by sequences of
events and then the QSS can be simulated by a DEVS
model. DEVS (Zeigler et al., 2000) is a formalism
whose acronym stands for Discrete Event System spec-
ification.

The mapping of a QSS like (2) into a DEVS model
can be done in several ways and one of the easiest is
based on coupling principles. A generic QSS can be
represented by the block diagram of Fig.1. That block
diagram is composed by static functions f;, integrators
and quantizers.

Each pair formed by an integrator and a quantizer
is called quantized integrator and it is equivalent to
a simple DEVS model. Similarly, the static functions
have DEVS equivalents and consequently, the entire
block diagram has an equivalent coupled DEVS which
represents it (Kofman and Junco, 2001). These DEVS
models can be found in the cited reference.
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Figure 1. Block Diagram Representation of a QSS

Some simulation programs ~PowerDEVS (Pagliero
and Lapadula, 2002) for instance— have libraries with
DEVS blocks representing quantized integrators and
static functions. Thus, the implementation of the
QSS—method consists in building the block diagram
in the same way that it could be done in Simulink.

B. QSS2-Method

QSS only performs a first order approximation. Due to
accuracy reasons, a second order method was proposed
which also shares the main properties and advantages
of QSS (Kofman, 2002).

The basic idea of the new method, (called QSS2)
is the use of first—order quantization functions instead
of the quantization function given by (3). Then, the
simulation model can be still represented by (2) but
now ¢(t) and x(t) have a different relationship. This
new system is called Second Order Quantized State
System or QSS2 for short.

A first-order quantization function can be seen as
a function which gives a piecewise linear output tra-
jectory, whose value and slope change when the dif-
ference between this output and the input becomes
bigger than certain threshold (Fig. 2)

Figure 2. 1/0 trajectories in a First Order quantizer

In that way, the quantized variable trajectories are
piecewise linear and the state trajectories are piecewise
parabolic?.

As before, the system can be divided into quantized
integrators and static functions like in Fig.1. However,
the DEVS models of the QSS2 quantized integrators

1In nonlinear systems this is only approximated.
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are different due to the new behavior of the quantiz-
ers. Similarly, the DEVS models of the QSS2 static
functions are also different since they should take into
account the slopes of the piecewise linear trajectories.

The formal definition of first order quantization
functions and the DEVS models associated to the
QSS2 integrators and static functions were also de-
veloped by the author (Kofman, 2002).

Like QSS, PowerDEVS also implements the QSS2—
method. Thus, a continuous or hybrid system de-
scribed by a block diagram can be simulated with
QSS2 by selecting the corresponding method in the
integrators.

C. Properties of QSS and QSS2

There are properties —proven by Kofman and Juco
(2001) and Kofman (2002)- relating the solutions of
Systems (1) and (2). These properties not only show
theoretical features but also allow deriving rules for
the choice of the quantization according to the desired
accuracy.

The mentioned properties are stability, convergence
and error bound and the corresponding proofs were
built based on perturbation studies. In fact, defining
Az(t) = q(t) — z(t), System (2) can be rewritten as

&(t) = f(x(t) + Az(t), u(t)) 4)

From the definition of the hysteretic and the first or-
der quantization functions, it can be ensured that each
component of Az is bounded by the corresponding
quantum adopted. Thus, the QSS and QSS2 meth-
ods simulate an approximate system which only differs
from the original SES (1) due to the presence of the
bounded state perturbation Ax(t).

The Convergence Property ensures that an arbitrar-
ily small error can be achieved by using a sufficiently
small quantization. A sufficient condition which guar-
antees this property is that the function f is locally
Lipschitz.

The Stability Property relates the quantum adopted
with the final error. An algorithm can be derived from
the proof of this property which allows the choice of
the quantum to be used in the different state variables.

Finally, the Global Error Bound is probably the
most important property of quantization based meth-
ods. Consider a LTI system #(t) = Axz(t) + Bu(t)
where A is Hurwitz and diagonalizable. Let us call
¢(t) and ¢(t) to the exact solution and the approxi-
mate obtained with the QSS or QSS2 method respec-
tively, with ¢(0) = ¢(0). Then, using Theorem 3 of
(Kofman, 2005b), it can be seen that the error in the
QSS or QSS2 simulation is bounded by

|6(8) — 6()] < [VIRe(A)T'AIVHAG  (5)

where A and V are the matrices of eigenvalues and
eigenvectors of A (A is diagonal), that is, V1AV =

A and Ag is the vector of quantum adopted at each
component?.

Inequality (5) holds for all ¢, for any input trajectory
and for any initial condition.

III. QSS3 METHOD

In order to obtain a third order approximation, we
need to consider not only the first but also the second
derivative of the system trajectories. Thus, we can
redefine the first order quantizer shown in Fig.2 so
that the output is piecewise parabolic.

Then, given a system of state equations like (1),
the QSS3 method will approximate it by (2) where
z and q are related component-wise by second order
quantization functions.

A. Second order quantization

Formally, we say that the trajectories z;(t) and ¢;(t)
are related by a second order quantization function if
qi(to) = xi(to) and

zi(t) if |gi(t™) —zi(t7)| = Agi,
gi(t;) +mi; (t —t;) +pi;(E—t;)*  (6)
otherwise,

a(t) =

with t; < t < t;j41, and the sequence ip,...,t;,...
defined so that t;4; is the minimum ¢ > ¢; where

|zi(t5) + ma,; (t — ;) + pi; (t — t)* — zi(t)] = Ags (7)
with m;; and p;; defined as
j=1,--- (8)
j=1,--- (9)

Figure 3 illustrates the behaviour of a second order
quantizer.

miy = 0, mi; = .’ﬁi(tj_),

Dip = 07 bi; = x’L(tg_)a

AV

Figure 3. Input and output of a second order quantizer

B. Trajectories in QSS3

The basis of QSS and QSS2 are the trajectory forms
that allow the discrete event representation. A crucial
requirement is the legitimacy condition which requires

2Symbol | - | denotes the component-wise module of a com-
plex matrix or vector and symbol “<” in (5) also denotes a
component-wise inequality.
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that only a finite number of events occurs in any finite
interval of time.

Although the definition of a second order quanti-
zation function (6) suggests that the components of
q(t) are piecewise parabolic, it should be proven that
the sequence ¢; does not have infinite components in
a finite interval of time. The following theorem gives
sufficient conditions to this property.

Theorem 1. Consider system (2). Assume that the
input u(t) is bounded and left differentiable and the
function f is continuously differentiable. Then, the
components of q(t) are piecewise parabolic while it re-
mains inside any bounded set D C R™.

Proof. Let ¢;(t) be an arbitrary component of g(t).
Taking into account (6) and the fact that t;41 > ¢,
ensuring that g¢;(¢) is piecewise parabolic is equivalent
to prove that lim;_,o t; = oo.
We shall start assuming the opposite, i.e.,
lim t; =T

J—o0

(10)

which implies that lim;_,o0 (¢j4+1 —t;) = 0. Then, given
€ > 0, a natural N exists so that
(tj+1 - tj) <eVj>N (11)

Continuously differentiability of f and left differen-
tiability of w(t) with the conditions ¢(t) € D and
|u(t)|| < U imply that positive constants F;, F;_, F;,
and U; exist so that

filg,w)| < F, ||3f*

195 <

Then, from (8) it results that
ti)l = I1fi(g,w)| < F;

and, from (9), we have

” — zq

@) <
1% @)l <v,

I < F.,

mi; | = | (12)

0f; dq

|-'L’z(tg+1)| = |- dq dt( j+1)

|pij+1| %E(t;—l)l

< BB+ R =
= Figlmi; +2pi; (b1 — t5)| + Fi,Us
< F,[F+2p; |t — t5)] + B U
Using (11) it results that, when j > N, it is true that
Ps; 1| < Fi, (Fi + 2|ps;|e) + Fi, Uy
Choosing € = 1/4F;_ we get

|ps, |
2

Thus, when j > N, the succession p;; can only grow if
Ips, | < 2(F, Fi + F,,Us). Then,

|pij+1| < -Fiq-Fi + -FiuUt +

pi;| <P; Vj >0 (13)
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where

. A A . ]
P; ma'x[2(quFz+quUt),01Sr;.aS~XN(|pz,-|)]

From (7) it follows that
Agi = |zi(t)+mi; (tjz1—t5)+i, (tip1—t5)° —zi(tj41))|
Continuity of z; ensures that
|zi(t5) — @a(tita)| < Fi(tjta —t5)
and then, using (12) and (13) we obtain

Agi < 2Fi(tjs1 — tj) + Piltjn — t;)°

VF? + PAg; — F,

P;
which contradicts (10) and completes the proof. O

tiy1 —t; >

Corollary 1. When f is (piecewise) linear w.r.t. x
and u, and u(t) is piecewise parabolic, the state deriva-
tives z;(t) are piecewise parabolic and the state vari-
ables z;(t) follow piecewise cubic trajectories.

In the nonlinear cases, we cannot say anything about
the form of the state trajectories. However, we can ap-
proximate function f by a piecewise linear one. Simi-
larly, when u(t) is not piecewise parabolic, we can use
a piecewise parabolic approximation. Thus, we shall
consider that the state trajectories and their deriva-
tives are piecewise cubic and parabolic respectively.

Thus, as we did in QSS and QSS2, we can divide
the system (2) into quantized integrators and static
functions as shown in Fig.1 so that each subsystem
has piecewise parabolic input and output trajectories.

C. Third order quantized integrator

Quantized integrators in QSS3 will have piecewise
parabolic input and output trajectories. They calcu-
late g;(t) from d;(t) = #;(t). We shall deduce here
the relationship between these trajectories in order to
build an equivalent DEVS model. In order to simplify
the notation, we shall eliminate the sub—index 1.

Let d(t) be a known piecewise parabolic trajectory

d(t)

where 7, < t < Tg+1. Notice that d(t) is defined by
the sequences T, d(Tk), ma, and pq, .
Let z(t) be its integral, then

= d(7i) + ma, (t — Tk) + Pa,, (t — Tk)?

(t—’l’k)2 (t—’l’k)3
) +Dd, 3

2(t) = (1) +d(7%) (t—T%)+ma,

and let g(¢) be a second order quantized version of x(t).
Taking into account that it is piecewise parabolic, ¢(t)
can be written as

q(t)

= Q(tj) +mth (t - tj) +qu (t - tj)2
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with g(to) = z(¢o) (the initial condition) and mg, =
Pgo = 0. After that, whenever ¢(¢) differs from z(t) in
Ag, q(t) starts a new segment. In those instants the
quantized variable can be computed as
q(t;) = =(t;) ==z(m) +d(t;)(t; — ) +
(t — %) (t —7)®
2 3

+ mgq, + Dd;

and their first and second derivatives are

Mg; = d(tj) =
P =d(t;) =

d(7k) + ma, (t; — k) + Pay, (5 — T)?
ma, + 2pa, (t; — Tx)

This allows to calculate the output sequences g(t;),
mg; and py;. The time succession ¢; can be calculated
by

ti+1 =min[t/|g(t™) — z(t)| = Agi]

with £ > t;. Notice that the calculation of ¢;1; re-
quires solving a cubic equation to determine when the
difference between ¢(t) and z(¢) becomes equal to the
quantum.

Then, given a piecewise parabolic trajectory d(t)
expressed by a sequence of events carrying the val-
ues d(1x),mq, and pg, , we can calculate the trajectory
q(t), expressed as another sequence of events with val-
ues ¢(t;), mq; and py;.

This behavior can be easily represented by an
atomic DEVS model that we shall call third order
quantized integrator (Kofman, 2005a). The model
was also implemented in PowerDEVS (the integrator
block permits choosing the method, i.e., QSS, QSS2
or QSS3).

D. Static functions

(14)

The right hand side of (2) is composed by n functions
fi(g,u). Since q and u follow piecewise parabolic tra-
jectories, in the linear case, the output #;(¢) will be
also piecewise linear.

In order to obtain a DEVS model relating the in-
put and output trajectories of such a function we shall
consider a linear function

N
d(t) = avi(t)
i=1

where

vi(t) = vi(tik) + mvi,k(t - tik) +pvi,k(t - tik)2

so that
N

d(t) = aivi(tiy) +ai Mo, k(E—ti, ) +0i P, g (E— i, )
=1

This expression defines d(t), and the sequences
d(1),mq, and pg, which allow expressing the trajec-
tory as a sequence of events.

A DEVS model of this behavior is almost straight-
forward (Kofman, 2005a). It was also implemented in
PowerDEVS in a block called WSum (which stands for
weighted sum), that is common to the three methods.

The nonlinear case is a bit more complicated. Here,
d(t) is no longer piecewise parabolic. However, we
can approximate it by a piecewise parabolic trajectory,
discarding the higher order terms.

‘We have

d(t) = fi(va(t),- - ,on(t) = fi(v(?))
where
v(t) = v(Tk) + Mo, ( — i) + Doy (t — T8)?

Using Taylor’s formulae, we have

dt) = Fim) + L w(e) o)) +
Y TCCRTCY
and then
AO) = Fiom) + Pyt - ) +
T e

Discarding the higher order terms (starting from ¢3),
we have an expression for d(7x), mq, and pq, .

Notice that we need to evaluate %{7" and %ﬁ)’;—i at
v(7k). When we have the expression of f; in closed
form, it can be easily done. In more general cases, we
might need to evaluate it numerically.

Some particular cases of nonlinear static functions
are already programmed in PowerDEVS for the QSS3
method. For instance, there are blocks that calculate

the product, trigonometric and power functions.

E. Input signals

The incorporation of input signals in QSS3 does not
differ from QSS and QSS2. The only difference is that
now we are allowed to consider piecewise parabolic ap-
proximations, which can reduce the number sections
(and the number of events) with respect to the piece-
wise constant and linear signals of QSS and QSS2.

Thus, the corresponding signal sources of QSS3 will
be just DEVS generators which provoke events with
the successive values of u;(t) (and their first and second
derivatives).

A wide variety of input sources for QSS3 were in-
cluded in PowerDEVS, and some of them are used in
the examples of Section IV.

F. Discontinuity handling

Discontinuities can be managed in a similar way to
QSS2. There, the discontinuity conditions were pre-
dicted by looking at the piecewise parabolic evolution
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of the state z(t) (Kofman, 2004). Here, taking into
account that a smaller quantization will be used, it is
convenient to observe directly the quantized variable
q(t) in order to avoid solving a cubic equation.

Some examples including blocks with discontinuity
detection capabilities will be discussed in Section IV.

G. Theoretical properties of QSS3

From the definition of the second order quantizer —see
(7)- it results that

lgi(t) — zi(t)| < Ag: (15)

and then, all the properties mentioned in Sec.II.C are
also satisfied by QSS3.

As in the lower order methods, the strongest prop-
erty is that QSS3 has a calculateable global error
bound in the simulation of LTI systems. Although
this bound is the same for the three methods, in QSS3
we can use smaller quanta.

The time between successive steps on each quantized
integrator is determined by the distance ;11 —¢; in
(14). Immediately after a step, z(¢) and g(t) have the
same value and the same first and second derivatives.
The only difference is in the third derivative, which is
2-pg in z and 0 in q. Provided that d(t) does not
change between t; and t;;;, the time in which the
difference between x and q becomes equal to Aq can
be calculated as

,[38q

ti+1 —tj Pa
Thus, we can conclude that the step size in a sin-
gle integrator is proportional to the cubic root of the
quantum. In QSS the step size was proportional to
the quantum and in QSS2 it was proportional to the
square root.

For example, if we want to increase the accuracy by
a factor of 1 x 106 we will have to reduce the quantum
by the same factor (due to the global error bound prop-
erty). In QSS it is equivalent to multiply by 1000000
the number of calculations. In QSS2 we would have to
multiply it by 1000 and in QSS3 only by 100.

This fact not only permits using smaller quantiza-
tion achieving better accuracy, but also makes less crit-
ical the election of the quantum since it can be chosen
conservatively small without affecting considerably the
computational costs.

IV. EXAMPLES
A. DC motor with PWM control

We consider in this example a DC motor with constant
field, described by the equations

dia 1 .

E = L—a(Ua(t) - Rala - kmUJ)
dw 1 .

E = j(km’ta - bmw - T(t))

36:101-108 (2006)

where i,(t) and w(t) are the armature current and the
angular speed of the motor.

The inputs U, (t) and 7(¢) are the armature voltage
and load torque. The parameters Ly, R,, knn, J and
b, are the armature inductance and resistance, the
motor constant, the inertia, and the friction coefficient
respectively.

A typical strategy to control the motor speed is
called pulse width modulation. The motor speed is
compared with a desired reference and then the ar-
mature voltage switches from a positive value (+V)
to a negative value (—V) so that the duration of the
resulting pulses is proportional to the error.

A way of achieving this is comparing the error with
a triangular waveform (carrier wave) applying +V or
—V according to the sign of the difference.

Using the parameters corresponding to a real DC
motor: L, = 0.003, R, = 0.05, k,, = 6.783, J,, =
15, and b,,, = 0.005 we simulated the response of the
system to a speed reference which goes from 0 to 60
with a rising time of 2 seconds. The DC motor is
initially unloaded (7(0) = 0) and a step of 2500 is
applied in ¢ = 3. The triangular waveform was set
with a frequency of 1000H z and an amplitude of 1.1

The PowerDEVS model is shown in Fig.4. There,
the blocks QSS3 Integrator and QSS3 Linear corre-
spond to the third order quantized integrator and the
linear static function described in the previous section.
The Triangular and Step blocks are simple DEVS gen-
erators and the Saturation block bounds the output
between 1 and -1 (so that the error does not becomes
greater than the triangular wave, limiting in that way
the maximum duty cycle).

The SwitchTraj block compares the error and the
triangular wave, provoking events with values V or —V
when they become equal to each other. This block
predicts the trajectory crossings using the fact that
they are piecewise parabolic. Thus, the discontinuities
are exactly detected and handled.

0553
Indegrainl

Figure 4. PowerDEVS model of a PWM control.

For the simulation, a quantum of 0.001 was used in
both state variables in order to appreciate the oscilla-
tions of the speed and current.

The QSS3 method completed the simulation of the
first 5 seconds of the evolution after 7029 and 27572
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steps in the integrators which calculate w and i, re-
spectively. Additionally, the block which produces
the triangular waveform provoked 10000 events (i.e.
2 events by period during 5 seconds of simulation)
and consequently, the switch produced 10000 commu-
tations. In that way, there were a total of 54600 events.
34600 events corresponded to the continuous part and
20000 to the discrete part.

The simulation in PowerDEVS took 1.37 seconds on
450MHz PC under Windows 98. The results are shown
in Figures 5-7.

60 T T

0 I I I I I I I I I
0 05 1 15 2 25 3 35 4 4.5 5

. Time
Figure 5. Motor speed.

60

57 I I I I I
2.9 2.95 3 3.05 31 3.15 3.2 3.25 33 3.35 34

. Time .
Figure 6. Motor speed (transient after the torque
step).

The experiment was repeated using the QSS2
method with the same quanta. Now, the number of
steps in the integrators was 17644 and 124021 in w and
i, respectively. The addition of the 10000 events in the
discrete subsystem gives a total of 161665 events. Pow-
erDEVS needed 3.18 seconds to simulate the system
on the same computer than before.

We tried to simulate the same system with Simulink.
The best results were obtained with ode23s. In order
to get a qualitatively good result we needed to set

355 I I I I I I I I I
4.98 4982 4.984 4986 4.988 4.99 4992 4994 4996  4.998 5

. Time I
Figure 7. Armature current (final oscillations).

the relative tolerance to 2 - 107!° and the absolute
tolerance to 10~7. The number of steps was 186593
and the simulation took 21.75 seconds.

The number of steps performed by QSS3 was less
than the third part of the steps of ode23s. Besides
this, each step in QSS3 only involves a few calcula-
tions. The 10000 events given by the triangular wave
generator are only seen by the switch model which de-
cides when to apply +V or —V.

Similarly, the 10000 events given by the switch are
only seen by the integrator that computes i,(¢). The
27572 steps of the integrator of i,(t) are only seen by
itself and the other integrator. The only expensive
events are the 7029 given by the integrator of w(t)
which are seen by both integrators and the discrete
subsystem.

This clearly explains the fact that the simulation
with PowerDEVS is much faster —about 15 times— than
the simulation with Matlab.

B. A ball bouncing downstairs

Consider a ball moving in two dimensions (z and y)
bouncing downstairs. It will be assumed that the ball
has a model in the air —with the presence of friction—
and a different model in the floor (spring—damper).

A possible model is given by the set of equations

a .

T = Vg, Upg=——"1 Y =1y
m

. be

Uy = —g— —vy—

Y m Y

— sw[%vy + %(y —int(h + 1 — x))]

where s,, is equal to 1 in the floor and 0 in the air.
Function int(h + 1 — ) gives the height of the floor at
a given position (h is the height of the first step and
steps of 1m by 1m are considered).

The commutations are produced when the equation
y =int(h + 1 — ) is verified.
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The system was simulated in PowerDEVS with the
QSS3 method. The block diagram was built in a sim-
ilar way to the previous example.

In this case, a quantum of 0.00001 was chosen for
the vertical position and 0.001 in the other variables.
The initial conditions where z(0) = 0.575, y(0) = 10.5,
vz(0) = 0.5 and vy(0) = 0 and the first 10 seconds of
the system evolution were simulated.

The QSS3 method performed 464, 346, 10 and 6
steps in the integrators which calculate y, vy, z and
vz Tespectively. Thus, there were a total of 826 steps.
PowerDEVS took about 0.033 seconds to complete the
simulation on a 450 MHz PC running under Windows
98. The results are shown in Fig.8.
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Figure 8. Ball bouncing downstairs (y vs. x).

The simulation with QSS2 and the same parameters
takes a total of 9346 steps which are performed in 0.11
seconds on the same computer.

The simulation with Matlab variable step methods
requires using a relative and absolute tolerance un-
der 7 x 1077. Otherwise, the methods skip events.
The best results are obtained with the ode23s method
which performs 2960 steps and takes 0.27 seconds (also
on the same computer). Again, a noticeable reduction
of simulation time is observed.

V. CONCLUSIONS

We introduced a new numerical method called QSS3
which performs a third order discrete event approxi-
mation of ordinary differential equations.

We proved that QSS3 cannot produce an infinite
sequence of events in a finite interval of time and hence
the simulation with QSS3 will never be stuck.

The input—output relationship of quantized integra-
tors and static functions was deduced so that DEVS
models of these elementary blocks can be easily built.

Then, we saw that QSS3 has the same theoretical
and practical properties than its lower order predeces-
sors (QSS and QSS2). However, we showed that the
reduction of the global error bound provokes a smaller
increment of the computational costs.

36:101-108 (2006)

The examples analyzed showed that the new method
can achieve a noticeable reduction of the computa-
tional costs with respect to sophisticated discrete time
methods in the simulation of discontinuous systems.

Future work should generalize the usage of the
method to general nonlinear systems, considering also
the DAE case.

REFERENCES

Hairer, E., S. Norsett, and G. Wanner, Solving Or-
dinary Differential Equations I. Nonstiff Problems,
Springer, 2nd edition (1993).

Hairer, E. and G. Wanner, Solving Ordinary Differen-
tial Equations II. Stiff and Differential-Algebraic
Problems, Springer, 1st edition (1991).

Kofman, E., “A Second Order Approximation for
DEVS Simulation of Continuous Systems,” Sim-
ulation, 78, 76-89 (2002).

Kofman, E., “Quantization—Based Simulation of Dif-
ferential Algebraic Equation Systems,” Simulation,
79, 363-376 (2003).

Kofman, E., “Discrete Event Simulation of Hybrid
Systems,” SIAM Journal on Scientific Computing,
25, 1771-1797 (2004).

Kofman, E., “A Third Order Discrete Event Simu-
lation Method for Continuous System Simulation.
Part II: Applications,” Proceedings of RPIC’05
(2005a).

Kofman, E., “Non conservative ultimate bound esti-
mation in Iti perturbed systems,” Automatica, 41,
1835-1838 (2005D).

Kofman, E. and S. Junco, “Quantized State Systems.
A DEVS Approach for Continuous System Simula-
tion,” Transactions of SCS, 18, 123-132 (2001).

Kofman, E., J. Lee, and B. Zeigler, “DEVS Represen-
tation of Differential Equation Systems. Review of
Recent Advances,” Proceedings of ESS’01, 591-595
(2001).

Pagliero, E. and M. Lapadula, “Herramienta Integrada
de Modelado y Simulacién de Sistemas de Even-
tos Discretos,” Diploma Work. FCEIA, UNR, Ar-
gentina (2002).

Shampine, L. and M. Reichelt, “The MATLAB ODE
Suite,” SIAM Journal on Scientific Computing, 18,
1-22 (1997).

Zeigler, B., T. Kim, and H. Praehofer, Theory of Mod-
eling and Simulation. Second edition, Academic
Press, New York (2000).

Zeigler, B. and J. Lee, “Theory of quantized systems:
formal basis for DEVS/HLA distributed simulation
environment,” SPIE Proceedings, 49-58 (1998).
Received: September 21, 2005.

108 Accepted for publication: February 10, 2006.

Recommended by Guest Editors C. De Angelo,
J. Figueroa, G. Garcia and J. Solsona. [ |[]



