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Abstract— In this paper we propose a novel
adaptive filtering algorithm. The algorithm ex-
ploits the information given by the power spec-
tral density of the noise extracted from the pe-
riodogram of filtering error. The goal is try to
match the spectral properties of the error fil-
tering with the spectral properties of the mea-
surement noise. With this in mind appropriate
convex and closed sets are built and projec-
tions onto them are computed. The simulation
results show that the algorithm has excellent
convergence properties with a reduced number
of updates. This could be exploited to obtain
a lower computational load.

Keywords— Adaptive Filtering, Projec-
tions, Convex Sets, Periodogram, Power
Spectral Density.

I. INTRODUCTION

The problem of adaptive filtering can be interpreted as
one in which an unknown system has to be estimated.
Adaptive filtering has a great number of applications
such as channel equalization, noise cancellation, echo
cancellation, etc. (Haykin, 2002).

Set Theoretic Estimation has received considerable
attention for the last 20 years (Combettes, 1993). It
has been applied to a considerable number of prob-
lems like image processing (Combettes, 1997), signal
restoration (Trussell and Civanlar, 1984), etc. The
idea behind this approach is to use certain a priori
information about the object to be estimated. The
solution is required to be consistent with this informa-
tion. This is the only requirement to be fulfilled.

The a priori information is used to build sets (pro-
perty sets), in such a way that they contain the true
object with a high degree of confidence. A solution
to the problem can be stated in the following manner:
find one element in the intersection of the sets. This
task could be very difficult to implement in practice
(Combettes, 1993).

The application of this framework to adaptive fil-
tering has been reported too. Dasgupta and Huang
(1987), Gollamudi et al. (1998), Huang (1986) and
Nagaraj et al. (1999) proposed to bound the feasibility

set (the intersection set built with the sets represent-
ing the pieces of a priori information) with hyperel-
lipsoids at each time instant. Yamada et al. (2002)
utilized a method based on parallel subgradient pro-
jection (PSP) techniques onto convex sets for recur-
sive estimation of the true system. Yukawa and Ya-
mada (2004) proposed an interesting modification to
the PSP algorithm, which improves its performance.
In those previous works, information about additive
noise is used for the construction of the property sets.
The algorithms derived in those works show excellent
convergence properties for highly-colored inputs and
reduced number of updates.

This paper proposes a novel adaptive algorithm fo-
llowing the ideas given by Yamada et al. (2002). It
uses information about the power spectral density of
the noise. The periodogram of the filtering error plays
a fundamental role in the algorithm for testing the con-
sistency of the successive estimations with the infor-
mation about the power spectral density of the noise.

Throughout the paper, the following notations are
used: R

N and C
N are real and complex Hilbert spaces

with inner products 〈x,y〉 = xT y and 〈x,y〉 = xHy
respectively, where the superscripts T and H denote
transposition and complex conjugate transposition.
For any nonempty closed convex set C in a Hilbert
space H, the projection operator PC : H → C is de-
fined by ‖x − PC(x)‖ = min

y∈C
‖x − y‖ ∀x ∈ H.

II. PRELIMINARIES

Let w0 =
[
w0

0 w1
0 . . . wN−1

0

]T ∈ R
N be an unknown

linear FIR system. This is a common assumption in
system identification because FIR systems constitute
a simple and effective approximation in many practi-
cal problems. The associated adaptive filtering pro-
blem is shown in Fig. 1. The input signal at time n,
x(n) = [x(n) x(n − 1) . . . x(n − N + 1)]T ∈ R

N pass
through the system giving an output wT

0 x(n) ∈ R.
This output is observed but in this process usually
appears a noise v(n) ∈ R which will be considered
additive. Thus, each successive input x(n) gives an
output y(n) = wT

0 x(n) + v(n). The idea is to find
ŵn+1 to estimate w0. This filter receives the same
input x(n), leading to an output estimation error
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Figure 1: An adaptive filtering problem

e(n) = y(n) − ŵT
nx(n).

In the sequel we define the M × 1 output data
vector y(n) = [y(n − M + 1) y(n − M + 2) . . . y(n)]T

and the N × M input data matrix X(n) =
[x(n − M + 1) x(n − M + 2) . . . x(n)]. It can be de-
fined the M × 1 error vector e(n) = y(n)−XT (n)ŵn.

III. THE SET THEORETIC
FORMULATION

A. Constructing the property sets

In the Set Theoretic Estimation framework the solu-
tion has to be consistent with the available a priori
information. In this paper it is assumed that there
is some a priori information about the additive noise.
In fact it is assumed that its spectral density power
is known. If a perfect estimation of w0 is available,
ŵn = w0 ∀n, then v(n) = y(n) − xT (n)ŵn+1 ∀n. It
can be proved that v(n) and y(n) − xT (n)ŵn+1 have
the same properties in their probability distributions
(Combettes and Trussell, 1991). Defining the following
set:

Sn
k =

{
ŵn+1 ∈ R

N :
1
M

|(y(n)−

XT (n)ŵn+1

)T
sk

∣∣∣2 ≤ ξk

}
, (1)

where sk =
[
1 e−j 2πk

M . . . e−j
2πk(M−1)

M

]T

, it could be
known with a probability 0 < Pk < 1 that the true
system w0 is in Sn

k . The probability Pk depends on the
distribution of the noise and on the parameter ξk. It is
easy to see that Sn

k is built by taking the periodogram
at frequency bin k of the vector y(n) − XT (n)ŵn+1.
It is known that the periodogram is a simple statistic
for the spectral density power of a stationary stochas-
tic process. The set Sn

k is known as a property set
(Combettes, 1993). In the Set Theoretic framework it
is reasonable to seek the solution in this set provided
that Pk is close to 1.

B. Determining ξk

Strictly, to determine ξk to guarantee that Pk is close
to 1 the noise probability distribution has to be known.

This kind of knowledge can be difficult to have. But
if the noise v(n) is white and gaussian with variance
σ2, it can be shown that I0/σ2 and IM/2/σ2 have a
χ2

1 distribution, and 2I1σ
2, . . . 2IM/2−1/σ2 have a χ2

2

distribution, where:

Ik =
1
M

∣∣vT (n)sk

∣∣2 k = 0, 1, . . . , M − 1, (2)

and v(n) = [v(n − M + 1) v(n − M + 2) . . . v(n)]T .
For k = M/2 + 1, . . . ,M − 1, the results are the same
due to the even symmetry of the periodogram of real
signals. The determination of ξk for a required prob-
ability Pk can be accomplished using chi-squared ta-
bles. Moreover, if v(n) is not gaussian or white but it
is a strongly mixing process (Combettes and Trussell,
1991) with summable second- and fourth-order cum-
mulant functions and spectral density g(fk) with 0 ≤
fk = k/M ≤ 1/2 k = 0, 1, . . . ,M/2, it can be shown
that I0/g(0) and IM/2/g(1/2) are asymptotically dis-
tributed as χ2

1, and 2If1/g(f1), . . . 2IfM/2−1/g(fM/2−1)
are asymptotically distributed as χ2

2. As a result, in
the general case, the sets Sn

k can be built having knowl-
edge of the spectral density provided that v(n) satisfies
the above mentioned hypothesis.

C. Solving the problem

It is required to find a point in Sn
k because this is the

consistency condition that any valid solution has to
fulfill. Actually, we need to find a point in:

Sn =
M−1⋂
k=0

Sn
k , (3)

to be consistent with all spectrum information.
{Sn

k }M−1
k=0 are closed and convex sets in a Hilbert space.

It can be proved easily that Sn is also a closed and con-
vex set. Then, the concept of a projection in Hilbert
space can be applied to find a point in Sn given an ar-
bitrarily point in the total space (Luenberger, 1969).
However, the computation of the projection over Sn

can be a formidable task, while the projections over
each Sn

k can be more easily obtained. The POCS
(Projections onto Convex Sets) method can be uti-
lized to find a point in the intersection of a family of
closed and convex sets using the individual projections
(Combettes, 1993). However, its application in a real
time problem which is the nature of adaptive filtering
problem can be difficult or even impossible.

Yamada et al. (2002) proposed a general algorithm
of potential application to a real time problem using
the individual projections. It was used with other pro-
perty sets, but it can be used with the sets {Sn

k }M−1
k=0

defined in (1). Using these sets, the algorithm can be
expressed in the following manner:

ŵn+1 = ŵn + Ln

(
M−1∑
k=0

λn
kPSn

k
(ŵn) − ŵn

)
, (4)
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where PSn
k

is the projector onto Sn
k , λn

k > 0 ∀n, k and∑M−1
k=0 λn

k = 1 ∀n. The parameter Ln ∈ (0, 2Mn) is a
relaxation parameter (Combettes, 1997) and Mn is:

Mn =

⎧⎨
⎩

PM−1
k=0 λn

k‖PSn
k

(ŵn)−ŵn‖2

‖ PM−1
k=0 λn

k PSn
k

(ŵn)−ŵn‖2 if ŵn /∈ ⋂Sn
k

1 otherwise
.

(5)
It can be proved that Mn ≥ 1. Yamada et al. (2002)
proved that the algorithm has the Fejér-monotonicity
property: for every w∗ ∈ ⋂M−1

k=0 Sn
k :

‖w∗ − ŵn+1‖ ≤ ‖w∗ − ŵn‖. (6)

If we assume that w0 ∈ ⋂M−1
k=0 Sn

k ∀n, the property
is true for w0. These results are still valid taking the
projections onto closed and convex sets Cn

k that satisfy:

Sn
k ⊂ Cn

k and ŵn /∈ Sn
k ⇒ ŵn /∈ Cn

k . (7)

This last result allows the use of computable projec-
tions, if the ones onto the property sets are difficult to
obtain. In view of this last result, the projections are
computed using subgradients of convex functions.

IV. THE NEW ALGORITHM

It can be shown that the projections onto the sets
{Sn

k }M−1
k=0 defined in (1) are very difficult to obtain

if we assume that all the quantities are real. For this
reason it is necessary to find a way to circumvent this
problem. It can be possible to follow the same steps
that those carried on by Yamada et al. (2002) using
subgradients. However another approach is possible.
In this paper the following sets {Cn

k }M−1
k=0 are consid-

ered:

Cn
k =

{
ŵn+1 ∈ C

N :
1
M

|(y(n)−

XT (n)ŵn+1

)T
sk

∣∣∣2 ≤ ξk

}
. (8)

These sets are built in C
N and have the property (7)

assuming that X(n), y(n) and ŵn are real quantities.
The projections onto the sets {Cn

k }M−1
k=0 for each k can

be computed more easily using the Lagrange multipli-
ers (Luenberger, 1969):

PCn
k
(ŵn) = ŵn + αn

k

X(n)sksH
k e(n)

‖X(n)sk‖2
, (9)

where

αn
k =

{
0 if ŵn ∈ Cn

k

1 −
√

Mξk

|eT (n)sk| otherwise (10)

Replacing these results in (4), the algorithm is ob-
tained. For the calculation of αn

k it is necessary to
check if ŵn belongs to Cn

k . It is not difficult to show
that the following rule applies:

If
1
M

∣∣eT (n)sk

∣∣2 ≤ ξk ⇒ ŵn ∈ Cn
k . (11)

If
1
M

∣∣eT (n)sk

∣∣2 > ξk ⇒ ŵn /∈ Cn
k . (12)

The equations (10) and (12) show that the periodo-
gram of the filtering error has to be evaluated for
checking the membership of ŵn to Cn

k (and because
of (7), to Sn

k ). Then the periodogram of the filtering
error evaluates the degree of consistency of ŵn with
the information about the power of the noise at fre-
quency bin k. If this degree of consistency is high
enough there is no need of update at this frequency
bin.

The parameter αn
k controls the update in each fre-

quency k. If αn
k = 0 ∀k at a given n, it is not difficult to

see that ŵn+1 = ŵn. This possible absence of updates
has been reported in the literature in others adaptive
algorithms derived according to the Set Theoretic Es-
timation ideas (Dasgupta and Huang, 1987; Gollamudi
et al., 1998; Huang, 1986; Nagaraj et al., 1999). Sig-
nificant saving of computations can be achieved due
to this feature of this adaptive algorithm.

It can be shown that the result in (9) is a complex
vector. This can be a problematic situation since the
final vector ŵn+1 must be real because the true system
is assumed to be real. In order to handle with this
situation we have the following proposition:

Proposition 1 Given (4) and (5) where each pro-
jection is given by (9) and (10) and assuming that
X(n), y(n) and ŵn are real quantities and λn

k−M/2 =
λn

k+M/2 ∀k = 1, 2, . . . ,M/2− 1 with M even, it can be
proved that ŵn+1 is a real vector.

Proof. Since we assumed that ŵn is a real vector it
follows from (4) that we have to analyze the term:

M−1∑
k=0

λn
kPCn

k
(ŵn). (13)

It is clear that if ŵn /∈ Cn
k−M/2 then ŵn /∈ Cn

k+M/2

k = 1, 2, . . . , M/2 − 1. The reason for this is that
all the quantities in the algorithm are real and the
periodogram of real quantities has even symmetry (we
also assumed that ξk−M/2 = ξk+M/2 which is true if all
the quantities are real and we have the same confidence
levels for all the frequencies in the periodogram). It is
not difficult to see that:

�{PCn
k±M/2

(ŵn)} = X(n)
αn

k±M/2

‖X(n)sk±M/2‖2
.

�{sk±M/2sH
k±M/2}e(n), (14)

where �{} denotes the imaginary part. The term:

αn
k

‖X(n)sk‖2
, (15)

has even symmetry and it can be proved that:
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Figure 2: Proposed algorithm versus APA, PSP algo-
rithm and NLMS under SNR=20 dB.

�{sk+M/2sH
k+M/2} = −�{sk−M/2sH

k−M/2}. (16)

With these results it is not difficult to see that:

�{λn
k−M/2PCn

k−M/2
(ŵn) + λn

k+M/2PCn
k+M/2

(ŵn)} = 0.

(17)
It should be clear that:

�
{

M−1∑
k=0

λn
kPCn

k
(ŵn)

}
= 0. (18)

V. NUMERICAL RESULTS

To verify the efficacy of the proposed algorithm, it
is compared with the algorithm (PSP) proposed by
Yamada et al. (2002), the APA algorithm, which
is a well-established adaptive algorithm (Gay and
Tavathia, 1995) when the input signal is highly-colored
and the NLMS algorithm which a low complexity ref-
erence. The true system to be estimated is w0 ∈ R

64.
The input signal is generated by filtering a white, zero-
mean, gaussian random sequence through a first-order
system G(z) = 1/1 − 0.95z−1. This input is highly-
colored. The noise is white, zero-mean and gaussian
with SNR=10 log10

(
E

[∣∣wT
0 x(n)

∣∣2] /E
[
|v(n)|2

])
=

20 [dB]. The system mismatch defined as,
10 log10

(‖w0 − ŵn‖2/‖w0‖2
)

[dB] ∀n, is evaluated.
The PSP algorithm uses q = 1 and ρ = (r +

√
2r)σ2

for the parameter that define the corresponding pro-
perty sets (Yamada et al., 2002), where r = 8 and
σ2 is the variance of the noise. The order of the
APA algorithm is p = 8 and μ = 1. The regular-
ization of the APA algorithm take the value of 20
times the power of the input signal, thus following
Gay and Tavathia (1995). For the NLMS algorithm
μ = 1 and the regularization factor is the as the APA.
The proposed algorithm uses M = 8. The parameters
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Figure 3: Proposed algorithtm with M=2, M=8 y
M=16.

{ξk}M−1
k=0 are computed with chi-squared tables to ob-

tain Pk = 0.99 k = 0, 1, . . . , M −1. The coefficients λn
k

are set equal to 1/M ∀n, k in the proposed algorithm
and in the PSP algorithm. The technique developed
by Yukawa and Yamada (2004) could be applied to
this algorithm to improve its convergence properties.
The curves shown are the result of the ensemble of 50
independent trials.

In Fig. 2 the proposed algorithm is compared with
the APA algorithm and the PSP algorithm. The pro-
posed algorithm presents almost the same speed of
convergence than the APA algorithm with a lower fi-
nal error. The PSP algorithm, under this kind of input
signal, shows a lower speed of convergence, but a lower
final error than the APA algorithm. The good perfor-
mance of the proposed algorithm with respect to the
PSP algorithm is due to the more complete informa-
tion provided by the property sets in (8). The PSP
algorithm uses information about the total power of
the noise while the proposed algorithm uses informa-
tion about the power of the noise at each frequency.
The NLMS has a good final error but a poor speed
of convergence. In Fig. 3 the proposed algorithm is
tested under different values of M . The speed of con-
vergence and the final error are improved as this pa-
rameter becomes larger. However, the performance of
the algorithm with M = 2 is still good. The algorithm
was tested in other conditions (other input signals, dif-
ferent filter lenght, etc.) and its performance was very
good.

Finally, we compared the computational cost of the
algorithms. In Fig. 4 we computed the normalized
average number of “effective” projectors (αn

k = 0) per
iteration. This could be thought as an estimator of
the probability of computing an “effective” projector
at each iteration. In this simulation, both algorithms
had nearly the same mismatch curve (not shown). As
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Figure 4: Proposed algorithm (M = 16) versus the
PSP algorithm (q = 24, r = 1) under SNR=20 dB.

we can see, the proposed algorithm requires less com-
putations. The total average number of “effective”
projectors for the PSP algorithm was 32719.92, and
for the proposed one, it was 3022.08.

VI. CONCLUSIONS

A novel adaptive algorithm has been proposed in
which information about power spectral density of the
noise is used. The algorithm has a reduced number
of updates and shows excellent convergence proper-
ties under highly-colored inputs. This is very impor-
tant because exists different algorithms that have a
lower computational load but have poor convergence
properties under colored inputs (LMS algorithm is a
good example). It is in these situations where the pro-
posed algorithm should be used instead of those al-
gorithms. This fact make the algorithm suitable for
treating problems like echo cancellation. The infor-
mation about the power spectral density of the noise
can be used to improve the convergence behavior of
the algorithm when the noise is not white. Finally the
reduced number of updates of the proposed algorithm
could be exploited to obtain an improvement in the
resources for its numerical implementation.
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