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 Abstract. This paper presents a Genetic-  

Algorithm based decoder for a medium-sized Low 
Density Parity Check code (GAMD decoder). The 
main advantage of the proposed GAMD decoder is 
that no information on the noise level transmission 
channel is required, an essential condition for the 
well-known sum product algorithm. The proposed 
methodology combines a Genetic Algorithm stage 
with a meta-decision process. Genetic Algorithms 
were selected due to their capacity to solve this type 
of multiple minimum. Encouraging results were 
reached when comparing the Bit Error Rate (BER) 
performance of the proposed algorithm with that of 
the traditional sum-product decoding algorithm. The 
performance of the proposed decoder is very close to 
that of the optimal sum-product decoder, with the 
additional benefit of not requiring channel 
information (signal-to-noise ratio). In order to 
improve Bit Error Rate performance and/or reduce 
the complexity of the proposed decoder, the fitness 
function and parameters of the GA can be 
optimized.  

Keywords— LDPC codes, Genetic Algorithm, 
Sum-product Algorithm. 

I. INTRODUCTION 
One of the main issues in communication theory is the 
design of a coding technique rendering reliable trans-
missions over noisy channels. Since Shannon’s predic-
tion (Shannon, 1948), there have been different approa-
ches to accomplishing limit performance for a reliable 
transmission over a non-reliable channel. Low Density 
Parity Check (LDPC) codes appeared as a very suitable 
coding technique that, under some conditions, can yield 
a Bit Error Rate (BER) performance close to the 
Shannon’s limit by fractions of a dB. LDPC codes were 
invented by Gallager (1963) and later rediscovered by 
MacKay and Neal (1997), becoming one of the most po-
werful error correction techniques known in these days. 

A LDPC code is a linear block code defined by a 
very sparse parity check matrix H. The decoding 
algorithm is easily understood by means of a graphic 
representation called bipartite graph. In this graphic 
representation, the decoding procedure is seen as the 
interchange of probabilistic information between 
symbol (or bit) nodes and parity check nodes. The 

relationship between the bits of a code vector is 
determined by the parity check matrix H. A given code 
vector satisfies the whole set of parity check conditions 
described in the parity check matrix H.  

 When these codes are decoded using Gallager’s 
iterative probabilistic decoding method, also known as 
the sum-product algorithm or belief propagation 
algorithm, their empirical BER performances are found 
to be excellent (MacKay, 1999; Richardson and 
Urbanke, 2001). This is true when the length of the code 
vector is large enough. The decoding algorithm is an 
iterative decoding procedure that depends on the 
knowledge of the noise level in the channel. MacKay 
and Hesketh (2003) investigated the dependence of the 
performance of a LDPC code on both the assumed and 
actual noise levels of a binary symmetric channel and a 
Gaussian channel, respectively.  

Genetic Algorithms (Goldberg, 1989) are search 
algorithms that apply operations from natural genetics 
to guide the trek through a search space. GAs have 
theoretically and empirically proven to provide robust 
search capability in complex spaces, offering a valid 
approach to a problem requiring efficient and effective 
search.  

GAs have been previously applied to 
communication network design (Daijin and Sunha, 
1999), VLSI layout (Valenzuela and Wang, 2002), 
maximal distance codes (Dontas and De Jong, 1990), to 
name a few examples.  

In this work, we propose a new approach to a LDPC 
decoding algorithm based on a hybrid system that 
combines a Genetic Algorithm with a Meta-Decision 
Process (Bonissone, 2003). As the main advantage of 
the proposed decoding scheme, we emphasize that no 
knowledge of the signal to noise ratio present in the 
channel is necessary. 

II. GENERAL CONSIDERATIONS 
A. LDPC codes  
LDPC codes (McKay, 1999) are a powerful class of 
linear block codes characterized equivalently by a 
generator matrix G (k x n dimension) used to encode a 
message vector m (k x 1 dimension) into a code vector x 
(n x 1 dimension), or by its corresponding parity check 
matrix H ((n-k) x n dimension), which is such that any 
code vector satisfies the syndrome condition 0xH = . 
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The design of these codes is based on the construction 
of this parity check matrix H, which is a sparse matrix 
that meets some conditions to provide the system with 
optimum Bit Error Rate (BER) performance.  

A given message vector m is converted into a code 
vector x by performing the matrix operation 

mGx T= . Both the message vector m and the code 
vector x are defined over the binary field, i.e., vectors 
with components taken from a discrete alphabet {0,1}. 
Digital data transmission is more conveniently carried 
out using polar format. In said format, bits are 
transmitted sending signals taken from a discrete 
alphabet {-1,+1}, so that, commonly, bit 0 is assigned a 
-1 signal, and bit 1 is assigned a +1 signal. Then, the 
code vector x converts into the signal vector s. After 
being transmitted, and in the presence of additive 
Gaussian noise n, the signal s converts into a received 
vector y = s + n. Thus, vectors m and x components are 
taken from a discrete alphabet, whereas the received 
vector y components are taken from the set of real 
numbers yi in the interval [-∞,∞]. 

As well-known, the aim of the decoding algorithm 
for a given block code is to find the vector d, considered 
as an estimation of the transmitted vector x, able to 
satisfy the following condition: 

 0dH =   (1) 

The LDPC sum-product decoding algorithm 
(Gallager, 1963; MacKay and Neal, 1997) makes an 
estimation of the A Posteriori Probability (APP) of each 
symbol as a function of the received symbol and the 
properties of the channel. In this sense, the decoding 
algorithm does require to know the signal-to-noise ratio 
in the channel.  

B. Genetic Algorithm  
GAs are general purpose search algorithms whose 
principles lie on natural genetics. GAs can be applied to 
solve problems in which the objective function is 
discontinuous, non-differentiable, stochastic, or highly 
nonlinear. 

GA maintains a population of individuals that evolve 
according to rules of selection and genetic operators, 
such as reproduction, crossover and mutation. GA 
begins with a population that consists in randomly 
created individuals (possible solutions) and repeatedly 
modifies this population "evolving" towards an optimal 
solution.  

Each individual in the population is assigned a 
measure of its fitness in the environment. Reproduction 
focuses its attention on high fitness individuals, thus 
exploiting the available fitness information. Crossover 
and mutation perturb those individuals, providing 
general heuristics for exploration. Although simplistic 
from a biologist's viewpoint, these algorithms are 
complex enough to provide robust (good performance 
across a variety of problem types) and powerful 
adaptive search mechanisms. The adaptive behaviour of 
the GA depends on this feedback to drive the population 

towards better overall performance (Koza, 1992, 
Michalewicz, 1992).  

Therefore, considering a particular problem, an ad-
hoc evaluation or fitness function must be devised. 

As already known, GAs’ performance is a function 
of parameter settings (Dontas and De Jong, 1990; 
Schaffer et al., 1989). The number of possible 
parameter assignments rules out a factorial design to fix 
the best parameter setting.  

III. GENETIC ALGORITHM META-DECISION 
DECODER (GAMD) 

The proposed GAMD decoder uses the parity check 
matrix H to recover the decoded vector d embedded in a 
vector y, which is the transmitted code vector x corrup-
ted by the Additive White Gaussian Noise (AWGN).  

This algorithm can be implemented in three steps. 
These are the syndrome calculation step, the GA 
application step, and lastly the meta-decision step. 

A. The syndrome calculation step 
In this first step the proposed algorithm constructs a 
modified received vector yhard, which is basically a hard 
decision vector of the received vector y. In this step, the 
components yi of the received vector, essentially real 
numbers, are converted into binary values (taken from 
the discrete alphabet {0,1}) using a fixed threshold. 
Then, the decoding algorithm verifies if this modified 
vector satisfies the syndrome condition (Eq.1). If the 
modified received vector yhard meets this condition, then 
a valid code vector d is obtained by d = yhard. Otherwise, 
the decoder makes the following two steps. 

B. Genetic Algorithm step  
The algorithm begins creating an initial population of V 
candidates: a set of individual vector v with real 
components vi ∈ [0,1]. To avoid an a priori reduction of 
the searching space, an initial random population is 
generated. A new 500 individual generation (children) is 
created through the following steps: 
• Selects individuals (called parents) based on their 

fitness value (Eq. 2) through the selection function. 
• The two individuals with the best fitness values 

survive for the next generation (elite children=2) 
• The crossover fraction (Pc=0.95) specifies the 

fraction of the population, other than elite children, 
that are made up of crossover children. 

• To complete the new generation, mutation children 
are created by introducing random changes with a 
given probability rate (Pm=0.01) to a single parent.   
The algorithm stops when the limit of 25 generations 

is reached. 
The GA parameters were heuristically selected to 

optimize its performance. 
The solution provided by the GA algorithm is a z 

vector. The process involves the following fitness 
function: 

 1 1

m n

j i i
j i

Fitness b z y
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  (2) 
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 where bj are the components of the vector b defined as: 
=H z b  

In Eq.2, m is the number of rows of the parity check 
matrix H, and n the code vector length. Vector z is 
obtained as follows: 

 1
0

i i
i

i i

if y v
z

if y v
>⎧
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where: 
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The aim of the sigmoid function described in Eq.4, 
applied component wise, is to map the components of 
the received vector y into [0,1]. Hence the received vec-
tor y format agrees with the candidate vectors v format. 

The fitness function measures both a component 
wise distance between the candidate vector and the 
received one, and also how close the candidate vector 
satisfies the syndrome condition (Eq.1).  

A set of q decoded vectors z is obtained applying 
GA algorithm q times, where q is an arbitrary integer 
value heuristically optimized (partial solutions).  

These q vectors are candidates for the following step 
of the decoding process, which consists in applying the 
meta-decision process. 

C. The Meta-decision process 
The Meta-decision process reduces the results scattering 
of the GA, which comes from the randomness of the 
initial population.  

The z vectors are a set of possible solutions obtained 
at q GA runs, next a meta-decision stage generates the 
final solution, i.e, a decoded vector d.  

This process applies the majority logic, a well-
known procedure utilized in the error correction 
decoding theory. This procedure performs a component 
wise decision over the z candidate vectors, setting each 
final component di as the bit state of higher frequency. 
In order to perform this meta-decision process, 
parameter q was heuristically selected equal to q =15. 
Simulations were performed with Matlab®. 

IV. DECODING COMPLEXITY 
The comparative analysis of decoding complexity is a 
rather difficult task, mainly because the proposed 
GAMD decoding algorithm and the traditional sum-
product decoding operate quite differently.  

The complexity of the sum-product algorithm is a 
function of the code parameters. This algorithm is 
essentially sequential. If n is the code vector length and 
also the column size of H matrix, and t is the average 
value of ones per column for that matrix, the sum-
product decoding algorithm involves the calculation of 
6 n t products and 5 n t sums (average) per iteration.  

The GA inherent random feature does not allow 
specifying an analytical expression due to its 
complexity.  
The tested GAMD decoder is of higher computing 
complexity if compared to the Sum Product Algorithm 

in medium-sized LDPC codes. However this 
methodology allows a parallel design process (letting 
simultaneous GA runs and just concentrating on a very 
fast meta-decision process) which would strongly 
decrease processing time. 

V. RESULTS 
In this preliminary study the BER performance of an 
irregular (60, 30) LDPC code is evaluated (Richardson 
et al., 2001). The simulations are carried out for the 
Additive White Gaussian Noise Channel. The 
comparison between the proposed GAMD decoder and 
the traditional sum-product decoding algorithm (SPDA) 
(Gallager, 1963; MacKay and Neal, 1997) is presented. 
The fact that the latter, unlike the GAMD decoder, 
needs information of the channel signal-to-noise ratio is 
noted. The simulations were performed with 300 words 
of 60 bits each, considering different noise power levels, 
expressed as ratio Eb/No [dB] (Eb: average bit energy, 
No: noise power spectral density) in Fig.1 and Fig.2.  

Figure 1 shows the performance of the sum-product 
decoding algorithm of an irregular (60, 30) LDPC to be 
taken as a comparison reference for the BER 
performance of the proposed GAMD decoder. Results 
are evaluated for 2, 6, 10 and 14 iterations, showing that 
the BER performance does not improve significantly 
after 14 iterations (SPD-14). As widely known, this 
algorithm is a Maximum A Posteriori (MAP) 
Algorithm, hence its performance is considered optimal.  

Table 1 lists the number of bit errors yielded by a 
300-codeword transmission for different values of noise 
standard deviation σ. The number of errors is calculated 
over the message bits. 

 
Fig. 1. BER performance of an irregular (60, 30) LDPC 

code decoded using the sum-product algorithm for 
different number of iterations 

Table 1. Errors over 300 words 
σ 0.6 0.7 0.8 0.9 1.0 

GAMD 10 113 382 812 1181 
SPD 14 10 72 376 828 1287 
GAMD: GA meta-decision decoder 
SPD 14 : Sum-product decoding algorithm with  
                 14 iterations 
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Fig. 2. BER performance of two decoders for an irregular (60, 
30) LDCP code. 

Figure 2 shows the BER performance of these two 
decoding algorithms.  

VI. CONCLUSIONS  
The GAMD decoder is tested on a medium-sized LDPC 
code. As shown in Table 1, for high noise levels 
 (σ = 0.9, σ = 1) the GAMD decoder performance is 
better than the SPD-14 is. Besides, regarding  
Eb/No ≈ 3dB, the traditional sum-product decoding 
algorithm performs slightly better than the GAMD 
decoder. 

The main advantage of the proposed GAMD 
decoder is that noise level transmission channel 
information needs not be known, an essential condition 
for sum product algorithm.  

As further work, the BER performance of the 
proposed GA based decoder for LDPC codes will be 
studied for larger length codewords, i.e, for larger parity 
check matrices. Another interesting feature of the 
GAMD decoder is the feasibility of implementing 
parallel computing, taking advantage of the 
independence of the algorithm q rounds.  

The tested GAMD decoder exhibits higher 
computing complexity (approximately six fold) than the 
Sum Product Algorithm in medium-sized LDPC codes. 
Not withstanding this, this methodology allows a 
parallel design process (letting simultaneous GA runs 
and just concentrating on a very fast meta-decision 
process) which would strongly decrease processing 
time. 

The independence of the proposed decoding 
algorithm with respect to the channel characteristics 
makes it perfectly suitable to be applied not only to 
other types of channels, such as the fading channel, but 
also to other codes. This is proposed as a further 
research field. 
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