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Abstract— In this paper we present an ob-
server for controlled nonlinear systems that
are locally Lipschitz continuous in both the
state and control variables. This observer is
based on a recently introduced model of ob-
server for autonomous Lypschitz continuous
systems, and can be designed to realize an ar-
bitrary, finite accuracy when both the state
space and control variables evolve in bounded
regions.
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I. INTRODUCTION

The design of observers for nonlinear systems has re-
ceived considerable attention along the last twenty
years, see Nijmeijer and Fossen (1999) and Kreis-
selmeier and Engel (2003) and references therein for
details. Lie algebraic methods have been employed
(Krener and Isidori, 1983; Gauthier et al., 1992;
Garćıa and D’Attellis, 1995; Atassi and Khalil, 1999;
Garćıa et al., 2000; Gautier and Kupka, 2001) to
transform a class of nonlinear systems into normal
forms for which observers, with guaranteed conver-
gence and even with nonlinear separation proper-
ties, are obtained. The Lie algebraic methods are
restricted to the class of systems for which there ex-
ists a suitable state-space transformation. Smooth-
ness is in this case instrumental in order to obtain
such transformation, which may exist only locally
and may be difficult to obtain. Although non-smooth
systems occur frequently in practice, the results ob-
tained are few in comparison with those for smooth
systems. Among the approaches developed for non-
smooth systems, that of the so-called optimization
based observer is particularly appealing. This ap-
proach relies on the minimization of a cost functional
over a moving horizon (see e.g. Zimmer, 1994 or
Michalska and Mayne, 1995) and conceptually is di-
rectly linked to the observation problem, since its
aim is to distinguish between different states by dis-
tinguishing their different output signals over some
interval. As the idea is to store measurements from
a (sliding) interval [t−T0, t], and to generate a state
estimate so as to asymptotically match the predicted

output with the measured one on the whole interval,
this observer concept involves an infinite dimensional
structure, that can at best be approximately realized
at the implementation stage.

In Kreisselmeier and Engel (2003) a different ob-
server design was presented that avoids the mini-
mization stage of the optimization based observer,
stage that under lack of smoothness and/or lack of
convexity poses a tough problem. In that paper the
authors introduced two concepts that characterize
the variations of the output a) in terms of the differ-
ence in the initial conditions (observability) and b) as
functions of time (finite complexity). These concepts
are suitable for a large class of autonomous systems,
which includes smooth as well as non-smooth sys-
tems. The design of the observer is based on a canon-
ical linear model, whose dimension is the parameter
to adjust, and on the construction of a partial inverse
that relates the state variable of this linear model
with the estimate in the original state space.

In this paper we present a generalization of the
observer of Kreisselmeier and Engel (2003) to a class
of controlled non-smooth nonlinear systems. With
this aim, we generalize their observation and finite
complexity concepts, to the case of a finite family
of parameterized non-smooth systems with a unique
output function. Under the hypothesis that for a
suitable discretization of the control values the re-
sulting constant-control parameterized family is ob-
servable and of finite complexity, we obtain an ob-
server that is established in a canonical framework
selecting one single parameter, the dimension of the
observer, large enough. We complete the design by
constructing a family of partial inverse maps, that
act upon the canonical variable according to the ac-
tual value of the (sampled) control. This procedure
yields a finite accuracy observer, where the observa-
tion error bound can be made arbitrarily small by
increasing the dimension parameter above, and by
refining the discretization of the control variable.

II. NOTATION AND PROBLEM
STATEMENT

Throughout, R and N denote the sets of real and
natural integer numbers, respectively. We use | · |
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to denote the Euclidean norm on R
n, and | · |∞ to

denote the supremum norm, also on R
n. As usual,

by a K-function we mean a function α : [0,+∞) →
[0, +∞) that is strictly increasing and continuous,
and satisfies α(0) = 0. Given U ⊂ R

m, we denote
by U the set of piecewise continuous functions u :
R → U , such that limt→τ+ u(t) = u(τ), and for any
[a, b] ⊂ R, by U[a,b] the restriction of the functions in
U to [a, b]. By ‖ ·‖[a,b] we denote the L2- norm in the
interval [a, b], by ‖ · ‖, the L2-norm in (−∞, 0] and
by 〈·〉[a,b] the inner product of L2-functions on [a, b].

We consider nonlinear systems of the form

ẋ = f(x, u), y = h(x) (1)

with x ∈ R
n, u ∈ R and y ∈ R. We will denote

with x(·, τ, ξ, u) any trajectory of system (1) corre-
sponding to the input u that verifies x(τ) = ξ ∈ R

n

and with y(·, τ, ξ, u) = h(x(·, τ, ξ, u)) its correspond-
ing output. We assume that the inputs belong to the
class U , with U ⊂ R a fixed compact set. We will
assume further that there exists a closed set G ⊂ R

n

where the state variables evolve, which is invariant
with respect to (1), i.e., given ξ ∈ G and u ∈ U ,
x(t, τ, ξ, u) ∈ G for all t ∈ R.

The following assumption will be made from now
on
H1: There exist positive numbers Lf and Lh such
that the functions f and h verify for all ξ, ξ′ ∈ G and
all ν, ν′ ∈ U

|f(ξ, ν) − f(ξ′, ν′)| ≤ Lf (|ξ − ξ′| + |ν − ν′|)(2)
|h(ξ) − h(ξ′)| ≤ Lh|ξ − ξ′|. (3)

As stated in the introduction, our aim is to design a
system

ż = g(z, y, u), x̂ = Q(z, u) (4)

with z ∈ R
p, inputs y and u from system (1) and

output x̂, which estimates the state x of system (1).

Definition II..1 : Given positive numbers T and ε,
we say that system (4) is a finite-time ε−T -observer
if its solutions z(·, τ, ζ, u) are defined on [τ, τ + T ]
and verify:

1. Consistency: Given ξ ∈ G and u ∈ U , if ζ is
such that ξ = Q(ζ, u), then

x(t, τ, ξ, u) = x̂(t, τ, ζ, u), ∀t ∈ [τ, τ + T ].

2. Convergence: For any ζ ∈ R
p, u ∈ U such that

Q(ζ, u) ∈ G and for any ξ ∈ G, there exists
a positive number Tu that may be made arbi-
trarily small such that

|x(t, τ, ξ, u)−x̂(t, τ, ζ, u)| < ε ∀t ∈ [τ+Tu, τ+T ].

A. Observability

As stated in the Introduction we aim to generalize
an existing finite-time observer, based on a concept
of observability related with the output map of an
autonomous system, to another, also of finite time for
a controlled system. It follows that we must consider
a concept of observability related with input-output
maps. Consider then T > 0 fixed, and for each ν ∈ U
and each ξ ∈ G, let yν(τ, ξ) = y(τ, 0, ξ, ν), τ ∈ [−T, 0]
the output of the system seen backwards when the
constant control ν is applied.

Definition II..2 : Let Δyν(τ, ξ, ξ′) = yν(τ, ξ) −
yν(τ, ξ′). System (1) is finite-time observable if there
exists αT ∈ K such that

‖Δyν(·, ξ, ξ′)‖[−T,0] ≥ αT (|ξ − ξ′|), (5)

for any ξ, ξ′ ∈ G and any ν ∈ U .

Observe that finite-time observability characterizes
the variations Δyν(τ, ξ, ξ′) with respect to the dis-
tance |ξ − ξ′|.
Remark II..3 : If G is compact, the observabil-
ity in this sense only requires that for all ν ∈ U ,
Δyν(·, ξ, ξ′) = 0 for all ξ = ξ′ ∈ G.

In fact, let d = diam(G). Due to (2)-(3) yν(τ, ξ) is
continuous in (ξ, ν), and hence we may take αT ∈ K
defined by

αT (s) =
s

d
min

|ξ−ξ′|≥s,ν∈U
‖Δyν(·, ξ, ξ′)‖[−T,0].

Definition II..4 : We say that system (1) is
strongly finite-time observable if for every T > 0
there exists αT as in Definition II..2 such that (5)
holds .

For general nonlinear systems, this observability
property will be hard to check, since observability
deals with distinguishability of output solutions over
(−∞, t], rather than over arbitrary small intervals.
The latter is usually checked by smooth techniques,
and hence is more easy to perform.

It is not hard to prove that if a systems is uni-
formly observable in the sense of Gauthier (see Ni-
jmeijer and Fossen, 1999), then it is strongly finite-
time observable.

Next, following Kreisselmeier and Engel (2003), we
define, for each T > 0 and ν ∈ U the observation
mapping

qT,ν(ξ) =
∫ t

t−T

eAν(t−s)bνy(s, t, ξ, ν)ds (6)

where the pair (Aν , bν) is controllable, Aν ∈
R

pν×pν , bν ∈ R
pν , and Aν is diagonal and Hurwitz

of prescribed eigenvalues, and |bν |∞ ≤ 1.
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The mapping qT,ν : G → R
pν assigns to each ξ ∈

G a point qT,ν(ξ) ∈ R
pν via the output trajectory

y(s, t, ξ, ν), s ≤ t of system (1).
Consider now, for each ν ∈ U the autonomous

system defined by

ẋ = fν(x) y = h(x), (7)

with fν(·) = f(·, ν). Then, following Kreisselmeier
and Engel (2003), we define for system (7) the ob-
server

ż = Aνz + bνy(·, τ, ξ, ν)
η(t) = z(t) − eAνT z(t − T )
x̂ = QT,ν(η)

(8)

defined for t > τ , with initial conditions z(t) =
z0(t), t ∈ [τ −T, τ ] and with QT,ν : R

pν → R
n, which

ideally satisfies QT,ν(qT,ν(ξ)) = ξ for all ξ ∈ G, and
is an extended inverse of qT,ν .

We have the following result whose proof, simi-
lar to that of Theorem 5 in Kreisselmeier and Engel
(2003), is included for the sake of completeness

Theorem II..5 : Suppose that

1. qT,ν : G → R
pν is injective;

2. QT,ν : R
mν → R

n satisfies QT,ν(qT,ν(ξ)) = ξ
for all ξ ∈ G.

Then, system (8) is a finite-time observer for system
(7), whose state estimate converges to the real state
in finite time T , i.e. if x(t, τ, ξ, ν) is a trajectory of
system (7), then x̂(t) − x(t, τ, ξ, ν) = 0 for all t ≥
τ + T .

Proof: Let us denote x(s) = x(s, τ, ξ, ν) and

qν(ξ) =
∫ t

−∞
eAν(t−s)bνy(s, t, ξ, ν)ds.

Then, for any t ≥ τ + T , qT,ν(x(t)) = qν(x(t)) −
eAνT qν(x(t − T )) and

d

dt
[z(t) − qν(x(t))] = Aν [z(t) − qν(x(t))]

and since η(t) = qT,ν(x(t)) + [z(t) − qν(x(t))] −
eAνT [z(t−T )− qT,ν(x(t−T ))], it follows that η(t) =
qT,ν(x(t)) and x̂(t) = x(t) for all t ≥ τ + T .

In order a finite -time observer for system (7) to
exist, it remains to establish conditions under which
the hypotheses of Theorem II..5 hold. With this aim,
we introduce the following

Definition II..6 : Given T > 0 and ν ∈ U , we say
that the observation map qT,ν is uniformly injective
if there exists β ∈ K such that

|qT,ν(ξ) − qT,ν(ξ′)| ≥ β(|ξ − ξ′|)
for all ξ, ξ′ ∈ G.

The next property characterizes the variations
Δyν(τ, ξ, ξ′) as functions of time τ .

Definition II..7 : Given T > 0, system (1) is said
to be of finite-time finite complexity in G if there ex-
ists a finite number of piecewise continuous functions
{φ1(τ), · · · , φl(τ)} such that for some δ > 0

l∑
i=1

∣∣〈φi,Δyν(·, ξ, ξ′)〉[−T,0]

∣∣ ≥ δ‖Δyν(·, ξ, ξ′)‖[−T,0]

(9)

for every ξ, ξ′ ∈ G and every ν ∈ U .

Definition II..8 : We say that system (1) is of
strong finite-time finite complexity, if for every T > 0
there exists δ as in Definition II..7 such that (9) holds.

Remark II..9 : The finite-time finite complexity
and the finite-time observability properties assure the
existence of a controllable pair (Aν , bν) which renders
the observation map qT,ν uniformly injective in G
(see Theorem II..10 below).
On the other hand, the uniform injectivity of the map
qT,ν guarantees the existence of an extended inverse
QT,ν for this map (Corollary II..12).

We are now in position to state the following result

Theorem II..10 : Let T > 0 and ν ∈ U . If system
(1) is finite-time observable and of finite-time finite
complexity, there exist pν ∈ N and a controllable
pair (Aν , bν) with Aν ∈ R

pν×pν Hurwitz, which can
be taken diagonal and of prescribed eigenvalues, and
bν ∈ R

pν with |bν |∞ ≤ 1, such that the observation
map qT,ν given by (6) is uniformly injective in G.

Proof: It follows, with minor modifications, along
the line of the proof of Theorem 2 in Kreisselmeier
and Engel (2003).

Remark II..11 : It follows readily from Definition
II..7 that if qT,ν is uniformly injective for some dimen-
sion pν , it will also be so for every integer m > pν .
This fact will be instrumental in what follows.

From Theorem II..10 and Lemma 4 in Kreisselmeier
and Engel (2003), we obtain the following result

Corolary II..12 : Let T > 0 and ν ∈ U . If system
(1) is finite-time observable and of finite-time finite
complexity, there exist an extended inverse QT,ν for
qT,ν . Moreover QT,ν(η) is continuous in (η, T ). �
As a consequence of this last result and of Theorem
II..5, the following holds.

Theorem II..13 : Let T > 0 and ν ∈ U . If system
(1) is finite-time observable and of finite-time finite
complexity, then system (8) is a finite-time observer
for system (7), whose state estimate converges to the
real state in finite time T , i.e. if x(t, τ, ξ, ν) is a
trajectory of system (7), then x̂(t) − x(t, τ, ξ, ν) = 0
for all t ≥ τ + T . �
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In order to assure some kind of regularity on the
behavior of the extended inverses, let Λ = {λi, i ∈ N}
a (from now on fixed) strictly decreasing sequence of
negative real numbers, and consider that QΛ

T,ν(η) is
an extended inverse, when the eigenvalues of Aν are
the first pν numbers of Λ. If we denote for any t > 0,
QΛ

ν (t, η) = QΛ
t,ν(η), we can introduce the following

Definition II..14 : ωΛ,T
ν (r) given by

ωΛ,T
ν (r) = sup

t∈[0,T ]

sup
|η−η′|∞≤r

|QΛ
ν (t, η) − QΛ

ν (t, η′)|

is a modulus of continuity for QΛ
T,ν .

Remark II..15 : Observe that in the case that G is
a compact set, ωΛ,T

ν (·) is uniformly continuous.

Let now for each k ∈ N, the set Λk ⊂ Λ given by:
Λk = {λk, λk+1, · · · }, and consider the standing hy-
pothesis

H2: For each T > 0 and each ν ∈ U there exists
ωT

ν ∈ K such that ωΛk,T
ν (r) ≤ ωT

ν (r) for all r ≥ 0 and
all k ∈ N.

Remark II..16 : Hypothesis H2 states a certain
kind of smoothness in the behavior of the extended
inverse, considered as a function of the discrete vari-
able pν , and reflects the fact that this dimension does
not increase when we replace the first eigenvalues of
the sequence in the determination of the controllable
pair. For observable linear systems (which are of fi-
nite complexity, see Kreisselmeier and Engel (2003)),
this kind of behavior is suggested by the existence of
observers based on the observability Grammian (see
Wonham, 1979).

We are now in position of stating the main result
of this work.

Theorem II..17 : Let T ′ and ε positive numbers,
and assume that system (1) is strongly finite-time
observable and of strong finite-time finite complex-
ity. Assume further that hypothesis H2 holds. Then
there exists an ε − T ′ observer for (1). �

Next we obtain a series of results which will be used
in the proof of this theorem.

Let I = [a, b] any finite interval. We say that a
finite set of real numbers Π(I) = {t0 = a < t1 <
tN = b} is a sampling set for I. We say that it is a
regular sampling set of norm μ when ti+1 − ti = μ >
0, ∀i. We denote by Π(I, μ) the regular sampling set
of I of norm μ.

Let μ′ > 0, I ′ a compact interval and U∗ ⊂ U .
For Π(I ′, μ′) = {t0 < t1 < · · · < tN}, we denote
by PC[Π(I ′, μ′), U∗] the family of piecewise-constant,
continuous from the right functions σ : I ′ → U∗ such
that σ(t) = σ(t+i ), t ∈ [ti, ti+1), 0 ≤ i < N .

Proposition II..18 : Let ε′ and T ′ positive num-
bers. Suppose that U ⊂ I = [a, b] and let
I ′ = [0, T ′].Then there exists μ > 0 such that
for any u ∈ UI′ there exist μu > 0 and σd ∈
PC[Π(I ′, μu), Π(I, μ)] such that

∫ T ′

0

|u(t) − σd(t)|dt < ε′.

Proof: Since u is piecewise continuous, there exist μu

and σ ∈ PC[Π(I ′, μu), U ] such that

∫ T ′

0

|u(t) − σ(t)|dt <
ε′

2
.

Let μ such that μT ′ < ε′/2 and let σd ∈
PC[Π(I ′, μu), Π(I, μ)] defined by σd(t) = ui if ui ≤
σ(t) < ui+1, where ui, ui+1 ∈ Π(I, μ). It follows
readily that

∫ T ′

0

|σd(t) − σ(t)|dt <
ε′

2
,

and in consequence, the thesis holds.

Proposition II..19 : Let ε and T ′ positive num-
bers, and consider I and I ′ as in Proposition II..18.
Then there exists μ > 0 such that if x(·, 0, ξ, u) is the
solution of (1) corresponding to ξ ∈ G and u ∈ UI′ ,
then σd ∈ PC[Π(I ′, μu),Π(I, μ)] with μu > 0 ex-
ists such that the solution xd(·, 0, ξ, σd) of (1) verifies
|x(τ, 0, ξ, u) − xd(τ, 0, ξ, σd)| < ε for all τ ∈ I ′.

Proof: Let us denote x(τ) = x(τ, 0, ξ, u) and xd(τ) =
xd(τ, 0, ξ, σd) for the yet unknown control σd. Then

|x(τ) − xd(τ)| ≤∫ τ

0

|f(x(s), u(s)) − f(xd(s), σd(s))|ds ≤

Lf

∫ τ

0

|x(s) − xd(s)|ds + Lf

∫ T ′

0

|u(s) − σd(s)|ds.

Pick ε′ such that Lfε′ exp(LfT ′) < ε, and μ, μu and
σd as in Proposition II..18. Then

|x(τ) − xd(τ)| < Lf

∫ τ

0

|x(s) − xd(s)|ds + Lfε′,

and by Gronwall’s inequality,

|x(τ) − xd(τ)| ≤ Lfε′eLf τ < ε.

III. THE OBSERVER

From now on we will assume that ε > 0 and T ′ > 0
are fixed. Let μ in Proposition II..19 correspond-
ing to ε/2 and T ′, and suppose that Π(I, μ) =
{u1, u2, . . . , uM}. Assume now that we want to es-
timate a trajectory x(t, 0, ξ, u) of (1) corresponding
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to u ∈ U[0,T ′] based on the knowledge of u and of
the output y(t, 0, ξ, u). Let then μu as in Proposition
II..19, and Π(I ′, μu) = {0 = t0 < t1 < · · · < tN = T ′}.
Take T = μu and let us define ωT : [0, +∞) →
[0, +∞) by

ωT (r) = max
1≤k≤M

ωT
uk

(r), r ≥ 0.

Consider δ > 0 such that ωT (δ) < ε/2, and let k∗ the
first integer such that |λk∗ | > 4ε/(δLh). Fix now the
subsequence of eigenvalues Λ∗ = Λk∗ , and denote for
each k, qT,uk

of (6) by qk, Auk
and buk

, by Ak and
bk respectively, QΛ∗

T,uk
= Qk and pk = puk

.
Proof of Theorem II..17: The following algorithm

is the proposed observer

• for each k determine pk, Ak, bk such that an
uniformly injective map qk and its extended
inverse Qk exist. Their existence is guaranteed
by Theorem II..10 and Corollary II..12.

• Let pk∗ = max{pk}, A = Ak∗ and b = bk∗ .
Determine this time for the fixed pair (A, b)
qk and Qk for 1 ≤ k ≤ M . According with
Remark II..11, Qk is, for each k, the extended
inverse of the uniformly injective mapping qk.

• define Q(·, u) by Q(·, u(t)) = Qk(·) if uk ≤
u(tj) < uk+1 and tj ≤ t < tj+1

• Apply the estimator

ż(t) = Az(t) + by(t, 0, ξ, u(t))
η(t) = z(t) − eAT z(t − T )
x̂(t) = Q(η(t), u(t))

(10)

with initial condition z(t) = z0(t − T ), 0 ≤ t ≤
T . �

In order to prove the convergence, consider the
estimator

żd(t) = Azd(t) + byd(t, 0, ξ, σd(t))
ηd(t) = zd(t) − eAT zd(t − T )
x̂d(t) = Q(ηd(t), σd(t))

(11)

with Q(·, σd) defined as above, with initial condi-
tion zd(t) = z0(t − T ), 0 ≤ t ≤ T , and with
yd(t, 0, ξ, σd(t)) = h(xd(t, 0, ξ, σd(t))). According to
Theorem II..5, x̂d(t) = xd(t) for every t ∈ [T, T ′].

It is not hard to prove that for all t ∈ [0, T ′],

|z(t) − zd(t)|∞ ≤ ε

|λk∗ |Lh
<

δ

2

and in consequence that |η(t) − ηd(t)|∞ ≤ δ for all
t ∈ [0, T ′]. It follows that for those t, |x̂(t)− x̂d(t)| =
|Q(x̂(t), u(t)) − Q(x̂d(t), σd(t))| < ωT (δ) < ε/2. In
consequence, for every t ∈ [T, T ′],

|x(t) − x̂(t)| ≤ |x(t) − x̂d(t)| + |x̂d(t) − x̂(t)| < ε,

and the theorem follows.

Remark III..1 : In order to design the proposed
observer we should be able to compute for each point
uk in the prescribed partition of U the injective map-
pings qk(·) and the extended inverses Qk. As pointed
out in Kreisselmeier and Engel (2003), this can be
done with an arbitrary finite accuracy, by taking the
following map of approximate inversion

Qk(η) =

∫
G ξwk(ε, η, ξ)dξ∫
G wk(ε, η, ξ)dξ

(12)

with

wk(ε, η, ξ) =
1

(ε + |η − qk(ξ)|)n+2
(13)

where ε is chosen to achieve an accuracy of the ob-
server high enough , (see that paper for details).

IV. AN EXAMPLE

With the purpose of exhibiting how the observer
approach herein presented works, we consider the
following non-autonomous Lipschitz continuous sys-
tem. ⎧⎨

⎩
ẋ1 = x2u
ẋ2 = −x1u
y = h(x1)

(14)

where u(t) is a ramp that goes from 10 to 20 in 5
seconds and then descends towards 10 again in an
equally large time interval.

We consider the former system of practical inter-
est because it models the behavior of a large class
of real-life devices, those consisting of a voltage con-
trolled oscillator followed by a nonlinearity (in this
case represented by h(·), a typical half-wave recti-
fier). Since for each ν ∈ U = [10, 20] the system
is piecewise linear, it is not hard to verify that the
hypotheses of Corollary I of Kreisselmeier and Engel
(2003) hold almost everywhere. In consequence, the
strong finite-time observability and strong finite-time
complexity properties are verified.

The parameters taken for the for the observer were
T ′ = 10, ε = 0. and Λ = {−0.01,−0.05,−0.1,−0.5,
−1,−1.5,−2,−4,−8,−16}. The partition norm for
U was μ = 1, and T = 0.5. Via simulations, it
was found that pk∗ = 10 enabled us determine the
approximate inversion maps (12) - (13), implemented
as

Qk(ξ) =
∑N

i=1 xi/[ε + |qk(xi) − ξ|]∑N
i=1 1/[ε + |qk(xi) − ξ|]

, (15)

with ε = 0.05 and {xi, i = 1, N} a partition of
G = [−1, 1] × [−1, 1] of norm 0.0125, with an error
|Qk(qk(xi)) − xi| < 2e−3 for each k and each i.

Figures 1 to 3 show the results of the simulations,
for initial conditions x1(0) = 1 and x2(0) = 0 and
zi(t − 0.5) = 0.2, 1 ≤ i ≤ 10, 0 ≤ t ≤ 0.5.
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Figure 1: x2 vs. x̂2 (Top) and System output (Bot-
tom)
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Figure 2: Estimation error for x1

Figure 1 shows the output and the state variable
x2 and its estimation x̂2, while Figs. 2 and 3 show
the corresponding estimation errors for x1 and x2

respectively. As can be seen, the observer performs
within the given specifications from approximately
t = 0.5 on. Nevertheless, in the steady state er-
ror profile there are peaks of amplitude bounded by
0.2. That happens due to the inverse map transitions
that match the control switching events. This effect
can be reduced at a greater computational effort by
refining the control mesh and by taking T smaller.

V. CONCLUSIONS

In this paper we have presented an observer for
controlled Lyapunov continuous SISO systems, (al-
though it can be easily extended to the MIMO case),
that realizes an arbitrary finite accuracy. The model
of the observer is based on an existing design for au-
tonomous systems, and applies to a rather large class
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Figure 3: Estimation error for x2

of controls (that of piecewise continuous, continuous
from the right controls). An example is given that
exhibits the behavior of the observer.
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